JP2755616B2 - Photovoltaic device - Google Patents
Photovoltaic deviceInfo
- Publication number
- JP2755616B2 JP2755616B2 JP63251202A JP25120288A JP2755616B2 JP 2755616 B2 JP2755616 B2 JP 2755616B2 JP 63251202 A JP63251202 A JP 63251202A JP 25120288 A JP25120288 A JP 25120288A JP 2755616 B2 JP2755616 B2 JP 2755616B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode film
- radius
- light
- film
- back electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、光照射を受けることにより起電力を発生す
る光起電力装置に関する。The present invention relates to a photovoltaic device that generates an electromotive force by receiving light irradiation.
(ロ)従来の技術 光照射を受けると起電力を発生する光起電力装置にお
ける受光面側電極は、光電変換作用をなす半導体光活性
層への光照射を招くべく透光性であることが好ましい。
従来、透光性を呈すべく受光面側電極はインジューム
(In)やスズ(Sn)の酸化物であるIn2O3、SnO3、ITO等
に代表される透光性導電酸化物(以下TCOと称する)に
より形成されている。このTCOからなる電極にあって
は、そのシート抵抗は約30〜50Ω/□であり、同じ膜厚
のアルミニウム等の金属材料に比べて3桁以上も高いた
め、この電極における電力損失(抵抗損失)が発生し、
集電効率を低下させる原因となる。(B) Conventional technology The light-receiving-surface-side electrode of a photovoltaic device that generates an electromotive force when irradiated with light may be translucent so as to induce light irradiation on a semiconductor photoactive layer that performs photoelectric conversion. preferable.
Conventionally, In 2 O 3, SnO 3 , translucent conductive oxide represented by ITO or the like is an oxide of order Teisu the translucent light-receiving surface side electrode is indium (In), tin (Sn) (hereinafter TCO). The electrode made of this TCO has a sheet resistance of about 30 to 50 Ω / □, which is more than three orders of magnitude higher than a metal material such as aluminum having the same film thickness. ) Occurs,
This may cause a reduction in current collection efficiency.
そこで、本願出願人は、受光面側電極として高抵抗な
TCOを用いるにも係わらず、受光面側電極による抵抗損
失を減じる構造として、特開昭61−20371号公報、及び
実開昭61−86955号公報を出願している。この光起電力
装置は、光入射側から見て、受光面電極膜、光活性層を
含む半導体膜、第1背面電極膜、絶縁膜及び受光面電極
膜より低抵抗な第2背面電極膜を重畳し、上記第2背面
電極膜が、受光領域の複数箇所において、内周が上記絶
縁膜により囲繞されたコンタクトホールを貫通して受光
面電極膜に到達することにより、上記第2背面電極膜及
び上記受光面電極膜を電気的に結合したものである。Therefore, the applicant of the present application has proposed a high-resistance electrode on the light-receiving surface side.
Japanese Patent Application Laid-Open Nos. 61-20371 and 61-86955 have filed applications as structures for reducing the resistance loss due to the light-receiving surface side electrode despite the use of TCO. This photovoltaic device includes a light receiving surface electrode film, a semiconductor film including a photoactive layer, a first back electrode film, an insulating film, and a second back electrode film having a lower resistance than the light receiving surface electrode film when viewed from the light incident side. The second back electrode film is overlapped with the second back electrode film by reaching the light receiving surface electrode film at a plurality of locations in the light receiving region by passing through the contact hole whose inner periphery is surrounded by the insulating film. And the light receiving surface electrode film is electrically coupled.
(ハ)発明が解決しようとする課題 ところで、光起電力装置を使用するに当っては、単位
光電変換素子を複数個電気的に直列接続した構造とする
のが一般的である。かかる構造において、光起電力装置
の出力特性、即ち出力電力に悪影響を及ぼす発電に寄与
しない無効領域としては、各単位光電変換素子の隣接間
隔部と上記コンタクトホールとが存在する。このうち、
隣接間隔部については複数の単位光電変換素子を形成す
るにあたり必要不可欠であり、その大きさも加工精度か
ら自ずと最小にし得る大きさが決まってしまう。(C) Problems to be Solved by the Invention Incidentally, when using a photovoltaic device, it is common to adopt a structure in which a plurality of unit photoelectric conversion elements are electrically connected in series. In such a structure, the output characteristic of the photovoltaic device, that is, the ineffective region that does not contribute to power generation that adversely affects the output power includes the adjacent space between each unit photoelectric conversion element and the contact hole. this house,
The adjacent space is indispensable for forming a plurality of unit photoelectric conversion elements, and the size that can be minimized is naturally determined from the processing accuracy.
そこで、本発明は、コンタクトホールの大きさ及びそ
の配置間隔を最適化することにより、光起電力装置の出
力電力として最大値を得られるようにすることにある。Therefore, the present invention is to optimize the size of the contact holes and the interval between the contact holes so that the maximum value can be obtained as the output power of the photovoltaic device.
(ニ)課題を解決するための手段 本発明は、透光性受光面電極膜、光活性層を含む半導
体膜、第1背面電極膜、絶縁膜及び第2背面電極膜を重
畳し、受光領域内の複数の接続箇所において上記第2電
極膜が上記絶縁膜を貫通して受光面電極膜と電気的に結
合した単位光電変換素子を、互いに隣接する光電変換素
子の一方の第1背面電極膜と他方の第2背面電極電極膜
とでもって半導体膜に対して背面側にて結合することに
より電気的に直列接続した光起電力装置であって、qを
素電荷、kをボルツマン定数とするときに、上記接続箇
所の大きさ及びその配置間隔を、所定の条件の下でのT
(絶対温度)、iph(光電流密度)、i0(逆方向飽和電
流密度)、Rs(直列抵抗)、Rst(シート抵抗)、R
sh(シャント抵抗)、及びn(ダイオード特性のn値)
の値を用いて次式により計算される出力電流に基づく出
力電力が略最大となるべく決定される値としたことを特
徴とする。(D) Means for Solving the Problems The present invention provides a light-receiving area by overlapping a light-transmitting light-receiving surface electrode film, a semiconductor film including a photoactive layer, a first back electrode film, an insulating film, and a second back electrode film. The unit photoelectric conversion element in which the second electrode film penetrates through the insulating film and is electrically coupled to the light receiving surface electrode film at a plurality of connection points in the plurality of the first photoelectric conversion elements is connected to the first back electrode film of one of the photoelectric conversion elements adjacent to each other. A photovoltaic device which is electrically connected in series by being coupled to the semiconductor film on the back side with the other second back electrode electrode film, wherein q is an elementary charge and k is a Boltzmann constant. Sometimes, the size of the connection portion and the interval between the connection portions are set to T under a predetermined condition.
(Absolute temperature), i ph (photocurrent density), i 0 (reverse saturation current density), R s (series resistance), R st (sheet resistance), R
sh (shunt resistance) and n (n value of diode characteristics)
And the output power based on the output current calculated by the following equation is set to a value determined to be substantially maximum.
i(r)=iph−i0[exp{q(V(r) +Rsi(r))/nkT}−1] −(V(r)+Rsi(r))/Rsh dV(r)/dr=I(r)・Rst/2πr 但し、Iout:1個の接続箇所における出力電流 i(r):半径r地点の微小領域で発生する電流量 I(r):半径r地点のリング状領域においてコンタ
クトホール方向へ流れる全電流量 V(r):半径r地点の電圧 R:接続箇所の配置間隔に対応した正方形と同
じ面積をなす円の半径 R0:接続箇所の半径 (ホ)作用 本発明によれば、第2背面電極膜と受光面電極膜との
接続個所の大きさ及びその配置間隔を、所定の関係式に
より計算される出力電流に基づく出力電圧が略最大とな
るべく決定される値としたことによって最適化され、優
れた出力特性の光起電力装置が得られる。 i (r) = i ph −i 0 [exp {q (V (r) + R s i (r)) / nkT} −1] − (V (r) + R s i (r)) / R sh dV ( r) / dr = I (r) · R st / 2πr where I out : output current at one connection point i (r): current amount generated in a minute area at radius r point I (r): radius r Total amount of current flowing in the direction of the contact hole in the ring-shaped region at the point V (r): Voltage at radius r R: Radius of a circle having the same area as a square corresponding to the arrangement interval of connection points R 0 : Radius of connection point (E) Function According to the present invention, the size of the connection portion between the second back electrode film and the light receiving surface electrode film and the interval between the connection portions are set to approximately the maximum value based on the output current calculated by a predetermined relational expression. The photovoltaic device optimized with the value determined as possible and having excellent output characteristics can be obtained.
(ヘ)実施例 第1図は本発明の光起電力装置の第1実施例の要部を
光入射方向に対して背面側斜め方向から臨んだ一部断面
斜視図であり、光入射側から見てTCO等の透光性受光面
電極膜(1)、膜面に並行なpin接合、pn接合等の半導
体接合の光活性層を含むアモルファスシリコン等を主体
とする半導体膜(2)、オーミック金属の第1背面電極
膜(3)、絶縁膜(4)、及び受光面電極膜(1)に比
べて低抵抗な金属からなる第2背面電極膜(5)を重畳
し、第2背面電極膜(5)が、受光領域内の複数個所に
おいて、絶縁膜(4)、第1背面電極膜(3)及び半導
体膜(2)を貫通すると共に内周が絶縁膜(4)により
囲繞された円形のコンタクトホール(6)を貫通して受
光面電極膜(1)に到達することにより、受光面電極膜
(1)と電気的に結合した複数の単位光電変換素子(SC
1)(SC2)(SC3)…を、各単位光電変換素子(SC1)
(SC2)(SC3)…の受光面電極膜(1)が分離間隔dを
隔てた状態で支持体かつ受光面保護体となるガラス等の
透光性絶縁基板(7)上に設けている。(F) Embodiment FIG. 1 is a partial cross-sectional perspective view of a main part of a first embodiment of a photovoltaic device of the present invention viewed obliquely from the back side with respect to the light incident direction. As shown, a transmissive light-receiving surface electrode film such as TCO (1), a semiconductor film mainly composed of amorphous silicon including a photoactive layer of a semiconductor junction such as a pin junction and a pn junction parallel to the film surface (2), ohmic A first back electrode film (3) made of metal, an insulating film (4), and a second back electrode film (5) made of a metal having lower resistance than the light receiving surface electrode film (1) are superimposed to form a second back electrode. The film (5) penetrates the insulating film (4), the first back electrode film (3) and the semiconductor film (2) at a plurality of locations in the light receiving region, and the inner periphery is surrounded by the insulating film (4). By reaching the light-receiving surface electrode film (1) through the circular contact hole (6), the light-receiving surface electrode film (1) is electrically connected to the light-receiving surface electrode film (1). A plurality of unit photovoltaic bound to (SC
1 ) (SC 2 ) (SC 3 ) ... is replaced by each unit photoelectric conversion element (SC 1 )
The light receiving surface electrode films (1) of (SC 2 ) and (SC 3 ) are provided on a translucent insulating substrate (7) such as glass serving as a support and a light receiving surface protector with a separation distance d. I have.
そして、各単位光電変換素子(SC1)(SC2)(SC3)
…の隣接する素子の受光面電極膜(1)と第1背面電極
膜(3)とを各光電変換素子(SC1)(SC2)(SC3)…
の隣接間隔部において直接重畳することなく、半導体膜
(2)の背面側において絶縁膜(4)側から、例えばレ
ーザビームの照射あるいはエッチングを行うことにより
開孔した部分の第1背面電極膜(3)に、隣接素子の第
2背面電極膜(5)が延在し埋設することによって、互
いに隣接する単位光電変換素子(SC1)(SC2)(SC3)
…は電気的に直列接続されている。Then, each unit photoelectric conversion element (SC 1 ) (SC 2 ) (SC 3 )
The light-receiving surface electrode film (1) and the first back electrode film (3) of the element adjacent to each other are connected to each photoelectric conversion element (SC 1 ) (SC 2 ) (SC 3 ).
The first back electrode film (in the portion opened by performing, for example, laser beam irradiation or etching) on the back surface side of the semiconductor film (2) from the side of the insulating film (4) without directly overlapping in the adjacent space portion of 3), the second back electrode film (5) of the adjacent element extends and is buried, so that the adjacent unit photoelectric conversion elements (SC 1 ) (SC 2 ) (SC 3 )
Are electrically connected in series.
ところで、かかる構造の光起電力装置において重要な
ことは、コンタクトホール(6)の大きさ及びその配置
間隔である。コンタクトホール(6)の大きさを小さく
すると、受光領域における無効面積も小さくなるが、加
工性及び作業性に乏しく、更に、コンタクトホール
(6)を小さくしていくと、集電を行うコンタクトホー
ル(6)の中心部における受光面電極膜(1)と第2背
面電極膜(5)との接触抵抗が増大するため、抵抗損失
は低減されないこととなる。By the way, what is important in the photovoltaic device having such a structure is the size of the contact holes (6) and the arrangement intervals thereof. When the size of the contact hole (6) is reduced, the ineffective area in the light receiving region is also reduced, but the workability and workability are poor, and when the contact hole (6) is further reduced, the current collecting contact hole is formed. Since the contact resistance between the light receiving surface electrode film (1) and the second back electrode film (5) at the center of (6) is increased, the resistance loss is not reduced.
一方、加工性及び作業性を容易にするべくコンタクト
ホール(6)を大きくすると、その数が多ければ受光領
域における無効面積が大きくなってしまい、逆に数を少
なくするとコンタクトホール(6)に置ける集電効果が
減少し、受光面電極膜(1)での抵抗損失を十分に抑制
することができなくなる。On the other hand, if the number of contact holes (6) is increased to facilitate workability and workability, the larger the number, the larger the ineffective area in the light receiving region. The current collecting effect is reduced, and the resistance loss in the light receiving surface electrode film (1) cannot be sufficiently suppressed.
即ち、上述の如き光起電力装置においては、最大出力
を得るに際し、コンタクトホール(6)の大きさ及びそ
の配置間隔に最適な値が存在するものと考えられる。That is, in the photovoltaic device as described above, when obtaining the maximum output, it is considered that there are optimal values for the size of the contact holes (6) and the interval between the contact holes.
そこで、本発明では、コンタクトホール(6)の大き
さ及びその配置間隔(この配置間隔は言い替えればコン
タクトホール(6)の数に相当し、更に受光領域の有効
面積に相当する)を決定するに当り、コンタクトホール
(6)における出力電流を計算し、これに基づいた出力
電力を考慮した。Therefore, in the present invention, the size of the contact holes (6) and their arrangement intervals (the arrangement intervals correspond to the number of the contact holes (6) and, in other words, the effective areas of the light receiving regions) are determined. The output current in the contact hole (6) was calculated, and the output power based on this was considered.
第2図は、コンタクトホール(6)部分を拡大した断
面図であり、各コンタクトホール(6)により集電され
る電流は、半径Rの円の内部で発生するものである。な
お、この円は各コンタクトホール(6)を中心として互
いに接すると共に同一面積で区画された正方形と同じ面
積となるように、コンタクトホール(6)を中心として
描かれたものであり、これによって円の半径Rも自動的
に決定される。FIG. 2 is an enlarged cross-sectional view of the contact hole (6), and the current collected by each contact hole (6) is generated inside a circle having a radius R. This circle is drawn around the contact hole (6) so as to be in contact with each other around each contact hole (6) and to have the same area as a square defined by the same area. Is also automatically determined.
下記第1式は1個のコンタクトホール(6)における
出力電流Ioutを示している。The first expression below shows an output current I out in one contact hole (6).
但し、上式において R:コンタクトホール(6)の配置間隔に対応
した正方形と同じ面積をなす円の半径 R0:コンタクトホール(6)の半径 i(r):半径r地点の微小領域で発生する電流量 さらに、電流量i(r)は下記第2式及び第3式にて
求められる。 However, in the above equation, R: radius of a circle having the same area as the square corresponding to the arrangement interval of the contact holes (6) R0: radius of the contact holes (6) i (r): generated in a small area at a radius r point Current Amount The current amount i (r) is obtained by the following equations (2) and (3).
但し、上式において iph:光電流密度 i0:逆方向飽和電流密度 v(r):半径r地点の電圧 Rs:直列抵抗 Rsh:シャント抵抗 n:ダイオード特性のn値 q:素電荷 k:ボルツマン定数 T:絶対温度 Rst:シート抵抗 I(r):半径r地点のリング状領域においてコンタ
クトホール(6)方向へ流れる全電流量 尚、上記q、kは定数であり、T,iph,i0,Rs,Rst,Rsh,
及びnの値は所定の条件の下で求めた値を用いれば良
い。所定の条件とは如何なる条件でも良く、例えば、周
知の最新太陽光発電技術(1984年7月1日発行、槙書
店、143頁)に記載された太陽電池の標準測定条件(AM
1.5、100mW/cm2、28℃)を用いることができる。 Where i ph : photocurrent density i 0 : reverse saturation current density v (r): voltage at radius r R s : series resistance R sh : shunt resistance n: n value of diode characteristics q: elementary charge k: Boltzmann's constant T: absolute temperature R st : sheet resistance I (r): total amount of current flowing in the direction of the contact hole (6) in the ring-shaped region at radius r where q and k are constants, and T, i ph , i 0 , R s , R st , R sh ,
And n may be values obtained under predetermined conditions. The predetermined condition may be any condition, for example, a standard measurement condition (AM) of a solar cell described in a known latest photovoltaic power generation technology (issued on July 1, 1984, Maki Shoten, p. 143).
1.5, 100 mW / cm 2 , 28 ° C.).
第3図は、上記各式を用いてコンタクトホール(6)
の半径R0をパラメータとした光起電力装置の最大出力と
有効面積の比率との関係を示す特性図である。なお、同
図における光起電力装置は、光電変換素子(SC1)(S
C2)(SC3)…が隣接間隔部を0.15mmとして10個設けら
れた10cm×10cmの大きさのものであり、従って、98.5%
の有効面積の比率を有する。また、第3図において、・
印はコンタクトホール(6)の半径が0.10mmの場合を示
しており、また、○印は0.15mm、△印は0.25mm、□印は
0.55mmの場合を夫々示している。FIG. 3 shows a contact hole (6) using the above equations.
FIG. 4 is a characteristic diagram showing a relationship between a maximum output of the photovoltaic device and a ratio of an effective area, using a radius R0 of the parameter as a parameter. The photovoltaic device in the figure is a photoelectric conversion element (SC 1 ) (S
C 2 ) (SC 3 ) ... are 10 cm × 10 cm in size with 10 adjacent spaces of 0.15 mm, and therefore, 98.5%
Of the effective area. Also, in FIG.
The mark indicates the case where the radius of the contact hole (6) is 0.10 mm, the mark ○ indicates 0.15 mm, the mark Δ indicates 0.25 mm, and the mark □ indicates
Each case of 0.55 mm is shown.
同図から見て、コンタクトホール(6)の半径が0.10
mmの場合、有効面積の比率が98%までは最大出力は大き
くなる。一方、コンタクトホール(6)の半径が0.15m
m、0.25mm、0.55mmの場合、有効面積の比率が大きいほ
ど最大出力は大きくなるものではなく、コンタクトホー
ル(6)の半径が0.15mm及び0.25mmの場合には、有効面
積の比率が97.5%の時に最大出力となり、また、コンタ
クトホール(6)の半径が0.55mmの場合には、有効面積
の比率が96.3%の時に最大出力となることが判る。As can be seen from the figure, the radius of the contact hole (6) is 0.10
In the case of mm, the maximum output is large up to 98% of the effective area ratio. On the other hand, the radius of the contact hole (6) is 0.15m
In the case of m, 0.25 mm and 0.55 mm, the maximum output does not increase as the ratio of the effective area increases. When the radius of the contact hole (6) is 0.15 mm and 0.25 mm, the ratio of the effective area is 97.5 mm. %, The maximum output is obtained when the radius of the contact hole (6) is 0.55 mm, and the maximum output is obtained when the ratio of the effective area is 96.3%.
このようにして、本発明では、上記3式を用いた計算
によって、コンタクトホール(6)の半径とその数、即
ち、有効面積の比率とを適宜に最適な状態とすることが
できる。In this way, in the present invention, the radius and the number of the contact holes (6), that is, the ratio of the effective area, can be appropriately optimized by the calculation using the above three equations.
一方、第4図は、上記各式を用いて受光面電極膜
(1)のシート抵抗Rstをパラメータとした光起電力装
置の最大出力と有効面積の比率との関係を示す特性図で
ある。なお、同図に使用した光起電力装置のコンタクト
ホール(6)の半径は0.25mmであり、同図において、・
印は受光面電極膜(1)のシート抵抗が10Ω/□の場合
を示しており、また、○印は30Ω/□、△印は50Ω/
□、□印は100Ω/□の場合を夫々示している。On the other hand, FIG. 4 is a characteristic diagram showing the relationship between the maximum output of the photovoltaic device and the ratio of the effective area with the sheet resistance R st of the light receiving surface electrode film (1) as a parameter using the above equations. . The radius of the contact hole (6) of the photovoltaic device used in the figure is 0.25 mm.
The mark indicates the case where the sheet resistance of the light receiving surface electrode film (1) is 10Ω / □, the mark ○ indicates 30Ω / □, and the mark Δ indicates 50Ω / □.
□ and □ indicate the case of 100Ω / □, respectively.
同図から判るように、受光面電極膜(1)のシート抵
抗に応じて最大出力が得られる最適なコンタクトホール
(6)の数、即ち有効面積の比率が存在し、受光面電極
膜(1)のシート抵抗が夫々10Ω/□、30Ω/□、50Ω
/□及び100Ω/□の場合、最適な有効面積の比率は、9
7.5%、96.5%、96%及び95.5%であることが判る。As can be seen from the figure, there is an optimal number of contact holes (6) at which the maximum output can be obtained according to the sheet resistance of the light receiving surface electrode film (1), that is, the ratio of the effective area. ) Sheet resistance of 10Ω / □, 30Ω / □, 50Ω respectively
/ □ and 100Ω / □, the optimal effective area ratio is 9
It can be seen that they are 7.5%, 96.5%, 96% and 95.5%.
この場合にあっても、上記3式を用いた計算を行うこ
とにより、受光面電極膜(1)のシート抵抗の値に応じ
てコンタクトホール(6)の半径とその数、即ち、有効
面積の比率とを適宜に最適な状態とすることができる。Even in this case, by performing the calculation using the above three equations, the radius and the number of the contact holes (6), that is, the effective area of the contact holes (6) are determined according to the sheet resistance of the light receiving surface electrode film (1). The ratio can be appropriately set to an optimal state.
第5図は本発明の光起電力装置の第2実施例の要部を
光入射方向に対して背面側斜め方向から臨んだ一部断面
斜視図である。FIG. 5 is a partial cross-sectional perspective view of a main part of a second embodiment of the photovoltaic device of the present invention viewed obliquely from the rear side with respect to the light incident direction.
この実施例にあっては、先の実施例と比較して、光入
射方向が逆転した点に特徴がある。即ち、表面にホーロ
ーや封孔処理したアルミナ膜等の絶縁膜(72)を配置し
たステンレス鋼、アルミニウム板等の金属板(71)から
なる絶縁基板(70)を用意し、まず各単位光電変換素子
(SC1)(SC2)(SC3)…毎に金属の第2背面電極膜
(5)を分割配置し、次いで絶縁膜(4)、第1背面電
極膜(3)、少なくとも一つの半導体接合を備える光活
性層を含む半導体膜(2)、TCO等の透光性受光面電極
膜(1)を積層する。この時、絶縁膜(4)は各素子
(SC1)(SC2)(SC3)…毎に分割され、露出した第2
背面電極膜(5)に隣の素子の第1背面電極膜(3)が
結合している。半導体膜(2)、第1背面電極膜(3)
及び絶縁膜(4)には第1実施例と同様に受光領域内で
複数個所第2背面電極膜(5)に達するコンタクトホー
ル(6)が穿たれており、コンタクトホール(6)の内
壁は絶縁膜(4)により覆われている。そして、このコ
ンタクトホール(6)を受光面電極膜(1)が埋設する
ことによって、受光面電極膜(1)と第2背面電極膜
(5)とが電気的に結合されると共に、各単位光電変換
素子(SC1)(SC2)(SC3)…が半導体膜(2)の背面
において電気的に直列接続される。This embodiment is characterized in that the light incident direction is reversed as compared with the previous embodiment. That is, an insulating substrate (70) made of a metal plate (71) such as stainless steel or an aluminum plate having an insulating film (72) such as an enameled or sealed alumina film on the surface is prepared. A metal second back electrode film (5) is divided and arranged for each of the elements (SC 1 ) (SC 2 ) (SC 3 )... Then, an insulating film (4), a first back electrode film (3), and at least one A semiconductor film (2) including a photoactive layer having a semiconductor junction and a light-transmitting light-receiving surface electrode film (1) such as TCO are laminated. At this time, the insulating film (4) is divided for each element (SC 1 ) (SC 2 ) (SC 3 ).
A first back electrode film (3) of an adjacent element is bonded to the back electrode film (5). Semiconductor film (2), first back electrode film (3)
A contact hole (6) reaching the second back electrode film (5) at a plurality of positions in the light receiving region is formed in the insulating film (4) as in the first embodiment, and the inner wall of the contact hole (6) is It is covered with the insulating film (4). By burying the contact hole (6) with the light-receiving surface electrode film (1), the light-receiving surface electrode film (1) and the second back electrode film (5) are electrically coupled with each other, and The photoelectric conversion elements (SC 1 ) (SC 2 ) (SC 3 ) are electrically connected in series on the back surface of the semiconductor film (2).
この構造の光起電力装置においても、コンタクトホー
ル(6)の大きさ及びその数は、第1実施例と同様に、
上記3式に基づいてコンタクトホール(6)における出
力電流を計算し、これに基づいた出力電力が略最大とな
るべく決定される値とするのは当然のことである。In the photovoltaic device having this structure, the size and number of the contact holes (6) are the same as in the first embodiment.
It is natural that the output current in the contact hole (6) is calculated based on the above three equations, and the output current based on the calculated output current is set to a value determined to be substantially maximum.
なお、各コンタクトホール(6)は上述のような円形
に限らず、正方形等任意の形状とすることができる。こ
の場合、例えば正方形のコンタクトホール(6)の夫々
により集電される電流は、各コンタクトホール(6)を
中心として互いに接すると共に同一面積で区画された正
方形内で発生する電流である。従って、上記正方形内で
発生する電流を計算することにより、コンタクトホール
(6)の大きさ及びその配置間隔が決定される。In addition, each contact hole (6) is not limited to the circular shape as described above, but may be an arbitrary shape such as a square. In this case, for example, the current collected by each of the square contact holes (6) is a current generated in a square that is in contact with each other with each contact hole (6) as a center and divided by the same area. Therefore, the size of the contact hole (6) and the interval between the contact holes are determined by calculating the current generated in the square.
(ト)発明の効果 本発明によれば、透光性受光面電極膜、光活性層を含
む半導体膜、第1背面電極膜、絶縁膜及び第2背面電極
膜を重畳し、受光領域内の複数の接続箇所において上記
第2背面電極膜が上記絶縁膜を貫通して受光面電極膜と
電気的に結合した単位光電変換素子を、互いに隣接する
光電変換素子の一方の第1背面電極膜と他方の第2背面
電極膜とでもって半導体膜に対して背面側にて結合する
ことにより電気的に直列接続した光起電力装置であっ
て、上記接続箇所の大きさ及びその配置間隔を、所定の
式により計算される出力電流に基づく出力電力が略最大
となるべく決定される値としたことことによって、上記
接続箇所の状態を最適化したので、加工性及び作業性に
応じて最適な出力特性を有する光起電力装置を提供する
ことができる。(G) Effects of the Invention According to the present invention, a light-transmitting light-receiving surface electrode film, a semiconductor film including a photoactive layer, a first back electrode film, an insulating film, and a second back electrode film are superimposed on each other to form a light-receiving region. A unit photoelectric conversion element, in which the second back electrode film penetrates through the insulating film and is electrically coupled to the light receiving surface electrode film at a plurality of connection points, is connected to one of the first back electrode films of adjacent photoelectric conversion elements. A photovoltaic device which is electrically connected in series by being coupled to the semiconductor film on the back side with the other second back electrode film, wherein the size of the connection portion and the arrangement interval are predetermined. By setting the output power based on the output current calculated by the following formula to be a value determined to be substantially maximum, the state of the connection point has been optimized, so that the optimum output characteristics according to the workability and workability. To provide a photovoltaic device having Can be.
第1図は本発明の第1実施例の要部を示す一部断面斜視
図、第2図はさらにその要部を示す断面図、第3図は接
続箇所、(即ちコンタクトホール)の半径をパラメータ
とした光起電力装置の最大出力と有効面積の比率との関
係を示す特性図、第4図は受光面電極膜のシート抵抗を
パラメータとした光起電力装置の最大出力と有効面積の
比率との関係を示す特性図、第5図は本発明の第2実施
例の要部を示す一部断面斜視図である。 (1)……受光面電極膜、(2)……半導体膜、(3)
……第1背面電極膜、(4)……絶縁膜、(5)……第
2背面電極膜、(6)……コンタクトホール。FIG. 1 is a partial cross-sectional perspective view showing a main part of a first embodiment of the present invention, FIG. 2 is a cross-sectional view further showing the main part, and FIG. FIG. 4 is a characteristic diagram showing the relationship between the maximum output of the photovoltaic device as a parameter and the ratio of the effective area, and FIG. 4 shows the ratio of the maximum output and the effective area of the photovoltaic device with the sheet resistance of the light receiving surface electrode film as a parameter. FIG. 5 is a partial sectional perspective view showing a main part of the second embodiment of the present invention. (1) ... light-receiving surface electrode film, (2) ... semiconductor film, (3)
... first back electrode film, (4) ... insulating film, (5) ... second back electrode film, (6) ... contact hole.
Claims (1)
体膜、第1背面電極膜、絶縁膜及び第2背面電極膜を重
畳し、受光領域内の複数の接続箇所において上記第2電
極膜が上記絶縁膜を貫通して受光面電極膜と電気的に結
合した単位光電変換素子を、互いに隣接する光電変換素
子の一方の第1背面電極膜と他方の第2背面電極膜とで
もって半導体膜に対して背面側にて結合することにより
電気的に直列接続した光起電力装置であって、qを素電
荷、kをボルツマン定数とするときに、上記接続箇所の
大きさ及びその配置間隔を、所定の条件の下でのT(絶
対温度)、iph(光電流密度)、i0(逆方向飽和電流密
度)、Rs(直列抵抗)、Rst(シート抵抗)、Rsh(シャ
ント抵抗)、及びn(ダイオード特性のn値)の値を用
いて次式により計算される出力電流に基づく出力電力が
略最大となるべく決定される値としたことを特徴とする
光起電力装置。 i(r)=iph−i0[exp{q(V(r) +Rsi(r))/nkT}−1] −(V(r)+Rsi(r))/Rsh dV(r)/dr=I(r)・Rst/2πr 但し、Iout:1個の接続箇所における出力電流 i(r):半径r地点の微小領域で発生する電流量 I(r):半径r地点のリング状領域においてコンタク
トホール方向へ流れる全電流量 V(r):半径r地点の電圧 R:接続箇所の配置間隔に対応した正方形と同じ面積をな
す円の半径 R0:接続箇所の半径1. A light-transmitting light-receiving surface electrode film, a semiconductor film including a photoactive layer, a first back electrode film, an insulating film, and a second back electrode film are superimposed on each other, and the first and second back electrode films are formed at a plurality of connection locations in a light-receiving region. A unit photoelectric conversion element in which a two-electrode film penetrates through the insulating film and is electrically coupled to a light-receiving surface electrode film is formed by combining one of the first and second back electrode films of adjacent photoelectric conversion elements with the other. A photovoltaic device electrically connected in series by being coupled to the semiconductor film on the back side, and when q is an elementary charge and k is a Boltzmann constant, the size of the connection portion and The arrangement intervals are defined as T (absolute temperature), i ph (photocurrent density), i 0 (reverse saturation current density), R s (series resistance), R st (sheet resistance) under predetermined conditions, R sh (shunt resistor), and using the values of n (n values of the diode characteristic) by the following equation Photovoltaic device, characterized in that the output power based on the output current to be calculated is the possible value determined substantially maximum. i (r) = i ph −i 0 [exp {q (V (r) + R s i (r)) / nkT} −1] − (V (r) + R s i (r)) / R sh dV ( r) / dr = I (r) · R st / 2πr where I out : output current at one connection point i (r): current amount generated in a minute area at radius r point I (r): radius r Total amount of current flowing in the direction of the contact hole in the ring-shaped region at the point V (r): Voltage at radius r R: Radius of a circle having the same area as a square corresponding to the arrangement interval of connection points R 0 : Radius of connection point
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63251202A JP2755616B2 (en) | 1988-10-05 | 1988-10-05 | Photovoltaic device |
US07/308,390 US4981525A (en) | 1988-02-19 | 1989-02-09 | Photovoltaic device |
CN 89100835 CN1036298A (en) | 1988-02-19 | 1989-02-18 | Photovaltaic device and manufacture method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63251202A JP2755616B2 (en) | 1988-10-05 | 1988-10-05 | Photovoltaic device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0298975A JPH0298975A (en) | 1990-04-11 |
JP2755616B2 true JP2755616B2 (en) | 1998-05-20 |
Family
ID=17219208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63251202A Expired - Fee Related JP2755616B2 (en) | 1988-02-19 | 1988-10-05 | Photovoltaic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2755616B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1583155A1 (en) * | 2003-01-10 | 2005-10-05 | Kaneka Corporation | Transparent thin-film solar cell module and its manufacturing method |
JP5375757B2 (en) * | 2010-04-20 | 2013-12-25 | 富士電機株式会社 | Solar cell serial connection structure cell characteristics analysis and evaluation system |
-
1988
- 1988-10-05 JP JP63251202A patent/JP2755616B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0298975A (en) | 1990-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2938634B2 (en) | Solar cell module | |
CN204928739U (en) | Two -sided solar panel and two -sided solar cell | |
US5259891A (en) | Integrated type solar battery | |
JP2986875B2 (en) | Integrated solar cell | |
JP3172369B2 (en) | Integrated photovoltaic device | |
JP3269051B2 (en) | Solar cell module | |
JP2755616B2 (en) | Photovoltaic device | |
JPH09283781A (en) | Photovoltaic device | |
JP2755670B2 (en) | Photoelectric conversion element and photovoltaic device | |
JP3442418B2 (en) | Photovoltaic element | |
JP6238084B2 (en) | Solar cell and resistance calculation method for solar cell | |
JP2968404B2 (en) | Method for manufacturing photovoltaic device | |
JPH0328522Y2 (en) | ||
JPH073875B2 (en) | Photovoltaic device | |
JP2647892B2 (en) | Optical super power device | |
JP2862309B2 (en) | Integrated solar cell and solar cell integration method | |
JP2940724B2 (en) | Photoelectric conversion element and photovoltaic device | |
JP2869133B2 (en) | Photoelectric conversion element and photovoltaic device | |
JP2735864B2 (en) | Photoelectric conversion element and photovoltaic device | |
JPH0453002Y2 (en) | ||
JPH0639457Y2 (en) | Photovoltaic device | |
JPS6322633B2 (en) | ||
JP2001077395A (en) | Solar battery module | |
JP2744058B2 (en) | Method for manufacturing photovoltaic device | |
JPH03234066A (en) | Photovolataic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |