JP2760282B2 - Calibration solution for ion-electrode method electrolyte analyzer - Google Patents

Calibration solution for ion-electrode method electrolyte analyzer

Info

Publication number
JP2760282B2
JP2760282B2 JP14232794A JP14232794A JP2760282B2 JP 2760282 B2 JP2760282 B2 JP 2760282B2 JP 14232794 A JP14232794 A JP 14232794A JP 14232794 A JP14232794 A JP 14232794A JP 2760282 B2 JP2760282 B2 JP 2760282B2
Authority
JP
Japan
Prior art keywords
concentration
ion
calibration
calibration solution
interfering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14232794A
Other languages
Japanese (ja)
Other versions
JPH07325063A (en
Inventor
孝司 網田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimazu Seisakusho KK
Original Assignee
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimazu Seisakusho KK filed Critical Shimazu Seisakusho KK
Priority to JP14232794A priority Critical patent/JP2760282B2/en
Publication of JPH07325063A publication Critical patent/JPH07325063A/en
Application granted granted Critical
Publication of JP2760282B2 publication Critical patent/JP2760282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0000】[0000]

【産業上の利用分野】本発明は血液や尿など体液中のN
+、K+、Cl-イオン濃度を測定するイオン電極を用
いた希釈方式による臨床用電解質分析装置に用いる校正
液に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to N in body fluids such as blood and urine.
The present invention relates to a calibration solution used for a clinical electrolyte analyzer by a dilution method using an ion electrode for measuring a + , K + , and Cl - ion concentrations.

【0001】[0001]

【従来の技術】イオンに対し選択性をもつイオン電極を
用いた臨床用のNa+/K+/Cl-分析装置は、主とし
て血液(血清)と尿の分析に用いられている。イオン電
極には校正が不可欠であり、少なくとも1日に2回は行
なう必要がある。これはイオン電極の出力が温度変化や
汚れなどによる劣化によって変化するためであり、通常
2種類の濃度で校正が行なわれている。
BACKGROUND OF THE INVENTION for clinical using ion electrodes having selectivity for ions Na + / K + / Cl - analyzer is mainly used for analysis of urine and blood (serum). Calibration is essential for ion electrodes and must be performed at least twice a day. This is because the output of the ion electrode changes due to deterioration due to temperature change, contamination, and the like, and calibration is usually performed at two types of concentrations.

【0002】校正液は、2種類の校正濃度が適当な間
隔をもつこと、pHが中性付近(pH6〜8)である
こと、及びイオン強度が試料と大きく変わらないこ
と、の3点を重視して決められている。イオン強度は血
清のイオン強度に近い120〜180mmol/lに合わ
せるように作られている。例えば、Na+/K+/Cl-
のイオン濃度をmmol/lで表わして、例えば1点目を
血清の標準値である140/4/100付近とし、2点
目を100/8/60、120/10/70、又は16
0/6/140などとすることにより、2点の校正液間
でイオン強度を大きく変えないように設定されている。
イオン強度を大きく変えない理由は、イオン強度が増減
すると目的イオンの活量係数が変化し、濃度に換算した
ときに誤差が生じるからである。
[0002] Calibration solutions emphasize three points: that two kinds of calibration concentrations have an appropriate interval, that the pH is near neutrality (pH 6 to 8), and that the ionic strength is not much different from that of the sample. It is decided. The ionic strength is adjusted to 120 to 180 mmol / l which is close to the ionic strength of serum. For example, Na + / K + / Cl -
For example, the first point is set to around 140/4/100, which is the standard value of serum, and the second point is set to 100/8/60, 120/10/70, or 16
By setting 0/6/140 or the like, the setting is made so that the ionic strength is not largely changed between the two calibration solutions.
The reason why the ionic strength is not largely changed is that if the ionic strength increases or decreases, the activity coefficient of the target ion changes, and an error occurs when converted into a concentration.

【0003】イオン電極の出力Eは Nernst の式によっ
て次のように表現される。 E=E0 +(RT/zF)lnaM =E0 +NlogaM ……(1) ここで、aMはMイオンの活量、Nはネルンスト定数
で、25℃で59.15mVである。なお、この式は1
価の陽イオンの場合である。活量は活量係数f×濃度C
であるから、 E=E0 +Nlogf+NlogCM ……(2) となる。活量係数がほぼ等しい校正液−試料系ではNlo
gfは定数と考えられるので、 E=E0'+NlogCM ……(3) となる。すなわち、図1に示されるように、校正液C1
とC2の2点で校正して検量線を引き、未知濃度xの試
料の検出電位から濃度Cxを計算することになる。これ
が従来からの校正及び測定系であり、希釈法であるか非
希釈法であるかを問わず、下記の式で濃度が計算され
る。
The output E of the ion electrode is expressed as follows by the Nernst equation. E = E 0 + (RT / zF) lna M = E 0 + Nloga M ...... (1) where the activity of a M is M ion, N is the in Nernst constant is 59.15mV at 25 ° C.. Note that this equation is 1
This is the case for a positive cation. Activity is activity coefficient f × concentration C
Therefore, E = E 0 + Nlogf + NlogC M (2) Nlo in the calibration solution-sample system with almost the same activity coefficient
Since gf is considered to be a constant, E = E 0 '+ NlogC M (3) That is, as shown in FIG.
And C2 are calibrated, a calibration curve is drawn, and the concentration Cx is calculated from the detection potential of the sample of unknown concentration x. This is a conventional calibration and measurement system, and the concentration is calculated by the following equation regardless of the dilution method or the non-dilution method.

【数2】 (Equation 2)

【0004】ところで、血液と尿とでは目的イオンの濃
度範囲が大いに異なる。特にK+では血液中の濃度は3
〜6mmol/lであるのに対して、尿では10〜100
mmol/lに分布している。そのため、血液レベルで校
正を行なっても尿レベルでは値が合わないといわれてお
り、血液用と尿用とでそれぞれ2種類ずつの校正液を用
意して校正を行なっている。
[0004] By the way, the concentration range of target ions differs greatly between blood and urine. Especially for K + , the concentration in blood is 3
66 mmol / l, whereas urine is 10-100
mmol / l. For this reason, it is said that even if calibration is performed at the blood level, the values do not match at the urine level, and two types of calibration solutions are prepared for blood and urine, and calibration is performed.

【0005】[0005]

【発明が解決しようとする課題】血液用と尿用とで異な
る校正液を使用することになれば校正の手数が2倍にな
る。イオン電極では校正の回数が多く必要になるので、
作業者の負担もそれだけ大きくなる。そこで、血液用と
尿用とで共通の校正液を調製することができないかどう
かという観点で検討を進めた。
If different calibration liquids are used for blood and urine, the number of calibration steps is doubled. Ion electrodes require many calibrations, so
The burden on the worker also increases accordingly. Therefore, studies were conducted on whether a common calibration solution could be prepared for blood and urine.

【0006】血液モードで校正したイオン電極を用いて
尿を測定すると値が合わないのはどういう理由であるか
については、従来は血液と尿とでは濃度範囲が異なるた
めに電極の応答速度が異なるためであるとする説と、試
料のマトリックスが異なるためにイオン強度などが異な
るためであるする説などがある。しかし、本発明者はこ
れらの説に拘束されることなく検討を進めた結果、イオ
ン電極の選択性が大きく影響していることを知り、血液
レベルの校正液の濃度が不適切であるために、妨害イオ
ン濃度の大きく異なる尿では大きく値が変動することを
見出した。本発明は血液の測定に対しても尿の測定に対
しても適用できる検量線を作成することのできる校正液
を提供することを目的とするものである。
Regarding the reason why the values do not match when urine is measured using an ion electrode calibrated in the blood mode, the response speed of the electrodes is different because the concentration ranges are different between blood and urine conventionally. There is a theory that this is due to the fact that there is a difference in ionic strength and the like due to a difference in the matrix of the sample. However, as a result of studying without being bound by these theories, the present inventor found that the selectivity of the ion electrode had a large effect, and that the concentration of the blood-level calibration solution was inappropriate. It was also found that urine with greatly different interfering ion concentrations fluctuated greatly. An object of the present invention is to provide a calibration solution capable of preparing a calibration curve applicable to both blood measurement and urine measurement.

【0007】[0007]

【課題を解決するための手段】本発明はイオン電極を用
いた希釈方式による臨床用電解質分析装置の校正液であ
って、2種類の校正液のうちの1点目の校正液は人の血
清の正常範囲付近の濃度のものとし、2点目の校正液の
中の1つの目的成分濃度をCMC2としたとき、その目的
イオンに対して妨害イオンとなるイオンの濃度CNC2
SUMMARY OF THE INVENTION The present invention relates to a calibration solution for a clinical electrolyte analyzer using a dilution method using an ion electrode, wherein the first calibration solution of two types of calibration solutions is human serum. When the concentration of one target component in the calibration solution at the second point is C MC2 , the concentration C NC2 of an ion that becomes an interfering ion with respect to the target ion is defined as

【数3】 近傍にした。ここで、KMNは目的イオンに対する妨害イ
オンの選択係数で最悪値付近と考えられるもの、CMC1
は1点目の校正液の目的イオン濃度、CNC1は1点目の
校正液の妨害イオン濃度、CXは尿レベルでの目的イオ
ンの正常値上限付近又は測定範囲上限付近の濃度、CNX
は尿レベルでの妨害イオンの正常値付近の濃度である。
(Equation 3) It was near. Here, those K MN is considered near worst value in the selected coefficient of the interfering ions to target ions, C MC1
Is the target ion concentration of the first calibration solution, C NC1 is the interfering ion concentration of the first calibration solution, C X is the concentration of the target ion near the upper limit of the normal value or the upper limit of the measurement range at the urine level, C NX
Is the concentration near the normal value of interfering ions at urine level.

【0008】[0008]

【作用】イオン電極では目的イオン以外のイオンに対す
る応答、すなわち妨害は程度の差こそあれ避けられな
い。妨害のある場合の電極電位Eは次の Eisenman - Ni
colsky の式で表わされる。 E=E0' +Nlog(CM+KMNN) ……(6) KMNは選択係数であり、(6)式は活量を濃度に変換し
たもので、目的イオン濃度CM、妨害イオン濃度CNとも
に1価の陽イオンの場合である。血液中と尿中で通常最
も妨害を与えるのは、Na電極に対するK+、K電極に
対するNa+、Cl電極に対するHCO3 -である。それ
ぞれの選択係数が0に近ければ(6)式は実質的に
(3)式と同じになり、問題は生じない。しかし、実際
は選択係数KMNは0ではないし、またK+,Na+,Cl-
電極に用いられるPVC膜型の電極の特性上、使用して
いるうちに膜から感応物質や可塑剤が流出し、徐々に劣
化して、選択係数が大きくなっていく傾向がある。その
ため、図1と同じように校正を行ない、試料を測定する
と、校正液、試料ともに妨害物質が含まれているため、
測定値が真値からずれることになる。
In the ion electrode, the response to ions other than the target ion, that is, interference is inevitable to some extent. The electrode potential E when there is interference is given by Eisenman-Ni
It is represented by the colsky formula. E = E 0 ′ + Nlog (C M + K MN C N ) (6) K MN is a selection coefficient, and equation (6) is obtained by converting the activity into a concentration, the target ion concentration C M and the interfering ion. Both concentrations C N are monovalent cations. The most disruptive in blood and urine are usually K + for the Na electrode, Na + for the K electrode, and HCO 3 for the Cl electrode. If each selection coefficient is close to 0, equation (6) becomes substantially the same as equation (3), and no problem occurs. However, the selection coefficient K MN is not actually 0, and K + , Na + , Cl
Due to the characteristics of the PVC film type electrode used for the electrode, the sensitive substance and the plasticizer flow out of the film during use, gradually deteriorate, and the selectivity tends to increase. Therefore, when the calibration is performed in the same manner as in FIG. 1 and the sample is measured, the calibrating solution and the sample both contain an interfering substance.
The measured value will deviate from the true value.

【0009】妨害物質も考慮すると、検量線及び測定は
図2のように表わされる。ここで、CMC1は校正液1中
の目的イオン濃度、CNC1は校正液1中の妨害イオン濃
度、CMC2は校正液2中の目的イオン濃度、CNC2は校正
液2中の妨害イオン濃度、CNXは試料中の妨害イオン濃
度である。
In consideration of interfering substances, the calibration curve and the measurement are shown in FIG. Here, C MC1 is the target ion concentration in the calibration solution 1, C NC1 is the interference ion concentration in the calibration solution 1, C MC2 is the target ion concentration in the calibration solution 2, and C NC2 is the interference ion concentration in the calibration solution 2. , C NX is the concentration of interfering ions in the sample.

【0010】図2の関係から、真値CXは次の(7)式
で表わされる。
From the relationship shown in FIG. 2, the true value C X is expressed by the following equation (7).

【数4】 ところが、実際の計算は(4)式で行なわれるため、そ
の差が誤差となる。誤差を少なくするためには、(4)
式で計算されるCXと、(7)式で計算されるCXが同じ
であればよい。したがって、(4)式から
(Equation 4) However, since the actual calculation is performed by equation (4), the difference is an error. To reduce the error, (4)
And C X, which is calculated by the formula, as long (7) C X is the same that is calculated by the formula. Therefore, from equation (4)

【数5】 であるので、これを(7)式に代入して(Equation 5) So, substitute this into equation (7)

【数6】 を得る。この式をCNC2について解くと、(5)式に示
した次の式が得られる。
(Equation 6) Get. When this equation is solved for C NC2 , the following equation shown in equation (5) is obtained.

【0011】[0011]

【数7】 すなわち、2種類の校正液のうちの一方については血清
の正常値付近の濃度(CMC1,CNC1)に定め、CXは尿
レベルでの目的イオンの正常値上限付近又は測定範囲上
限付近の濃度、CNXは尿レベルでの妨害イオンの正常値
付近の濃度とし、選択係数KMNとして最悪の選択性を仮
定し、2点目の校正液の目的イオン濃度(CMC2)を尿
中の適当な濃度に選ぶと、その中に含まれるべき最適な
妨害イオン濃度(CNC2)が決定される。
(Equation 7) That is, one of the two calibration solutions is determined to have a concentration near the normal value of serum (C MC1 , C NC1 ), and C X is near the upper limit of the normal value of the target ion at the urine level or near the upper limit of the measurement range. The concentration, C NX, is the concentration near the normal value of interfering ions at the urine level, and the worst selectivity is assumed as the selection coefficient K MN , and the target ion concentration (C MC2 ) of the second calibration solution is determined in the urine. Choosing an appropriate concentration determines the optimal interfering ion concentration (C NC2 ) to be contained therein.

【0012】実際に数値をあてはめて計算してみる。校
正液1の濃度は血液中の正常値と同じ値とし、Na+
+/Cl-/HCO3 -が140/4/100/25(m
mol/l)とする。選択係数KMNは、 KNa,K=0.02〜0.2 KK,Na=0.001〜0.01 KCl,HCO3-=0.05〜0.2 と仮定し、最悪付近の数値を採用する。尿試料で妨害イ
オンの影響がある場合とない場合とで濃度測定値が一致
する点をNa+/K+/Cl-=400/50/400と
仮定する。また、尿での妨害イオンの正常値をK+/N
+/HCO3 -=40/100/0と仮定する。これら
の数値は実際の尿の測定値から経験的に仮定したもので
あり、許容できる範囲内で数値を変更することは容易で
ある。
The calculation is actually performed by applying numerical values. The concentration of the calibration solution 1 was set to the same value as the normal value in blood, and Na + /
K + / Cl / HCO 3 is 140/4/100/25 (m
mol / l). The selection coefficient K MN is assumed to be K Na, K = 0.02 to 0.2 K K, Na = 0.001 to 0.01 K Cl, HCO3-= 0.05 to 0.2 Use numerical values. It is assumed that the point where the measured concentration values match in the urine sample with and without the effect of interfering ions is Na + / K + / Cl = 400/50/400. Also, the normal value of interfering ions in urine was calculated as K + / N
Assume a + / HCO 3 = 40/100/0. These values are empirically assumed from actual urine measurements, and it is easy to change the values within an acceptable range.

【0013】この条件でコンピュータで計算させてグラ
フとして表示したのが図3(A)〜(C)である。
(A)はNa+濃度に対する妨害イオンK+の許容される
濃度範囲、(B)はK+濃度に対する妨害イオンNa+
許容される濃度範囲、(A)はCl-濃度に対する妨害
イオンHCO3 -の許容される濃度範囲を表わしており、
△マークと+マークは±1%の幅を表わしている。した
がって、両マークの曲線に挾まれた領域の妨害イオン濃
度をもつように校正液を調整すれば、最適の校正液濃度
となる。仮定した数値は実際に近いものであるが、数値
を多少変化させて再計算させることは容易にできる。例
えば、図3(B)より、2点目の校正液のNa/K濃度
はK+の観点から見れば170/6,200/8,22
0/12などという比率がよい、ということがわかる。
K測定という観点から見た最適のNa濃度とNa測定と
いう観点から見た最適のK濃度は一致しないが、範囲の
広いKを重視して濃度を定めるのがより正確である。
FIGS. 3A to 3C show graphs calculated by a computer under these conditions.
(A) is the allowable concentration range of the interfering ion K + with respect to the Na + concentration, (B) is the allowable concentration range of the interfering ion Na + with respect to the K + concentration, and (A) is the interfering ion HCO 3 with respect to the Cl concentration. - represents the acceptable concentration range of,
The Δ mark and the + mark represent a width of ± 1%. Therefore, if the calibration liquid is adjusted so as to have the disturbing ion concentration in the region sandwiched between the curves of both marks, the optimum concentration of the calibration liquid is obtained. The assumed numerical values are close to actual ones, but it is easy to recalculate with slightly changing numerical values. For example, from FIG. 3B, the Na / K concentration of the second calibration solution is 170/6, 200/8, 22 from the viewpoint of K +.
It can be seen that a ratio such as 0/12 is good.
Although the optimum Na concentration from the viewpoint of K measurement does not match the optimum K concentration from the viewpoint of Na measurement, it is more accurate to determine the concentration with emphasis on K in a wide range.

【0014】従来は、選択係数を仮定して妨害の影響を
除くということは行なわれているが、選択係数自体が温
度や時間経過に伴って変動し、一定でないということか
ら、不適当な校正液濃度ではやはり誤差が大きくなる。
実際に選択係数を求めて補正すれば最も正確であるが、
そのためには校正液が3種類以上必要となり、測定装置
が複雑化する。
Conventionally, it has been practiced to eliminate the influence of interference by assuming a selection coefficient. However, since the selection coefficient itself fluctuates with temperature and time and is not constant, an improper calibration is performed. The error also increases with the liquid concentration.
It is the most accurate if you actually calculate and correct the selection coefficient,
For that purpose, three or more kinds of calibration liquids are required, and the measuring device becomes complicated.

【0015】[0015]

【実施例】図4に本発明が適用される希釈方式の電解質
分析装置の一般的構成を概略的に示す。サンプリング部
2で吸入された校正液や試料は希釈部4で希釈液によっ
て希釈され、電極部6でイオン電極によりそれぞれのイ
オンの起電力が検出される。8は校正液や試料を流路に
流すための送液部である。
FIG. 4 schematically shows a general configuration of a dilution type electrolyte analyzer to which the present invention is applied. The calibration liquid and the sample sucked in the sampling section 2 are diluted by the diluting liquid in the diluting section 4, and the electromotive force of each ion is detected by the ion electrode in the electrode section 6. Reference numeral 8 denotes a liquid sending unit for flowing a calibration liquid or a sample into the flow path.

【0016】2種類の校正液1,2は装置に内蔵される
こともあれば、オートサンプラーから試料と同様に吸引
されることもある。いずれにしても同一の希釈系を通っ
て電極部6に供給されることが望ましい。また、校正液
1は試料測定ごとに試料と同様に電極部6に流して測定
することが望ましい。これは、電極での温度変動などに
よるドリフトを防ぐためである。
The two types of calibration liquids 1 and 2 may be built in the apparatus, or may be aspirated from the autosampler in the same manner as the sample. In any case, it is desirable to supply to the electrode section 6 through the same dilution system. In addition, it is desirable that the calibration liquid 1 be flowed to the electrode unit 6 and measured every time the sample is measured, similarly to the sample. This is to prevent drift due to temperature fluctuations and the like at the electrodes.

【0017】校正液1としてNa+/K+/Cl-/HC
3 -濃度を140/4/100/25(mmol/l)と
する。これは例えば以下のような組成の溶液(単位は全
てmmol/l)である。 NaCl 100 KH2PO4 4 NaHCO3 25 Na2HPO4 7.5 又は NaCl 96 KCl 4 NaHCO3 25 Na247 9.5 tris-(hydroxymethyl)aminomethane 20 H3BO3 65 校正液2の濃度は次のように設定した。
[0017] As calibration liquid 1 Na + / K + / Cl - / HC
The O 3 - concentration is set to 140/4/100/25 (mmol / l). This is, for example, a solution having the following composition (all units are mmol / l). Of NaCl 100 KH 2 PO 4 4 NaHCO 3 25 Na 2 HPO 4 7.5 or NaCl 96 KCl 4 NaHCO 3 25 Na 2 B 4 O 7 9.5 tris- (hydroxymethyl) aminomethane 20 H 3 BO 3 65 Calibration solution 2 The concentration was set as follows.

【0018】(従来例1)Na+/K+/Cl-=100
/8/60とする。これは例えば以下のような組成の溶
液(単位は全てmmol/l)である。 NaCl 32 KCl 8 NaHCO3 48 tris-(hydroxymethyl)aminomethane 20 H3BO3 65
[0018] (Conventional Example 1) Na + / K + / Cl - = 100
/ 8/60. This is, for example, a solution having the following composition (all units are mmol / l). NaCl 32 KCl 8 NaHCO 3 48 tris- (hydroxymethyl) aminomethane 20 H 3 BO 3 65

【0019】(従来例2)Na+/K+/Cl-=160
/6/140とする。これは例えば以下のような組成の
溶液(単位は全てmmol/l)である。 NaCl 137 KCl 3 KH2PO4 3 Na2HPO4 11.5
[0019] (Conventional Example 2) Na + / K + / Cl - = 160
/ 6/140. This is, for example, a solution having the following composition (all units are mmol / l). NaCl 137 KCl 3 KH 2 PO 4 3 Na 2 HPO 4 11.5

【0020】(実施例)図3(A)〜(C)からNa+
/K+/Cl-=200/7/160/26とする。これ
は例えば以下のような組成の溶液(単位は全てmmol/
l)である。 NaCl 156 KCl 4 NaHCO3 26 KH2PO4 3 Na2HPO4
(Example) From FIGS. 3A to 3C, Na +
/ K + / Cl = 200/7/160/26. This is, for example, a solution having the following composition (all units are mmol /
l). NaCl 156 KCl 4 NaHCO 3 26 KH 2 PO 4 3 Na 2 HPO 4 9

【0021】これらの従来例1,2と実施例の校正液に
ついて、コンピュータにより計算させた結果を図5
(A)〜(C)に示す。(A)はNa+を測定する場合
であり、妨害イオンK+の選択係数を最悪の0.2とし、
+濃度を40mmol/lで一定とした。(B)はK+
測定する場合であり、妨害イオンNa+の選択係数を悪
い値の0.005とし、Na+濃度を100mmol/lで
一定とした。(C)はCl-を測定する場合であり、妨
害イオンHCO3 -の選択係数を最悪の0.2とし、HC
3 -濃度を0mmol/lで一定とした。
FIG. 5 shows the results of calculation by a computer for the calibration solutions of Conventional Examples 1 and 2 and Example.
(A) to (C). (A) is a case where Na + is measured, and the selection coefficient of the interfering ion K + is set to the worst value of 0.2,
The K + concentration was kept constant at 40 mmol / l. (B) shows the case of measuring K + , where the selection coefficient of the interfering ion Na + was set to a bad value of 0.005, and the Na + concentration was kept constant at 100 mmol / l. (C) shows the case of measuring Cl , where the worst selection coefficient of interfering ions HCO 3 is set to 0.2 and HC
The O 3 - concentration was kept constant at 0 mmol / l.

【0022】電極の選択性が同じあっても実施例の校正
液を用いると高濃度領域で正確度が増すことが明らかで
ある。図5は選択性が劣化した場合(選択係数を大きめ
にしている)を示したものであって、選択性がよければ
図5よりも全てy=xの直線に近づくことになる。実施
例は一例であって、図3に示した線上のポイントのどこ
を選んでもほぼ同様の結果を得ることができる。
It is clear that even if the selectivity of the electrodes is the same, the use of the calibration liquid of the embodiment increases the accuracy in the high concentration region. FIG. 5 shows a case where the selectivity is deteriorated (selection coefficient is made larger). If the selectivity is good, all the lines approach a straight line of y = x as compared with FIG. The embodiment is merely an example, and substantially the same result can be obtained regardless of where the point on the line shown in FIG. 3 is selected.

【0023】次に、イオン強度の変化に基づくイオン活
量の変化について述べる。イオン強度μは計算上次のよ
うになる。 校正液1 0.1515, 0.15
35 校正液2 従来例1 0.108 従来例2 0.1775 実施例 0.216 希釈率を1/25として、活量係数fを
Next, a change in ion activity based on a change in ionic strength will be described. The ionic strength μ is calculated as follows. Calibration solution 1 0.1515, 0.15
35 Calibration solution 2 Conventional example 1 0.108 Conventional example 2 0.1775 Example 0.216 Assuming that the dilution ratio is 1/25, the activity coefficient f is

【数8】 (「イオン選択性電極」G.J.Moody, J.B.R.Thomas著、
宗森信、日色和夫訳、1977年、共立出版、参照)で計算
すると、次のようになる。 活量係数f 校正液1との比率 校正液1 0.9057 校正液2 従来例1 0.9209 1.017 従来例2 0.8981 0.992 実施例 0.8873 0.980
(Equation 8) ("Ion-selective electrode" by GJMoody, JBRThomas,
The calculation using Shin Munemori and Kazuo Nishiro, 1977, Kyoritsu Shuppan) is as follows. Activity coefficient f Ratio to calibration solution 1 Calibration solution 1 0.9905 Calibration solution 2 Conventional example 1 0.9209 1.017 Conventional example 2 0.981 0.992 Example 0.8.873 0.980

【0024】このように、希釈法であれば希釈されるこ
とによってイオン強度の差は小さくなる。したがって、
実際上は測定誤差となって現れることはない。希釈液中
に電解質(Na+,K+,Cl-)が入っている場合もあ
り、その場合は式は異なるが同様に計算することはでき
る。その計算式は次の通りである。
As described above, in the case of the dilution method, the difference in ionic strength is reduced by dilution. Therefore,
In practice, it does not appear as a measurement error. In some cases, the diluent contains an electrolyte (Na + , K + , Cl ). In such a case, the equation is different but can be calculated similarly. The calculation formula is as follows.

【数9】 CDM:希釈液中の目的イオン濃度 CDN:希釈液中の妨害イオン濃度 D:希釈率(Equation 9) CDM: target ion concentration in diluent CDN: interfering ion concentration in diluent D: dilution ratio

【0025】また、校正液1の濃度を血液正常値付近と
したが、正常値から外れた場合でも式にあてはめて校正
液2の濃度を計算できることは明らかである。ただし、
測定の正確性や安定性という点からみれば好ましいこと
ではない。また、Na+,K+,Cl-に限らず、同様の
考え方でCa2+,Mg2+,Li+,HCO3 -にも適用で
きることは明らかである。
Although the concentration of the calibration liquid 1 is set to be near the normal blood value, it is apparent that the concentration of the calibration liquid 2 can be calculated by applying the equation to the equation even when the concentration deviates from the normal value. However,
This is not preferable in terms of measurement accuracy and stability. Furthermore, Na +, K +, Cl - in not limited, Ca 2+ the same concept, Mg 2+, Li +, HCO 3 - in will be obvious that the same may be also applied.

【0026】[0026]

【発明の効果】本発明では2種類の校正液のうちの1点
目の校正液は人の血清の正常範囲付近の濃度のものと
し、2点目の校正液は妨害イオンの選択係数を最悪値付
近と考えられるものに設定して妨害イオン濃度を定める
ことにより、妨害イオンによっても濃度測定値があまり
ずれないように組成を設定したので、2点の校正液で作
成した検量線を用いて血液と尿で共通に測定を行なうこ
とができ、しかも選択性が変動したり劣化が起こっても
正確度が大きくずれない。そのため、校正に要する煩わ
しさを軽減することができる。
According to the present invention, the first calibration solution of the two types of calibration solutions has a concentration near the normal range of human serum, and the second calibration solution has the worst interfering ion selection coefficient. By setting the concentration to be close to the value and determining the interfering ion concentration, the composition was set so that the measured concentration value did not deviate significantly due to the interfering ions, so using a calibration curve created with two calibration solutions Measurement can be performed in common for blood and urine, and even if the selectivity fluctuates or deterioration occurs, the accuracy does not greatly deviate. Therefore, it is possible to reduce the troublesomeness required for the calibration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の校正及び測定を示す図である。FIG. 1 is a diagram showing conventional calibration and measurement.

【図2】妨害イオンを考慮した校正及び測定を示す図で
ある。
FIG. 2 is a diagram showing calibration and measurement in consideration of interfering ions.

【図3】(A)から(C)はそれぞれ各目的イオンごと
に本発明により妨害イオンの影響を少なくする範囲を示
す図である。
FIGS. 3A to 3C are diagrams showing ranges in which the influence of interfering ions is reduced by the present invention for each target ion.

【図4】本発明が適用される希釈方式の電解質分析装置
を概略的に示すブロック図である。
FIG. 4 is a block diagram schematically showing a dilution type electrolyte analyzer to which the present invention is applied.

【図5】(A)から(C)はそれぞれ各目的イオンごと
に実施例と従来例を比較する測定値の図である。
FIGS. 5A to 5C are diagrams of measured values comparing the example and the conventional example for each target ion.

【符号の説明】 2 サンプリング部 4 希釈部 6 電極部 8 送液部[Description of Signs] 2 Sampling section 4 Dilution section 6 Electrode section 8 Liquid sending section

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 27/26 381 G01N 33/96 G01N 33/50──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 27/26 381 G01N 33/96 G01N 33/50

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 イオン電極を用いた希釈方式による臨床
用電解質分析装置の校正液であって、 2種類の校正液のうちの1点目の校正液は人の血清の正
常範囲付近の濃度のものとし、 2点目の校正液の中の1つの目的成分濃度をCMC2とし
たとき、その目的イオンに対して妨害イオンとなるイオ
ンの濃度CNC2を 【数1】 近傍にしたことを特徴とする校正液。ここで、KMNは目
的イオンに対する妨害イオンの選択係数で最悪値付近と
考えられるもの、CMC1は1点目の校正液の目的イオン
濃度、CNC1は1点目の校正液の妨害イオン濃度、CX
尿レベルでの目的イオンの正常値上限付近又は測定範囲
上限付近の濃度、CNXは尿レベルでの妨害イオンの正常
値付近の濃度である。
1. A calibration solution for a clinical electrolyte analyzer by a dilution method using an ion electrode, wherein the first calibration solution of two types of calibration solutions has a concentration near the normal range of human serum. Assuming that the concentration of one target component in the second calibration solution is C MC2 , the concentration C NC2 of an ion serving as an interfering ion with respect to the target ion is given by A calibration solution characterized by being in the vicinity. Here, K MN is the selection coefficient of interfering ions with respect to the target ion, which is considered to be near the worst value, C MC1 is the target ion concentration of the first calibration solution, and C NC1 is the interference ion concentration of the first calibration solution. , CX is the concentration near the upper limit of the normal value of the target ion at the urine level or near the upper limit of the measurement range, and CNX is the concentration near the normal value of the interfering ion at the urine level.
JP14232794A 1994-05-31 1994-05-31 Calibration solution for ion-electrode method electrolyte analyzer Expired - Fee Related JP2760282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14232794A JP2760282B2 (en) 1994-05-31 1994-05-31 Calibration solution for ion-electrode method electrolyte analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14232794A JP2760282B2 (en) 1994-05-31 1994-05-31 Calibration solution for ion-electrode method electrolyte analyzer

Publications (2)

Publication Number Publication Date
JPH07325063A JPH07325063A (en) 1995-12-12
JP2760282B2 true JP2760282B2 (en) 1998-05-28

Family

ID=15312774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14232794A Expired - Fee Related JP2760282B2 (en) 1994-05-31 1994-05-31 Calibration solution for ion-electrode method electrolyte analyzer

Country Status (1)

Country Link
JP (1) JP2760282B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4527588B2 (en) * 2005-03-31 2010-08-18 株式会社常光 Calibration solution preparation method
JP4621813B1 (en) * 2010-09-10 2011-01-26 株式会社常光 Two-component calibration solution for ion-selective electrode method and combined reference electrode solution
CN102809590B (en) * 2011-06-02 2014-10-08 深圳中科优瑞医疗科技有限公司 Lithium-ion test method of electrolyte analyzer
CN111788479B (en) * 2018-02-23 2023-03-28 株式会社日立高新技术 Automatic analysis device and automatic analysis method
WO2020044958A1 (en) * 2018-08-28 2020-03-05 株式会社堀場アドバンスドテクノ Calcium ion concentration-measuring device
JP6842790B1 (en) * 2020-07-31 2021-03-17 株式会社常光 A correction method for an electrolyte measurement system based on the ion-selective electrode method and an electrolyte measurement device equipped with the correction method.

Also Published As

Publication number Publication date
JPH07325063A (en) 1995-12-12

Similar Documents

Publication Publication Date Title
EP0667522B1 (en) Method of measuring ion concentration and apparatus therefor
Maas et al. Ion-selective electrodes for sodium and potassium: a new problem of what is measured and what should be reported.
CN112305035B (en) Method and measuring point for correcting two measured values from different analytical measuring devices
US20150053576A1 (en) Measuring Arrangement
US4668346A (en) Ion concentration analysis and apparatus employing standard addition techniques
JP2760282B2 (en) Calibration solution for ion-electrode method electrolyte analyzer
CA1158966A (en) Compensated reference liquid
JP7148594B2 (en) Automatic analyzer, automatic analysis method
Horvai The matched potential method, a generic approach to characterize the differential selectivity of chemical sensors
Urbanowicz et al. The computational methods in the development of a novel multianalyte calibration technique for potentiometric integrated sensors systems
CA1311271C (en) Electrochemical cell for measuring ionic activity in a solution and its method of use
EP0517339A1 (en) Method of determining, with the aid of an ion-selective electrode, the concentration of a substance to be determined, and apparatus to be used in said method
Brennan et al. Theory and practice in the electrometric determination of pH in precipitation
JP3442458B2 (en) Selection coefficient measurement method and ion concentration measurement device
Kaufman et al. Ion effects in measurement of ionized calcium with a calcium-selective electrode.
JPH0627723B2 (en) Electrode method for measuring electrolytes in blood or urine
JPH04191650A (en) Measuring apparatus for ion
JPH08220049A (en) Method and device for measuring electrolyte
Hulanicki et al. Potentiometric method for the determination of calcium in blood serum
US20060042961A1 (en) Potentiometric measurement of chloride concentration in an acidic solution
Osswald et al. Calibration standards for multi ion analysis in whole blood samples
Midgley Temperature compensation in potentiometry: isopotentials of pH glass electrodes and reference electrodes. Part I. Theory
EP1141692B1 (en) Correcting protein induced error in ph-sensitive ise comprising a polymeric membrane
EP0214637B1 (en) Reference liquid comprising cscl and method of use
SU1010533A1 (en) Ion activity meter calibration method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140320

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees