JP2757403B2 - Process for producing 2,3-dimethylbutenes - Google Patents

Process for producing 2,3-dimethylbutenes

Info

Publication number
JP2757403B2
JP2757403B2 JP63310494A JP31049488A JP2757403B2 JP 2757403 B2 JP2757403 B2 JP 2757403B2 JP 63310494 A JP63310494 A JP 63310494A JP 31049488 A JP31049488 A JP 31049488A JP 2757403 B2 JP2757403 B2 JP 2757403B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
gas
dimethylbutenes
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63310494A
Other languages
Japanese (ja)
Other versions
JPH0272126A (en
Inventor
勝 石野
三千男 山本
資雄 間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP63310494A priority Critical patent/JP2757403B2/en
Priority to EP89117636A priority patent/EP0372183B1/en
Priority to DE68927703T priority patent/DE68927703T2/en
Priority to US07/412,213 priority patent/US5034566A/en
Publication of JPH0272126A publication Critical patent/JPH0272126A/en
Application granted granted Critical
Publication of JP2757403B2 publication Critical patent/JP2757403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は1−クロロ−3,3−ジメチルブタンを脱塩化
水素せしめることによる2,3−ジメチルブテン類の製法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial application field> The present invention relates to a method for producing 2,3-dimethylbutenes by dehydrochlorinating 1-chloro-3,3-dimethylbutane.

<従来の技術> 2,3−ジメチルブテン類、すなわち2,3−ジメチル−1
−ブテン、2,3−ジメチル−2−ブテンは医、農薬、香
料等の原料として知られており、また1−クロロ−3,3
−ジメチルブタンを触媒存在下に脱塩化水素せしめて製
造することも知られている。
<Prior art> 2,3-dimethylbutenes, that is, 2,3-dimethyl-1
-Butene, 2,3-dimethyl-2-butene is known as a raw material for medicines, pesticides, fragrances and the like, and 1-chloro-3,3
It is also known to produce dimethylbutane by dehydrochlorination in the presence of a catalyst.

例えば、触媒としてシリカやアルミナ等を用いて気相
下に実施する方法(米国特許第2404927号)、液相下に
アルミナ触媒を用い、いわゆる反応蒸留方式で実施する
方法(米国特許第3445538号)など知られている。
For example, a method in which the reaction is carried out in the gas phase using silica, alumina, or the like as a catalyst (US Pat. No. 2,404,927), or a method in which the reaction is carried out by a so-called reactive distillation method using an alumina catalyst in the liquid phase (US Pat. No. 3,445,538) And so on.

<発明が解決しようとする課題> しかしながら、公知方法では触媒の活性で十分ではな
く、転化率および目的物の収率が低いという問題、更に
はメチルペンテンなどの副生物が多量生成し、選択性も
十分ではない等種々の問題点があった。
<Problems to be Solved by the Invention> However, in the known methods, the activity of the catalyst is not sufficient, and the conversion and the yield of the target product are low. In addition, a large amount of by-products such as methylpentene is formed, and There were various problems, such as not being sufficient.

<課題を解決するための手段> 本発明者らはかかる現状に鑑み、1−クロロ−3,3−
ジメチルブタンの脱塩化水素触媒について鋭意検討を重
ねた結果、ある特定の触媒を用いれば上記の諸問題を一
挙に解決し得ることを見出すとともに更に種々の検討を
加え本発明を完成した。
<Means for Solving the Problems> In view of the present situation, the present inventors have considered that 1-chloro-3,3-
As a result of intensive studies on the catalyst for dehydrochlorination of dimethylbutane, it was found that the above-mentioned problems could be solved at once by using a specific catalyst, and the present invention was completed by further various studies.

すなわち本発明は、1−クロロ−3,3−ジメチルブタ
ンを脱塩化水素せしめて2,3−ジメチルブテン類を製造
するに当たり、触媒としてマグネシウム化合物、カルシ
ウム化合物、ランタン化合物から選ばれる少なくとも1
種の化合物を用いることを特徴とする工業的に優れた2,
3−ジメチルブテン類の製法を提供するものである。
That is, according to the present invention, when 1-chloro-3,3-dimethylbutane is dehydrochlorinated to produce 2,3-dimethylbutenes, at least one catalyst selected from a magnesium compound, a calcium compound and a lanthanum compound is used as a catalyst.
Industrially superior 2, characterized by the use of compounds of 2,
The present invention provides a process for producing 3-dimethylbutenes.

次に本発明について詳細に説明する。 Next, the present invention will be described in detail.

本発明の原料である1−クロロ−3,3−ジメチルブタ
ンは、例えば塩化−t−ブチルとエチレンとを塩化アル
ミニウム等の触媒の存在下に反応させることにより工業
的に容易に製造できるものであり、炭化水素、ハロゲン
化炭化水素等の反応を阻害しないものであれば不純物を
混入していても使用できる。
1-chloro-3,3-dimethylbutane, which is a raw material of the present invention, can be industrially easily produced, for example, by reacting tert-butyl chloride with ethylene in the presence of a catalyst such as aluminum chloride. Yes, as long as they do not hinder the reaction of hydrocarbons, halogenated hydrocarbons, etc., they can be used even if they contain impurities.

また本発明で用いられる触媒はマグネシウム化合物、
カルシウム化合物、ランタン化合物から選ばれるが、具
体的には、マグネシウム、カルシウム、ランタンの酸化
物、ハロゲン化物、水酸化物、硫酸塩、硝酸塩、リン酸
塩、炭酸塩、ケイ酸塩、ホウ酸塩等が挙げられる。より
具体的には例えばMgO,CaO,La2O3,MgCl2,CaCl2,LaCl3,Mg
(OH)2,Ca(OH)2,La(OH)3,MgSO4,CaSO4,La2(SO4
3,Mg(NO32,Ca(NO32,La(NO33,Mg3(PO42,Ca3
(PO42,LaPO4,MgCO3,CaCO3,La2(CO33,Mg2SiO4,Ca2
SiO4,La2(SiO43,MgBO3,CaBO3,La2(BO3などが例
示できる。
The catalyst used in the present invention is a magnesium compound,
Selected from calcium compounds and lanthanum compounds, specifically, magnesium, calcium, lanthanum oxides, halides, hydroxides, sulfates, nitrates, phosphates, carbonates, silicates, borates And the like. More specifically, for example MgO, CaO, La 2 O 3 , MgCl 2, CaCl 2, LaCl 3, Mg
(OH) 2, Ca (OH ) 2, La (OH) 3, MgSO 4, CaSO 4, La 2 (SO 4)
3 , Mg (NO 3 ) 2 , Ca (NO 3 ) 2 , La (NO 3 ) 3 , Mg 3 (PO 4 ) 2 , Ca 3
(PO 4 ) 2 , LaPO 4 , MgCO 3 , CaCO 3 , La 2 (CO 3 ) 3 , Mg 2 SiO 4 , Ca 2
SiO 4 , La 2 (SiO 4 ) 3 , MgBO 3 , CaBO 3 , La 2 (BO 3 ) 3 and the like can be exemplified.

マグネシウム化合物、カルシウム化合物においては酸
化物、塩化物、ランタン化合物においては酸化物が好ま
しい。
An oxide is preferable for a magnesium compound and a calcium compound, and an oxide is preferable for a chloride and a lanthanum compound.

またマグネシウム化合物、カルシウム化合物、ランタ
ン化合物の中では、カルシウム化合物が好ましく用いら
れる。
Among the magnesium compounds, calcium compounds and lanthanum compounds, calcium compounds are preferably used.

本発明を気相下に実施する場合にはCaOまたはCaCl2
特に好ましく、また液相下に実施する場合にはCaCl2
特に好ましい。
When the present invention is carried out in a gas phase, CaO or CaCl 2 is particularly preferred, and when carried out in a liquid phase, CaCl 2 is particularly preferred.

本発明で用いる触媒は前述の化合物をそれ単独で用い
ても十分な活性を有し好ましいものであり、また必要に
より活性炭等の本反応に不活性な担体に担持させて用い
てもよい。
The catalyst used in the present invention is preferable because it has sufficient activity even when the above-mentioned compound is used alone, and may be used by supporting it on a carrier inert to the reaction such as activated carbon if necessary.

通常触媒は反応に供する前に空気中または窒素等の不
活性ガス中常圧下、200〜600℃で焼成した後用いられ
る。
Usually, the catalyst is used after calcining at 200 to 600 ° C. under normal pressure in air or an inert gas such as nitrogen before the reaction.

