JP2754725B2 - Tuned transducer - Google Patents

Tuned transducer

Info

Publication number
JP2754725B2
JP2754725B2 JP12563389A JP12563389A JP2754725B2 JP 2754725 B2 JP2754725 B2 JP 2754725B2 JP 12563389 A JP12563389 A JP 12563389A JP 12563389 A JP12563389 A JP 12563389A JP 2754725 B2 JP2754725 B2 JP 2754725B2
Authority
JP
Japan
Prior art keywords
cylindrical
vibrators
resonance frequency
vibrator
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12563389A
Other languages
Japanese (ja)
Other versions
JPH02305094A (en
Inventor
明 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP12563389A priority Critical patent/JP2754725B2/en
Publication of JPH02305094A publication Critical patent/JPH02305094A/en
Application granted granted Critical
Publication of JP2754725B2 publication Critical patent/JP2754725B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水中で使用する電気音響変換器に関し、特に
共振周波数で使用し、その共振周波数と共振の鋭さ、す
なわち選択度を外部から調整する同調型送受波器に関す
る。
Description: TECHNICAL FIELD The present invention relates to an electroacoustic transducer for use in water, and more particularly to an electroacoustic transducer used at a resonance frequency, and externally adjusting the resonance frequency and the sharpness of resonance, that is, the selectivity. The present invention relates to a tunable transducer.

〔従来の技術〕 従来、この種の送受波器として円筒振動子の呼吸振動
モードを用いた機械共振型送受波器か、あるいは円筒振
動子の内部に外部媒体である水又は海水を流入し、円筒
振動子で区切られた水柱の共振を利用した水柱共振型送
受波器がある。
(Prior art) Conventionally, a mechanical resonance type transducer using a respiratory vibration mode of a cylindrical vibrator as this kind of transducer, or water or seawater as an external medium flows into the cylindrical vibrator, There is a water column resonance type transducer that utilizes the resonance of a water column separated by a cylindrical vibrator.

機械共振型送受波器は第4図(a)に示すように円筒
振動子、31a〜31cを緩衝材、32a〜32dで交互に積層し、
両端をフタ、33a,33bとシャフト34で支持し、円筒振動
子の内部を空気室として全体をシースで覆った構造であ
る。
As shown in FIG. 4 (a), the mechanical resonance type transducer is formed by alternately stacking a cylindrical vibrator, 31a to 31c with a cushioning material, 32a to 32d,
Both ends are supported by lids, 33a and 33b and a shaft 34, and the entire interior of the cylindrical vibrator is covered with a sheath as an air chamber.

円筒振動子は第4図(b)に示すように円筒状の圧電
材、37の内外周面に電極38a,38bを設け、この電極間で
呼吸振動モードによる共振周波数(r′)、すなわち
圧電材の音速がcで、平均直径が2であるときr′
=c/2πで計算される周波数の電気信号を加えると円
筒振動子の機械的共振により効率の高い音響出力を得る
ことができる。
As shown in FIG. 4 (b), the cylindrical vibrator is provided with electrodes 38a, 38b on the inner and outer peripheral surfaces of a cylindrical piezoelectric material 37, and a resonance frequency (r ') in the respiratory vibration mode between these electrodes, When the sound velocity of the material is c and the average diameter is 2, r '
When an electric signal having a frequency calculated as = c / 2π is added, a highly efficient sound output can be obtained by mechanical resonance of the cylindrical vibrator.

また水柱共振型送受波器は第5図(a)に示すよう
に、円筒振動子41の内外周面及び端面をシース42で覆
い、円筒振動子の内部に外部媒体が流入する構造であ
り、このような送受波器は機械的共振周波数(r′)
の他に円筒振動子内部の水柱による音響的共振周波数
(r″)を有する。この水柱共振周波数(r″)は
円筒振動子内部の媒質の音速をCo,内周面の直径を2ai
内周面の軸方向長さをlとし、長さと直径比による補正
係数をαとしてr″=Co/2(l+2αai)で計算さ
れ、この周波数の電気信号で駆動すると機械的共振と同
様に効率の高い音響出力を得ることができる。
As shown in FIG. 5 (a), the water column resonance type transducer has a structure in which the inner and outer peripheral surfaces and the end surface of a cylindrical vibrator 41 are covered with a sheath 42, and an external medium flows into the cylindrical vibrator. Such a transducer has a mechanical resonance frequency (r ')
In addition to the above, it has an acoustic resonance frequency (r ″) due to a water column inside the cylindrical vibrator. The water column resonance frequency (r ″) indicates the sound velocity of the medium inside the cylindrical vibrator as Co, the diameter of the inner peripheral surface as 2a i ,
When the axial length of the inner peripheral surface is 1 and the correction coefficient based on the length-diameter ratio is α, it is calculated by r ″ = Co / 2 (l + 2αa i ). Highly efficient sound output can be obtained.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら従来の機械共振型送受波器は共振周波数
が円筒振動子の圧電材料の音速と寸法で決まり、水柱共
振型送受波器は共振周波数が円筒振動子の寸法で決まる
ため、一度設計して組立てた送受波器は後から共振周波
数の調整が出来ず、効率の良い周波数帯域は共振点近傍
に固定されるという欠点がある。
However, in conventional mechanical resonance type transducers, the resonance frequency is determined by the sound speed and dimensions of the piezoelectric material of the cylindrical resonator, and the water column resonance type transducer is designed and assembled once because the resonance frequency is determined by the dimensions of the cylindrical resonator. In addition, the resonance frequency of the transmitter / receiver cannot be adjusted later, and the efficient frequency band is fixed near the resonance point.

更に水柱共振型送受波器においては円筒振動子内部の
媒質が低粘度で低損失の水や海水であることや、円筒振
動子の呼吸振動モードによる機械的共振周波数より低く
なるために音響放射抵抗が小さくなることから第5図
(b)に示すように共振(r″)の選択度が著るしく
高くなり、水温や水深の変化による媒質の音速変化によ
り、共振周波数が不安定になるという欠点がある。
Furthermore, in the water column resonance type transducer, the medium inside the cylindrical vibrator is low-viscosity, low-loss water or seawater, and the acoustic radiation resistance is lower than the mechanical resonance frequency in the respiratory vibration mode of the cylindrical vibrator. As shown in FIG. 5 (b), the selectivity of resonance (r ″) becomes remarkably high, and the resonance frequency becomes unstable due to a change in the sound speed of the medium due to a change in water temperature or water depth. There are drawbacks.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の送受波器は複数個の円筒振動子と、これらの
振動子を同軸上に積層配列する支持部材と、これらの振
動子の配列間隔を調整する間隔調整機構と、これらの振
動子の内面に配置され、かつ内部に高粘度液体を封入し
たゴムチューブと、ゴムチューブ内の高粘度液体を加減
量する液量調整機構とから成り、送受波器外部から間隔
及び液量を調整することにより共振周波数と選択度を調
整する機能を有している。
The transducer of the present invention has a plurality of cylindrical vibrators, a support member for arranging these vibrators coaxially, an interval adjusting mechanism for adjusting the arrangement interval of these vibrators, A rubber tube that is disposed on the inner surface and contains a high-viscosity liquid inside, and a liquid amount adjustment mechanism that adjusts the amount of the high-viscosity liquid in the rubber tube, and adjusts the interval and liquid amount from outside the transducer. Has the function of adjusting the resonance frequency and the selectivity.

すなわち共振周波数は複数個の円筒振動子の間隔を変
化させ、円筒振動子相互間の液柱共振系の結合を変化さ
せることにより、円筒振動子1個分の液柱共振周波数か
ら円筒振動子全数を密接させたときの液柱共振周波数ま
で調整するものである。また、選択度は円筒振動子の内
面に配置されたゴムチューブ内の高粘度液体の量を加減
し調整するものである。
That is, the resonance frequency changes the interval between the plurality of cylindrical vibrators and changes the coupling of the liquid column resonance system between the cylindrical vibrators, so that the total number of cylindrical vibrators can be calculated from the liquid column resonance frequency of one cylindrical vibrator. Is adjusted up to the liquid column resonance frequency when close contact is made. Further, the selectivity is adjusted by adjusting the amount of the high-viscosity liquid in the rubber tube disposed on the inner surface of the cylindrical vibrator.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。第1
図は本発明の一実施例の部分断面図斜視図(a)及び縦
断面図(b)である。円筒振動子1a〜1cは支持板2a〜2d
により接着支持され支持板2a〜2dは支持棒3a〜3dにより
ネジで支持されている。このうち振動子1cは支持ぢた2
c,2dと支持棒3c,3dで間隔調整が可能なスパンのほぼ中
央に取り付けられ、振動子1aと1bは夫々支持板2a,2bと
支持棒3a,3bで振動子1cの両端に取り付けられている。
支持棒3a,3bは中央付近から上方向に右ネジが、下方向
に左ネジが削られており、支持板2a,2bのタップネジ孔
と勘合すると共に、上端部で歯車4a,4bと結合し、歯車4
cを介してシャフト5aで外部から回転することが出来る
構造となっている。
Next, the present invention will be described with reference to the drawings. First
1A and 1B are a partial sectional perspective view and a longitudinal sectional view, respectively, of an embodiment of the present invention. Cylindrical vibrators 1a to 1c are supporting plates 2a to 2d
And the support plates 2a to 2d are supported by screws by support rods 3a to 3d. Vibrator 1c is supported
c, 2d and support rods 3c, 3d are attached at the approximate center of the span where the distance can be adjusted, and vibrators 1a and 1b are attached to both ends of vibrator 1c with support plates 2a, 2b and support rods 3a, 3b, respectively. ing.
The support rods 3a and 3b have right-hand screws cut upward from the center and left-hand screws cut downward.They fit into the tap screw holes of the support plates 2a and 2b, and are connected to the gears 4a and 4b at the upper end. , Gear 4
It has a structure that can be rotated from outside by the shaft 5a via c.

また円筒振動子の内部には間隔調整が可能なスパンに
渡ってゴムチューブ9が設けられ、内部には高粘度液体
20(例えば高粘度シリコンオイル)が充てんされ、ゴム
チューブ9の一端はパイプ12と油孔を介してフランジ13
の油室22につながっている。油室内の高粘度液体はシャ
フト5bの回転によりピストン15が油室内を上下すること
により、ゴムチューブ内の液量を増減させ、ゴムチュー
ブの外径を変化させる。円筒振動子1a〜1c,支持板2a〜2
d,支持棒3a〜3d,歯車4a〜4c及びゴムチューブ9をフタ8
a,フランジ13及びシース21で覆い、内部に低粘度液体20
を充てんして円筒振動子1a〜1cの外周面から直接放射す
る音波の減衰を防止する。
A rubber tube 9 is provided inside the cylindrical vibrator over a span whose distance can be adjusted.
20 (for example, high-viscosity silicone oil), and one end of the rubber tube 9 is connected to a pipe 13 and a flange 13 through an oil hole.
The oil chamber 22 is connected. With the high viscosity liquid in the oil chamber, the piston 15 moves up and down in the oil chamber by the rotation of the shaft 5b, thereby increasing or decreasing the amount of liquid in the rubber tube and changing the outer diameter of the rubber tube. Cylindrical oscillators 1a-1c, support plates 2a-2
d, support rods 3a to 3d, gears 4a to 4c and rubber tube 9
a, covered with flange 13 and sheath 21
To prevent attenuation of sound waves directly radiated from the outer peripheral surfaces of the cylindrical vibrators 1a to 1c.

シャフト5aを回し、円筒振動子の間隔を最大にすると
第2図(a)のような配置関係になり、このとき、円筒
振動子内部の液柱共振周波数はほぼ個々の円筒振動子内
部の液柱共振周波数(r1)に等しく、その値はr1
Co/2(l1+2αai)となり、選択度のパラメーター
である帯域幅(Δ1)は第3図の曲線(a)のように
なる。
When the shaft 5a is rotated to maximize the interval between the cylindrical vibrators, the arrangement relationship becomes as shown in FIG. 2 (a). At this time, the liquid column resonance frequency inside the cylindrical vibrator is almost equal to the liquid inside the individual cylindrical vibrator. It is equal to the column resonance frequency (r 1 ) and its value is r 1
Co / 2 (l 1 + 2αa i ), and the bandwidth (Δ 1 ) as a parameter of the selectivity is as shown by the curve (a) in FIG.

円筒振動子の間隔だけを最小にすると第2図(b)の
ような配置関係になり、このときの液柱共振周波数はほ
ぼ3個分の円筒振動子内部の液柱共振周波数(r3
に等しく、その値はr3Co/2(l3+2αai)とな
り、帯域幅(Δ3)は第3図の曲線(b)のように狭
くなる。曲線(b)のように帯域幅(Δ3)が狭くな
るのは共振周波数の低下により音響放射抵抗が低下した
ためと、液柱共振の径方向モードと軸方向モードの干渉
が減少し、液柱共振系の損失が減少したためである。
If only the interval between the cylindrical vibrators is minimized, the arrangement relationship becomes as shown in FIG. 2 (b), and the liquid column resonance frequency at this time is the liquid column resonance frequency (r 3 ) of the inside of the cylindrical vibrator for approximately three liquid columns.
And its value is r 3 Co / 2 (l 3 + 2αa i ), and the bandwidth (Δ 3 ) becomes narrow as shown by the curve (b) in FIG. The reason why the bandwidth (Δ 3 ) is narrowed as shown by the curve (b) is that the acoustic radiation resistance is lowered due to the decrease in the resonance frequency, and the interference between the radial mode and the axial mode of the liquid column resonance is reduced. This is because the loss of the resonance system has decreased.

ここでシャフト5bを回転し、ピストン15によって油室
22の高粘度液体19をゴムチューブ9に送出すると、第2
図(c)のような配置関係になり円筒振動子内部の高粘
度液体が増加し、液柱共振系の損失が増大する結果、帯
域幅(Δ3′)は第3図の曲線(c)のように広くな
る。
Here, the shaft 5b is rotated, and the oil chamber is
When the high viscosity liquid 19 of 22 is sent out to the rubber tube 9, the second
As a result, the high viscosity liquid inside the cylindrical vibrator increases and the loss of the liquid column resonance system increases. As a result, the bandwidth (Δ 3 ′) is changed to the curve (c) in FIG. It becomes wide like.

本実施案は円筒振動子を3個用いた場合を述べたが、
間隔調整機構を工夫することにより、個数を増すことが
できる。
Although the present embodiment has described the case where three cylindrical vibrators are used,
By devising the interval adjusting mechanism, the number can be increased.

また、本実施案では同一寸法の振動子を用いた場合を
述べたが、液柱共振系を構成され得る範囲で、寸法が異
っても良い。
Further, in the present embodiment, the case where the transducers having the same dimensions are used has been described, but the dimensions may be different as long as a liquid column resonance system can be formed.

更に間隔及び液量を調整するシャフトを送受波器の両
端面に引き出し、手動で回転させる構造で説明したが、
この両端にトルクモーターを取り付け、船上にて遠隔操
作にすることも可能である。
Further, the shaft for adjusting the interval and the liquid amount is drawn out to both end surfaces of the transducer, and the structure is described in which the shaft is manually rotated.
It is also possible to attach torque motors to both ends and control them remotely on board.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、円筒振動子と、振動子
配列の間隔調整機構と、円筒振動子内部の高粘度液体の
液量調整機構とで構成することにより、共振周波数と選
択度を調整できる、いわゆる同調型の効率の良い送受波
器にできる効果がある。
As described above, the present invention adjusts the resonance frequency and the selectivity by including the cylindrical vibrator, the gap adjusting mechanism of the vibrator array, and the liquid amount adjusting mechanism of the high-viscosity liquid inside the cylindrical vibrator. There is an effect that a so-called tuning type efficient transducer can be realized.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す図で、(a)は部分断
面斜視図、(b)は縦断面図である。第2図は本発明の
実施例における調整時の配置状態図である。第3図は本
発明の実施例における調整時の特性曲線図を示す図。 第4図は従来の機械共振型送受波器を示す図で、(a)
は縦断面図、(b)は振動子斜視図、及び(c)は特性
曲線図である。第5図は従来の水柱共振型送受波器を示
す図で、(a)は縦断面図、及び(b)は特性曲線図で
ある。 1a,1b,1c,31a,31b,31c,41……円筒振動子、2a,2b,2c,2d
……支持板、3a,3b,3c,3d……支持棒、4a,4b,4c……歯
車、5a,5b,34……シャフト、6a,6b……リチェイナー、7
a,7b……Oリング、8a,8b,33a,33b……フタ、9……ゴ
ムチューブ、11a,11b,11c……バンド、12……パイプ、1
3……フランジ、14……油孔、15……ピストン、17……
充てん材、18,36,43……ケーブル、19……高粘度液体、
20……低粘度液体、21,35,42……シース、32a,32b,32c,
32d……緩衝材。
1A and 1B are views showing an embodiment of the present invention, in which FIG. 1A is a partial sectional perspective view, and FIG. 1B is a longitudinal sectional view. FIG. 2 is an arrangement state diagram at the time of adjustment in the embodiment of the present invention. FIG. 3 is a diagram showing a characteristic curve at the time of adjustment in the embodiment of the present invention. FIG. 4 shows a conventional mechanical resonance type transducer.
Is a longitudinal sectional view, (b) is a perspective view of a vibrator, and (c) is a characteristic curve diagram. FIG. 5 is a view showing a conventional water column resonance type transducer, in which (a) is a longitudinal sectional view and (b) is a characteristic curve. 1a, 1b, 1c, 31a, 31b, 31c, 41 ... Cylindrical vibrator, 2a, 2b, 2c, 2d
…… Support plate, 3a, 3b, 3c, 3d …… Support rod, 4a, 4b, 4c …… Gear, 5a, 5b, 34 …… Shaft, 6a, 6b …… Rechainer, 7
a, 7b O-ring, 8a, 8b, 33a, 33b Lid, 9 Rubber tube, 11a, 11b, 11c Band, 12 Pipe, 1
3 …… Flange, 14 …… Oil hole, 15 …… Piston, 17 ……
Filling material, 18,36,43 …… Cable, 19 …… High viscosity liquid,
20 …… Low viscosity liquid, 21,35,42 …… Sheath, 32a, 32b, 32c,
32d …… a cushioning material.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数個の円筒振動子と、これらの振動子を
同軸上に積層配列する支持部材と、これらの振動子の配
列間隔を調整する間隔調整機構と、これらの振動子の内
面に配置されかつ内部に高粘度液体を封入したゴムチュ
ーブと、ゴムチューブ内の高粘度液体を加減量する液量
調整機構とから構成されることを特徴とする同調型送受
波器。
1. A plurality of cylindrical vibrators, a support member for arranging these vibrators coaxially, a spacing adjusting mechanism for adjusting the spacing between the vibrators, and an inner surface of these vibrators. A tunable transducer comprising a rubber tube arranged and filled with a high-viscosity liquid therein, and a liquid amount adjusting mechanism for adjusting the amount of the high-viscosity liquid in the rubber tube.
JP12563389A 1989-05-18 1989-05-18 Tuned transducer Expired - Lifetime JP2754725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12563389A JP2754725B2 (en) 1989-05-18 1989-05-18 Tuned transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12563389A JP2754725B2 (en) 1989-05-18 1989-05-18 Tuned transducer

Publications (2)

Publication Number Publication Date
JPH02305094A JPH02305094A (en) 1990-12-18
JP2754725B2 true JP2754725B2 (en) 1998-05-20

Family

ID=14914873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12563389A Expired - Lifetime JP2754725B2 (en) 1989-05-18 1989-05-18 Tuned transducer

Country Status (1)

Country Link
JP (1) JP2754725B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0000703D0 (en) * 2000-01-14 2000-03-08 Thomson Marconi Sonar Limited Frequency tunable projector

Also Published As

Publication number Publication date
JPH02305094A (en) 1990-12-18

Similar Documents

Publication Publication Date Title
US5184332A (en) Multiport underwater sound transducer
US5172344A (en) Deep submergence transducer
US6085862A (en) Drive assembly for acoustic sources
CA1232672A (en) Broadband radial vibrator transducer with multiple resonant frequencies
US4875546A (en) Loudspeaker with acoustic band-pass filter
US4333028A (en) Damped acoustic transducers with piezoelectric drivers
US4366406A (en) Ultrasonic transducer for single frequency applications
US4031418A (en) Low frequency acoustical piezo-electric transducer
US4068209A (en) Electroacoustic transducer for deep submersion
US4297538A (en) Resonant electroacoustic transducer with increased band width response
EP3425627B1 (en) An underwater flextensional transducer
GB2063006A (en) Directional transducer
JP2754725B2 (en) Tuned transducer
US4855964A (en) Vented-pipe projector
US4890687A (en) Borehole acoustic transmitter
WO1996031871A1 (en) Impedance-matching composite material for an ultrasonic phased array and a method of making
US3309653A (en) Ceramic transducer assembly
JP3323366B2 (en) Underwater transducer
US5229980A (en) Broadband electroacoustic transducer
EP0039986B1 (en) An acoustic transducer system
JPH03113386A (en) Water column resonance type transmitter receiver
JP2776374B2 (en) Variable resonant frequency transducer
JPS5851478B2 (en) directional receiver
JP3006509B2 (en) Water column resonance type transducer
JP3183232B2 (en) Cylindrical transmitter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090306

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100306

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100306