JP2753367B2 - Full shroud impeller - Google Patents

Full shroud impeller

Info

Publication number
JP2753367B2
JP2753367B2 JP2060972A JP6097290A JP2753367B2 JP 2753367 B2 JP2753367 B2 JP 2753367B2 JP 2060972 A JP2060972 A JP 2060972A JP 6097290 A JP6097290 A JP 6097290A JP 2753367 B2 JP2753367 B2 JP 2753367B2
Authority
JP
Japan
Prior art keywords
blade
impeller
core plate
stress
full
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2060972A
Other languages
Japanese (ja)
Other versions
JPH03264701A (en
Inventor
顕臣 河野
荘司 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2060972A priority Critical patent/JP2753367B2/en
Publication of JPH03264701A publication Critical patent/JPH03264701A/en
Application granted granted Critical
Publication of JP2753367B2 publication Critical patent/JP2753367B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は遠心圧縮機、例えば一軸多段遠心圧縮機、膨
張タービン、例えば液化ヘリウム冷凍機用膨張タービン
に用いるに好適なフルシユラウドインペラの製法に関す
る。
The present invention relates to a method of manufacturing a centrifugal compressor, for example, a single-shaft multi-stage centrifugal compressor, an expansion turbine, for example, a full-shoulder impeller suitable for use in an expansion turbine for a liquefied helium refrigerator. About.

〔従来の技術〕[Conventional technology]

従来のフルシユラウドは、羽根を上半部と下半部に分
割するのに、特に限定した箇所はなく、適当に分割され
た部材を拡散接合して製作していた。また、側板側及び
心板側の両方から羽根部を削り出すことは機械加工上、
精度及びコストにも問題があり、側板あるいは心板のど
ちらか片側から羽根を切り出して、いわゆるT型継手の
例もある(15th Turbomachinory Symposium,1986年11月
(第15回ターボマミーナリーシンポジウム))。
In the conventional full shroud, the blade is divided into an upper half portion and a lower half portion, and there is no particular limitation. The divided members are formed by diffusion bonding. In addition, shaving the blades from both the side plate side and the core plate side is
There is also a problem in accuracy and cost, and there is an example of a so-called T-shaped joint in which blades are cut out from either side plate or core plate (15th Turbomachinory Symposium, November 1986 (15th Turbo Machinery Symposium)) .

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来技術は、適正な分割位置について配慮がされてお
らず、強度信頼性に問題があつた。本発明は、拡散接合
部の強度信頼性を向上したフルシユラウドインペラを提
供することにある。
In the prior art, no consideration was given to an appropriate division position, and there was a problem in strength reliability. An object of the present invention is to provide a full shroud impeller with improved strength reliability of a diffusion joint.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、羽根分割位置を、インペ
ラ出口部羽根の背側及び腹側ともに0に近い遠心応力と
なる箇所で分割し、拡散接合したものである。すなわ
ち、有限要素法(FEM)による応力解析結果及び実験に
より、心板部内面から羽根の高さ方向に羽根高さの40%
〜60%の範囲に相当する箇所で分割すると良いことが明
らかとなつた。
In order to achieve the above object, the blade dividing position is divided at a position where centrifugal stress is close to 0 on both the back side and the belly side of the impeller outlet blade, and diffusion bonding is performed. In other words, from the results of stress analysis by the finite element method (FEM) and experiments, 40% of the blade height in the height direction of the blade from the inner surface of the core plate
It became clear that it would be better to split at a location corresponding to the range of ~ 60%.

〔作用〕[Action]

インペラの稼動中(回転中)、インペラに働く遠心応
力を有限要素法を用いて計算解析すると、インペラ羽根
部に大きな引張及び圧縮の遠心応力がかかることがわか
る。また、羽根部の側板側と心板側で及び羽根の背側と
腹側である応力分布があり、極大値及び極小値を示す箇
所があることも分かる。したがつて、羽根を分割して拡
散接合によりフルシユラウドインペラを製作するには、
遠心応力が小さい箇所で分割してやれば良いことにな
る。そこで種々、計算による解析と実験による応力測定
で検討した結果、インペラ出口側の羽根部の背側及び腹
側に働く遠心応力が他の箇所に比べて大きいことが分か
つた。したがつて、羽根部の背側及び腹側に働く遠心応
力がともに0に近い値となる箇所を分割箇所とすれば、
強度信頼性の高いインペラとなる。一方、最大応力を示
す箇所で分割し、接合すると、強度信頼性の点からは、
かなり不利となる。以上のことを考慮して分割位置を検
討した結果、心板部内面より高さ方向に羽根高さの40%
〜60%の範囲内の箇所で分割してやれば強度上問題ない
という結論に達した。
When the centrifugal stress acting on the impeller is calculated and analyzed using the finite element method while the impeller is operating (rotating), it is found that a large tensile and compressive centrifugal stress is applied to the impeller blade. Further, it can be seen that there are stress distributions on the side plate side and the core plate side of the blade portion and on the dorsal side and the ventral side of the blade, and there are places where the maximum value and the minimum value are present. Therefore, in order to fabricate a full shroud impeller by splitting the blades and diffusion bonding,
It suffices to divide at a place where the centrifugal stress is small. Therefore, as a result of various analysis by calculation and stress measurement by experiment, it was found that the centrifugal stress acting on the back side and the abdomen side of the blade part at the impeller outlet side is larger than other parts. Therefore, if the centrifugal stress acting on the dorsal side and the ventral side of the wing portion is a value close to 0, the divided portion is defined as
It becomes an impeller with high strength reliability. On the other hand, when splitting and joining at the location showing the maximum stress, from the point of strength reliability,
Quite a disadvantage. In consideration of the above, the division position was examined, and as a result, 40% of the blade height in the height direction from the inner surface of the core plate
It was concluded that there would be no problem in strength if it was divided at a point within the range of ~ 60%.

〔実施例〕〔Example〕

第1図に、各羽根の上半部1を側板部2と一体成形し
た金属部材と、各羽根の下半部3を心板部4と一体成形
した金属部材とを夫々分割して製作し、前記羽根の上半
部1と羽根の下半部3とを突き合わせて拡散接合したフ
ルシユラウドインペラ5を示す。インペラの直径400m
m、羽根6の枚数13枚、羽根6の幅3mm、側板部内面7と
心板部内面8とのなす角度18°の形状では、分割箇所9
は心板部内面から5.5mm離れた箇所とした。インペラ出
口側の羽根高さは10mmである。
In FIG. 1, a metal member in which the upper half 1 of each blade is integrally formed with the side plate portion 2 and a metal member in which the lower half 3 of each blade is integrally formed with the core plate portion 4 are separately manufactured. A full shroud impeller 5 in which the upper half 1 of the blade and the lower half 3 of the blade are abutted and diffusion bonded is shown. 400m impeller diameter
m, the number of the blades 13, the width of the blades 3 3 mm, and the angle of 18 ° between the side plate inner surface 7 and the core plate inner surface 8,
Is 5.5 mm away from the inner surface of the core plate. The blade height at the impeller outlet side is 10 mm.

第2図は、14000rpmで回転させた時のインペラ出口部
10の羽根における遠心応力分布を示す。羽根背側11及び
羽根腹側12ともに、応力は極大値及び極小値をもつてい
る。そして、羽根高さの心板側から約5.5mmの位置にお
いて、応力値が0となっている。したがつて、ここでは
同図に示すように、心板部内面より5.5mm離れた箇所で
分割、すなわち接合すればよい。しかし、実用上、他の
制限もあるので、心板部内面より4〜6mmの範囲内で分
割しても良く強度上は問題ない。このようにして製作し
た拡散接合インペラを、過速度試験(回転数14000rpm、
周速293m/s)したところ、試験後の心・側板外径の残留
伸びは0.025%以下で満足な結果であつた。また、実験
後の磁気探傷検査でも接合部には異常は認められなかつ
た。
Fig. 2 shows the impeller outlet when rotating at 14000rpm.
10 shows centrifugal stress distribution in ten blades. The stress has a maximum value and a minimum value on both the blade back side 11 and the blade ventral side 12. The stress value is 0 at a position about 5.5 mm from the core plate side of the blade height. Therefore, here, as shown in the same figure, it suffices to divide, that is, join at a position 5.5 mm away from the inner surface of the core plate. However, since there are other restrictions in practical use, it may be divided within a range of 4 to 6 mm from the inner surface of the core plate portion, and there is no problem in strength. The diffusion bonding impeller manufactured in this way was subjected to an overspeed test (rotation speed 14000 rpm,
At a peripheral speed of 293 m / s), the residual elongation of the core / side plate outer diameter after the test was 0.025% or less, which was a satisfactory result. Further, no abnormalities were found in the joints in the magnetic flaw inspection after the experiment.

インペラの形状,寸法が変れば、分割すべき箇所も変
わる。例えば、直径550mm、羽根枚数13枚、羽根幅3mm、
入口側羽根高さ16mm、出口側羽根高さ6mm、(側板角度
4°)のインペラでは、出口部羽根の背側及び腹側に働
く遠心応力が0に近い値となる箇所は、実験及び計算に
よる解析より心板側より3mm離れたところで、その箇所
を分割すると強度信頼性の高い拡散接合インペラとな
る。
If the shape and dimensions of the impeller change, the location to be divided also changes. For example, 550mm in diameter, 13 blades, 3mm blade width,
For the impeller with inlet blade height of 16mm, outlet blade height of 6mm and (side plate angle of 4 °), the locations where the centrifugal stress acting on the back and ventral sides of the outlet blade are close to 0 are determined by experiments and calculations. According to the analysis based on the above, dividing the portion at a distance of 3 mm from the core plate side results in a diffusion bonding impeller with high reliability.

〔発明の効果〕〔The invention's effect〕

本発明によれば、強度信頼性向上が図れる。例えば実
験例についてみると分割箇所を最大応力が働くところに
設定したインペラでは、稼動中(回転中)最大500MPaも
の引張りの遠心応力を羽根の背側に、また腹側には500M
Paの圧縮応力を受けることになる。一方、本発明におい
ては、50MPa以下の遠心応力しか接合部には働らかな
い。
According to the present invention, strength reliability can be improved. For example, in the experimental example, in the impeller where the splitting part is set to the place where the maximum stress acts, the centrifugal stress of up to 500MPa during operation (during rotation) is applied to the back side of the blade and 500M to the ventral side.
It will be subjected to compressive stress of Pa. On the other hand, in the present invention, only the centrifugal stress of 50 MPa or less acts on the joint.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一例によるフルシユラウド拡散接合イ
ンペラを説明する図、第2図は計算で求めたインペラ回
転中に出口側羽根部に働く遠心応力分布特性図である。 1…羽根の上半部、2…側板部、3…羽根の下半部、4
…心板部、5…フルシユラウドインペラ、6…羽根、7
…側板部内面、8…心板部内面、9…分割箇所、10…イ
ンペラ出口部、11…羽根背側、12…羽根腹側。
FIG. 1 is a diagram for explaining a full-shroud diffusion bonding impeller according to an example of the present invention, and FIG. 2 is a characteristic diagram of a centrifugal stress distribution acting on an outlet blade during rotation of the impeller obtained by calculation. DESCRIPTION OF SYMBOLS 1 ... Upper half of a blade, 2 ... Side plate part, 3 ... Lower half of a blade, 4
… Core plate part, 5… Furshroud impeller, 6… Blade, 7
... inner surface of side plate portion, 8 ... inner surface of core plate portion, 9 ... split portion, 10 ... impeller outlet portion, 11 ... blade back side, 12 ... blade ventral side.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】心板と側板との間に流体入口側と流体出口
側とで高さの異なる羽根が形成されたフルシュラウドイ
ンペラにおいて、前記羽根は前記側板に一体成形された
前記羽根の上半部と、前記心板に一体形成された前記羽
根の下半部との突き合わせ面を拡散接合することにより
形成されており、前記突き合わせ面は前記フルシュラウ
ドインペラの回転軸に対して垂直な直線上であって、前
記心板から前記突き合わせ面までの高さが前記羽根の流
体出口側高さの40%〜60%の範囲内であることを特徴と
するフルシュラウドインペラ。
1. A full shroud impeller in which blades having different heights on a fluid inlet side and a fluid outlet side are formed between a core plate and a side plate, wherein the blade is provided on the blade integrally formed on the side plate. The butting surface of the half part and the lower half part of the blade integrally formed on the core plate are formed by diffusion bonding, and the butting surface is a straight line perpendicular to the rotation axis of the full shroud impeller. A full shroud impeller, wherein a height from the core plate to the butting surface is within a range of 40% to 60% of a height of the blade on the fluid outlet side.
JP2060972A 1990-03-14 1990-03-14 Full shroud impeller Expired - Lifetime JP2753367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2060972A JP2753367B2 (en) 1990-03-14 1990-03-14 Full shroud impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2060972A JP2753367B2 (en) 1990-03-14 1990-03-14 Full shroud impeller

Publications (2)

Publication Number Publication Date
JPH03264701A JPH03264701A (en) 1991-11-26
JP2753367B2 true JP2753367B2 (en) 1998-05-20

Family

ID=13157848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2060972A Expired - Lifetime JP2753367B2 (en) 1990-03-14 1990-03-14 Full shroud impeller

Country Status (1)

Country Link
JP (1) JP2753367B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146962A (en) * 2003-11-14 2005-06-09 Hitachi Industries Co Ltd Centrifugal impeller and its manufacturing method
US8141201B2 (en) 2008-02-14 2012-03-27 Panasonic Corporation Electric fan

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326833A (en) * 1980-03-19 1982-04-27 General Electric Company Method and replacement member for repairing a gas turbine engine blade member
JPS601998U (en) * 1983-06-17 1985-01-09 三菱重工業株式会社 centrifugal fan impeller

Also Published As

Publication number Publication date
JPH03264701A (en) 1991-11-26

Similar Documents

Publication Publication Date Title
Wadia et al. Inner workings of aerodynamic sweep
JP4155646B2 (en) Method for joining a base of an airfoil and a disk and an assembly formed by this method
JP4102806B2 (en) Hollow fan blades for gas turbine engines
US9297259B2 (en) Compressor blade
EP1918521A2 (en) Compressor stator vane with variable pitch having an extended fillet
US10443613B2 (en) Hollow fan blade with structural ribs
JPH0567763B2 (en)
CN103270310A (en) Centrifugal compressor
US10145382B2 (en) Method and system for separable blade platform retention clip
CA1104498A (en) Impeller element of a radial inflow gas turbine wheel
JP2753367B2 (en) Full shroud impeller
US7387493B2 (en) Impeller with widened blades
US10669864B2 (en) Unshrouded turbomachine impeller with improved rigidity
Wittrock et al. Design of a transonic high flow coefficient centrifugal compressor by using advanced design methods
EP3108120A2 (en) Gas turbine engine airfoil
Wallace et al. A computer-aided design procedure for radial and mixed flow compressors
US3304055A (en) Rotor
Troha et al. Composite Inlays Increase Flutter Resistance of Turbine Engine Fan Blades
Ashihara et al. Optimization of microturbine aerodynamics using CFD, inverse design and FEM structural analysis: 1st report—compressor design
US4305698A (en) Radial-flow turbine wheel
EP3108111A1 (en) Gas turbine engine airfoil
JPS63124806A (en) Radial flow turbo machine
Sarkar Performance prediction of a mixed flow impeller
JPH04203396A (en) Diffused and connecting vane wheel
EP3438415A1 (en) Method of making integrally bladed rotor by means of friction welding