また触媒を減圧下に20〜600℃で焼成して用いてもよ
い。触媒として使用する化合物が水和物や含水物である
場合には上記のような焼成による触媒の脱水処理を行う
のが特に好ましい。しかし触媒として脱水品を用いるの
であれば上記の脱水処理を省略することもできる。
Further, the catalyst may be calcined at 20 to 600 ° C. under reduced pressure for use. When the compound to be used as a catalyst is a hydrate or a hydrate, it is particularly preferable to carry out the dehydration treatment of the catalyst by calcination as described above. However, if a dehydrated product is used as the catalyst, the above dehydration treatment can be omitted.

本発明方法は気相法あるいは液相法で実施できる。気
相法で実施する場合には、例えばマグネシウム化合物、
カルシウム化合物またはランタン化合物を単独であるい
は適当な担当またはバインダーを含む混合物の形で適当
な粒度に成形し、反応管中に保持させ、気化させた原料
を接触させる方法、いわゆる固定床の気相流通反応方式
により反応させることができる。
The method of the present invention can be carried out by a gas phase method or a liquid phase method. When carried out by a gas phase method, for example, a magnesium compound,
A method in which a calcium compound or a lanthanum compound is formed into an appropriate particle size alone or in the form of a mixture containing a suitable binder or a binder, held in a reaction tube, and brought into contact with the vaporized raw material, that is, a so-called gas phase flow in a fixed bed. The reaction can be performed by a reaction method.

本発明を気相法で実施する場合には、反応は通常180
〜400℃、好ましくは180〜350℃の温度下で実施され
る。
When the present invention is carried out by a gas phase method, the reaction is usually 180
It is carried out at a temperature of 400400 ° C., preferably 180-350 ° C.

本発明は液相法においても好ましく実施できる。この
場合触媒は原料、場合によっては適当な溶媒を含む液相
に分散させて使用することができる。本発明の液相は溶
媒なしでも実施し得るが、適当な溶媒を使用してもよ
い。かかる溶媒としては反応を阻害しないものであれば
よく、例えば、炭化水素やハロゲン化炭化水素等が挙げ
られる。後述するように、本発明の実施方法として、2,
3−ジメチルブテン類の反応生成物をガス状物として液
相から留出させて分離する方法、いわゆる反応蒸留方式
を採用する場合には、液相に用いる溶媒としては原料や
反応生成物に比べて高い沸点を有するものが好適に使用
できる。そのような高沸点溶媒としては種々のものが採
用しうるが、例えば、鉱油、流動パラフィン、n−デカ
ン、n−テトラデカン、n−トリデカン、デカリン、1,
1,2,2−テトラクロルエタン、1,2,4−トリクロルベンゼ
ン、1,2−ジクロルベンゼン、クロルベンゼン等または
これらの混合物を挙げることができる。
The present invention can be preferably implemented also in a liquid phase method. In this case, the catalyst can be used by dispersing it in a raw material, or in some cases, in a liquid phase containing a suitable solvent. The liquid phase of the present invention can be carried out without a solvent, but an appropriate solvent may be used. The solvent may be any solvent that does not hinder the reaction, and examples thereof include hydrocarbons and halogenated hydrocarbons. As described below, as a method of implementing the present invention, 2,
When a so-called reactive distillation method is used, in which a reaction product of 3-dimethylbutene is distilled out of the liquid phase as a gaseous substance and separated, a solvent used for the liquid phase is compared with the raw material and the reaction product. Those having a high boiling point can be suitably used. As such a high boiling point solvent, various ones can be employed. For example, mineral oil, liquid paraffin, n-decane, n-tetradecane, n-tridecane, decalin,
Examples thereof include 1,2,2-tetrachloroethane, 1,2,4-trichlorobenzene, 1,2-dichlorobenzene, chlorobenzene, and the like, and a mixture thereof.

本発明の液相法は回分方式でも連続流通方式でも実施
できるものであり、工業的には連続流通方式が好まし
い。この連続流通方式の反応において、反応生成物はそ
のまま液状物として反応釜から取り出してもよいが、発
生する塩化水素ガスとともにガス状物として液相から留
出させて分離し取得することもできる。この際、ガス状
物の留出部分に適当な蒸留塔を設置し、原料よりも沸点
の低い2,3−ジメチルブテン類を優先的に系外に留出さ
せる操作(いわゆる反応蒸留方式)を行うことにより、
より高い転化率で目的生成物を取得することも可能であ
る。また、この蒸留塔の精留作用により、目的生成物で
ある2,3−ジメチル−1−ブテンと2,3−ジメチル−2−
ブテンの生成割合を変化させることもできる。
The liquid phase method of the present invention can be carried out by a batch system or a continuous flow system, and the industrial system is preferably a continuous flow system. In this continuous flow type reaction, the reaction product may be taken out of the reaction vessel as a liquid as it is, or may be separated and obtained by distilling it out of the liquid phase as a gaseous substance together with the generated hydrogen chloride gas. At this time, an appropriate distillation column is installed in the distilling part of the gaseous matter, and an operation (so-called reactive distillation method) of distilling out 2,3-dimethylbutenes having a lower boiling point than the raw material preferentially out of the system is performed. By doing
It is also possible to obtain the desired product at a higher conversion. Further, the rectification of the distillation column allows the target products 2,3-dimethyl-1-butene and 2,3-dimethyl-2-butene.
The butene production rate can also be varied.

本発明を液相法で実施する場合には、反応温度は通常
70〜300℃、好ましくは100〜250℃である。液相法は気
相法に比べ比較的低い反応温度が採用できる点において
より好ましい実施形態である。
When the present invention is carried out by a liquid phase method, the reaction temperature is usually
70-300 ° C, preferably 100-250 ° C. The liquid phase method is a more preferred embodiment in that a relatively lower reaction temperature can be employed as compared with the gas phase method.

本発明方法において反応圧力は特に制限はないが、通
常0.1〜10気圧である。原料供給速度は反応方式、反応
温度、反応圧力等にもよるが、触媒1kg当りの1−クロ
ロ−3,3−ジメチルブタンの供給速度で示すと通常1時
間当たり0.01〜10kgである。
In the method of the present invention, the reaction pressure is not particularly limited, but is usually 0.1 to 10 atm. The feed rate of the raw material depends on the reaction system, the reaction temperature, the reaction pressure and the like, but it is usually 0.01 to 10 kg per hour as indicated by the feed rate of 1-chloro-3,3-dimethylbutane per 1 kg of the catalyst.

本反応においては、生成物である2,3−ジメチルブテ
ン類と脱離した塩化水素との再反応によって、2−クロ
ロ−2,3−ジメチルブタン(CDB)が少量副生するが、こ
のものは、反応後蒸留等により回収し、本反応の原料に
混合してリサイクル使用することもできる。またCDBの
生成を削減するために、原料を適当な希釈剤、例えば窒
素、希ガス、メタン、エタン、プロパン、エチレン、プ
ロピレン、ブテン等のガス、ペンタン、ヘキサン、オク
タン、ベンゼン、トルエン、キシレン等の脂肪族または
芳香族炭化水素などの希釈剤で希釈して供給することも
できる。この場合、希釈剤として芳香族炭化水素を用い
ても、原料のクロライドあるいは生成したオレフィンな
どと殆ど反応せず、アルキル化された高沸物が実質的に
生成しないことも本触媒の特徴である。
In this reaction, a small amount of 2-chloro-2,3-dimethylbutane (CDB) is by-produced by re-reaction between the product, 2,3-dimethylbutenes and the eliminated hydrogen chloride. Can be recovered by distillation or the like after the reaction, mixed with the raw materials for the present reaction, and recycled. In addition, in order to reduce the production of CDB, the raw materials must be diluted with a suitable diluent, for example, nitrogen, noble gas, methane, ethane, propane, ethylene, propylene, butene, etc., pentane, hexane, octane, benzene, toluene, xylene, etc. And a diluent such as an aliphatic or aromatic hydrocarbon. In this case, even when an aromatic hydrocarbon is used as the diluent, the catalyst is characterized in that it hardly reacts with the raw material chloride or the produced olefin and the like, and substantially does not produce an alkylated high-boiling substance. .

本反応で副生する塩化水素ガスは例えば水に吸収させ
て塩酸水として分液するか、あるいは2,3−ジメチルブ
テン類を液化させた残ガス成分として容易に分離するこ
とができ、例えば本発明の原料である1−クロロ−3,3
−ジメチルブタンを合成する際の1つの原料となりうる
塩化−t−ブチルの合成に再使用することができる。
Hydrogen chloride gas by-produced in this reaction can be absorbed in water, for example, and separated as aqueous hydrochloric acid, or can be easily separated as a residual gas component obtained by liquefying 2,3-dimethylbutenes. 1-chloro-3,3 which is a raw material of the invention
-Can be reused in the synthesis of tert-butyl chloride, which can be one raw material when synthesizing dimethylbutane.

生成した2,3−ジメチルブテン類は通常蒸留により分
離される。2,3−ジメチル−1−ブテン、2,3−ジメチル
−2−ブテンをそれぞれ単離することもできる。
The 2,3-dimethylbutenes formed are usually separated by distillation. 2,3-Dimethyl-1-butene and 2,3-dimethyl-2-butene can be isolated respectively.

また、本反応で少量副生する3,3−ジメチル−1−ブ
テンも蒸留分離後、本反応の原料に混入することにより
2,3−ジメチルブテン類に転化させることもできる。
In addition, 3,3-dimethyl-1-butene by-produced in a small amount in this reaction is also separated by distillation and mixed with the raw material of this reaction to form a mixture.
It can also be converted to 2,3-dimethylbutenes.

<発明の効果> かくして目的とする2,3−ジメチルブテン類が得られ
るが、本発明によれば、公知方法に比し触媒の活性が高
く、目的物が高収率で、しかも選択性良く得られる。
<Effects of the Invention> Thus, the desired 2,3-dimethylbutene can be obtained. However, according to the present invention, the activity of the catalyst is higher than that of the known method, the target product is obtained in high yield, and the selectivity is high. can get.

<実施例> 以下、本発明を実施例によりさらに詳細に説明する
が、本発明は実施例のみに限定されるものではない。
<Examples> Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to Examples.

実施例1〜5,比較例1〜3 内径10mmの石英製気相流通反応管に24〜48メッシュに
成形した表1の触媒2ccを充填した。触媒は使用前に空
気中で250℃で1hr焼成した。
Examples 1 to 5 and Comparative Examples 1 to 3 2 cc of the catalyst of Table 1 formed into 24-48 mesh was filled in a quartz gas-phase flow reaction tube having an inner diameter of 10 mm. The catalyst was calcined in air at 250 ° C. for 1 hour before use.

キャリヤーガスとしてN2ガスを100cc/min流しなが
ら、230℃にて1−クロロ−3,3−ジメチルブタン(以下
NHCと略す)を2.5g/hrの速度でフィードし、反応を行っ
た。反応ガスは水中に導き、有機層と水層とに分離さ
せ、有機層をガスクロマトグラフィーにて定量分析し
た。結果を表1に示す。
While the N 2 gas flow 100 cc / min as a carrier gas, 1-chloro-3,3-dimethylbutane (hereinafter at 230 ° C.
NHC) was fed at a rate of 2.5 g / hr to carry out the reaction. The reaction gas was introduced into water, separated into an organic layer and an aqueous layer, and the organic layer was quantitatively analyzed by gas chromatography. Table 1 shows the results.

実施例6 CaO触媒(空気中400℃1hr焼成したもの)2ccを用い、
N2ガスは流さずNHC/n−ペンタン=50/50(wt/wt)の原
料液を5g/hrでフィードした以外は実施例1と同様の実
験を行った。
Example 6 Using 2 cc of a CaO catalyst (calcined in air at 400 ° C. for 1 hour)
The same experiment as in Example 1 was performed, except that a raw material liquid of NHC / n-pentane = 50/50 (wt / wt) was fed at 5 g / hr without flowing N 2 gas.

反応液の分析の結果、NHCの転化率は99.0%であり、
選択率はNHE2.1%、DMB−1 24.2%、DMB−2 64.5%、CD
B3.0%、その他6.1%であった。
As a result of analyzing the reaction solution, the conversion of NHC was 99.0%,
Selectivity is NHE 2.1%, DMB-1 24.2%, DMB-2 64.5%, CD
B3.0% and other 6.1%.

実施例7 CaCl2触媒(空気中250℃1hr焼成したもの)4ccを用
い、N2ガス5cc/min流しNHC/トルエン=50/50(wt/wt)
の原料液を10g/hrでフィードした。反応温度を180℃か
ら300℃まで変化させた時の結果を表2に示す。
Example 7 Using 4 cc of a CaCl 2 catalyst (calcined in air at 250 ° C. for 1 hour) and flowing N 2 gas at 5 cc / min, NHC / toluene = 50/50 (wt / wt)
Was fed at 10 g / hr. Table 2 shows the results when the reaction temperature was changed from 180 ° C to 300 ° C.

なお、トルエンがアルキル化された高沸点化合物の生
成は認められなかった。
The production of a high-boiling compound in which toluene was alkylated was not observed.

実施例8 CaCl2触媒4ccを用い、N2ガスを流さず、NHCを6.1g/hr
の速度でフィードし、反応温度240℃で反応させた以外
は実施例1と同様の実験を行った。
Example 8 Using 4 cc of CaCl 2 catalyst, 6.1 g / hr of NHC without flowing N 2 gas
The same experiment as in Example 1 was performed except that the reaction was carried out at a reaction temperature of 240 ° C.

反応液の分析の結果、NHCの転化率は99.2%であり、
選択率はNHE2.5%、DMB−1 26.0%、DMB−2 64.1%、CD
B2.7%、その他4.7%であった。
As a result of analyzing the reaction solution, the conversion of NHC was 99.2%,
Selectivity is NHE 2.5%, DMB-1 26.0%, DMB-2 64.1%, CD
B2.7% and others 4.7%.

実施例9 内径18mmの石英製反応管に空気中400℃で1hr焼成した
CaO触媒10cc(24〜48メッシュ)を充填し、N2ガスを400
cc/min流しながら220℃の反応温度でNHCを12.0g/hrの速
度でフィードし反応させた。反応の経時の分析結果を表
3に示す。
Example 9 A reaction tube made of quartz having an inner diameter of 18 mm was fired in air at 400 ° C. for 1 hour.
Filling the CaO catalyst 10 cc (24-48 mesh), 400 N 2 gas
While flowing at cc / min, NHC was fed at a reaction temperature of 220 ° C. at a rate of 12.0 g / hr to cause a reaction. Table 3 shows the analysis results of the reaction over time.

実施例10及び比較例4 磁力攪拌機、温度計、原料供給口および生成ガスの留
出口を備えた100cc4ツ口ガラス製フラスコの単蒸留装置
に触媒粉末12gと流動パラフィン30gを充填した。攪拌に
より触媒を分散させ、所定の反応温度まで反応液を加熱
し、原料NHCを2.5g/hrの速度でフラスコに連続的にフィ
ードし反応を行った。
Example 10 and Comparative Example 4 12 g of the catalyst powder and 30 g of liquid paraffin were charged into a simple distillation apparatus of a 100 cc four-neck glass flask equipped with a magnetic stirrer, a thermometer, a raw material supply port and a product gas outlet. The catalyst was dispersed by stirring, the reaction solution was heated to a predetermined reaction temperature, and the raw material NHC was continuously fed into the flask at a rate of 2.5 g / hr to carry out the reaction.

HClガスを含む反応生成物はガス状態で系外に留出さ
せた後水中に導き、水層と油層に分離させ、油層をガス
クロマトグラフィーにて分析した。種々の反応温度にお
ける定常状態(HClを含めた生成物の留出量がNHCのフィ
ード量にほぼ等しくなっている)の反応の分析結果を表
4に示す。
The reaction product containing HCl gas was distilled out of the system in a gaseous state, then led into water, separated into an aqueous layer and an oil layer, and the oil layer was analyzed by gas chromatography. Table 4 shows the results of the analysis of the reactions at various reaction temperatures in a steady state (where the amount of distilling off the product including HCl is almost equal to the amount of NHC fed).

実施例11 反応温度を170℃に固定した以外は実施例10と同じ操
作にて長時間の運転を行った。
Example 11 A long-time operation was performed in the same manner as in Example 10, except that the reaction temperature was fixed at 170 ° C.

反応開始後、適宜留出液をサンプリングして反応生成
物を分析した結果を表5に示す。
After the start of the reaction, the distillate was appropriately sampled to analyze the reaction product, and the results are shown in Table 5.

実施例12 実施例10と同様の付属品を備えた50cc4ツ口ガラス製
フラスコに窒素下200℃で脱水処理をしたCaCl25gと流動
パラフィン20gを充填した。
Example 12 A 50 cc four-neck glass flask equipped with the same accessories as in Example 10 was charged with 5 g of CaCl 2 dehydrated at 200 ° C. under nitrogen and 20 g of liquid paraffin.

反応ガス留出部にヘリパックを充填した簡易精留塔
(内径10mm流さ150mm)を付け、外部からの加熱により
留出温度をコントロールした。NHCのフィード速度2.5g/
hr、反応温度180℃で留出温度を変えたときの定常状態
の留出液の分析結果を表6に示す。
A simple rectification column (inner diameter 10 mm, flow 150 mm) filled with a helipack was attached to the reaction gas distilling part, and the distilling temperature was controlled by external heating. NHC feed rate 2.5g /
Table 6 shows the analysis results of the distillate in the steady state when the distilling temperature was changed at a reaction temperature of 180 ° C. hr.

実施例13,14 実施例10と同様の付属品を備えた50cc4ツ口ガラス製
フラスコに脱水したCaCl25gと溶媒としてデカリンある
いはo−ジクロルベンゼン20mlを充填し、単蒸留方式で
NHCのフィード速度2.5g/hr、反応温度170℃で反応を行
った。定常状態での留出液の分析結果を表7に示す。
Examples 13 and 14 A 50 cc four-neck glass flask equipped with the same accessories as in Example 10 was charged with 5 g of dehydrated CaCl 2 and 20 ml of decalin or o-dichlorobenzene as a solvent, and subjected to simple distillation.
The reaction was carried out at an NHC feed rate of 2.5 g / hr and a reaction temperature of 170 ° C. Table 7 shows the analysis results of the distillate in the steady state.

実施例15 実施例13と同じ反応装置に脱水したCaCl210gとNHC20m
lを充填した。フラスコの留出側にコンデンサーを設
け、留出温度が40〜50℃となるように保温コントロール
した。反応フラスコを130℃のオイルバスに浸し、NHCを
ポンプで2.5g/hrでフィードし反応を行った。定常状態
(反応開始後15〜17時間目)の留出液の分析結果は以下
の通りであった。このときの反応温度(内温)は113〜1
15℃であった。NHCの転化率は99.9%であり、各生成物
の選択率はNHE1.9%、DMB−1 34.6%、DMB−2 62.0%、
CDB0.9%、その他0.6%であった。
CaCl 2 10 g and NHC20m dehydrated in the same reactor as in Example 15 Example 13
l was filled. A condenser was provided on the distillation side of the flask, and the temperature was controlled so as to keep the distillation temperature at 40 to 50 ° C. The reaction flask was immersed in a 130 ° C. oil bath, and NHC was fed at a rate of 2.5 g / hr by a pump to perform a reaction. The analysis results of the distillate in the steady state (15 to 17 hours after the start of the reaction) were as follows. The reaction temperature (internal temperature) at this time is 113 to 1
15 ° C. The conversion of NHC is 99.9%, and the selectivity of each product is NHE 1.9%, DMB-1 34.6%, DMB-2 62.0%,
CDB was 0.9% and others were 0.6%.

実施例16,17及び比較例5 実施例4と同じ装置に触媒4gと流動パラフィン20gを
充填した。
Examples 16 and 17 and Comparative Example 5 The same apparatus as in Example 4 was charged with 4 g of the catalyst and 20 g of liquid paraffin.

キャリャーガスとしてN2ガスを120cc/min流しなが
ら、230℃にてNHCを5.8g/hrの速度でフィードし、反応
を行った。
The reaction was carried out by feeding NHC at 230 ° C. at a rate of 5.8 g / hr while flowing N 2 gas at 120 cc / min as a carrier gas.

反応開始後4〜5時間目の留出液の分析結果を表8に
示す。
Table 8 shows the analysis results of the distillate 4 to 5 hours after the start of the reaction.

フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 1/30 C07C 1/30 // C07B 61/00 300 C07B 61/00 300 (56)参考文献 米国特許2404927(US,A) 米国特許3445538(US,A) (58)調査した分野(Int.Cl.6,DB名) C07C 11/107 C07C 1/30Continuation of the front page (51) Int.Cl. 6 Identification symbol FI C07C 1/30 C07C 1/30 // C07B 61/00 300 C07B 61/00 300 (56) Reference US Patent 2404927 (US, A) US Patent 3445538 (US, A) (58) Field surveyed (Int. Cl. 6 , DB name) C07C 11/107 C07C 1/30

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1−クロロ−3,3−ジメチルブタンを脱塩
化水素せしめて、2,3−ジメチルブテン類を製造するに
当たり、触媒としてマグネシウム化合物、カルシウム化
合物、ランタン化合物から選ばれる少なくとも1種の化
合物を用いることを特徴とする2,3−ジメチルブテン類
の製法。
1. A method for producing 2,3-dimethylbutenes by dehydrochlorinating 1-chloro-3,3-dimethylbutane, wherein at least one selected from a magnesium compound, a calcium compound and a lanthanum compound is used as a catalyst. A process for producing 2,3-dimethylbutenes, comprising using the compound of the formula (1).
【請求項2】触媒1Kg当たりの1−クロロ−3,3−ジメチ
ルブタンの供給速度が、時間当たり0.01〜10Kgである請
求項1記載の製法。
2. The process according to claim 1, wherein the feed rate of 1-chloro-3,3-dimethylbutane per kg of catalyst is 0.01 to 10 kg per hour.
JP63310494A 1988-03-26 1988-12-07 Process for producing 2,3-dimethylbutenes Expired - Fee Related JP2757403B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63310494A JP2757403B2 (en) 1988-03-26 1988-12-07 Process for producing 2,3-dimethylbutenes
EP89117636A EP0372183B1 (en) 1988-12-07 1989-09-25 Process for the production of 2,3-dimethylbutenes
DE68927703T DE68927703T2 (en) 1988-12-07 1989-09-25 Process for the preparation of 2,3-dimethylbutenes
US07/412,213 US5034566A (en) 1988-12-07 1989-09-25 Process for the production of 2,3-dimethylbutenes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-72684 1988-03-26
JP7268488 1988-03-26
JP63310494A JP2757403B2 (en) 1988-03-26 1988-12-07 Process for producing 2,3-dimethylbutenes

Publications (2)

Publication Number Publication Date
JPH0272126A JPH0272126A (en) 1990-03-12
JP2757403B2 true JP2757403B2 (en) 1998-05-25

Family

ID=26413828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310494A Expired - Fee Related JP2757403B2 (en) 1988-03-26 1988-12-07 Process for producing 2,3-dimethylbutenes

Country Status (1)

Country Link
JP (1) JP2757403B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2404927A (en) 1943-02-15 1946-07-30 Universal Oil Prod Co Manufacture of isoparaffins
US3445538A (en) 1966-09-21 1969-05-20 Universal Oil Prod Co Preparation of olefins

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2404927A (en) 1943-02-15 1946-07-30 Universal Oil Prod Co Manufacture of isoparaffins
US3445538A (en) 1966-09-21 1969-05-20 Universal Oil Prod Co Preparation of olefins

Also Published As

Publication number Publication date
JPH0272126A (en) 1990-03-12

Similar Documents

Publication Publication Date Title
US5034566A (en) Process for the production of 2,3-dimethylbutenes
CA1211098A (en) Conversion of methane to olefins and hydrogen
US5087786A (en) Halogen-assisted conversion of lower alkanes
US2271956A (en) Preparation of alkyl aluminum halides
KR20020056932A (en) Dehydrohalogenation of halogenated alkanes using rare earth halide or oxyhalide catalyst
JPH01252695A (en) Steam dehydrogenation accompanied by oxidative reheating using single catalyst system
JPH0699330B2 (en) Methane conversion method
EP0128001A2 (en) Process for preparing alkylbenzenes
AU778120B2 (en) Process for vinyl chloride manufacture from ethane and ethylene with immediate HC1 recovery from reactor effluent
US10112880B2 (en) Processes for producing chlorinated hydrocarbons and methods for recovering polyvalent antimony catalysts therefrom
EP1687084B2 (en) Catalyst and gas phase method using such a catalyst
US4879425A (en) Oligomerization of olefins
US4943671A (en) Reductive dehalogenation of organic halogen compounds
RU2196123C2 (en) Method of hydrogenation of unsaturated cyclic compound
WO2001068573A1 (en) Process for the preparation of xylene
JP2577772B2 (en) Method for producing 2,3-dimethylbutene-1 from propene
JP2757403B2 (en) Process for producing 2,3-dimethylbutenes
US4990717A (en) Monoalkenylation of alkylbenzenes in a fixed catalyst bed
CA1116587A (en) Oxyhalogenation process
US4948768A (en) Catalyst composition for oligomerization of olefins
US3925249A (en) Catalyst for preparation of 6-methyl-1,5-heptadiene
US4329512A (en) Process for preparing acetaldehyde
US5300719A (en) Dehydrocyclization of unsaturated hydrocarbons to aromatic products
US2838578A (en) Ethyl chloride manufacture
JPS6358811B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees