JP2751851B2 - Method for producing fluorinated amorphous carbon film - Google Patents

Method for producing fluorinated amorphous carbon film

Info

Publication number
JP2751851B2
JP2751851B2 JP7021429A JP2142995A JP2751851B2 JP 2751851 B2 JP2751851 B2 JP 2751851B2 JP 7021429 A JP7021429 A JP 7021429A JP 2142995 A JP2142995 A JP 2142995A JP 2751851 B2 JP2751851 B2 JP 2751851B2
Authority
JP
Japan
Prior art keywords
film
amorphous carbon
plasma
carbon film
fluorinated amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7021429A
Other languages
Japanese (ja)
Other versions
JPH08222557A (en
Inventor
和彦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7021429A priority Critical patent/JP2751851B2/en
Priority to CA002157257A priority patent/CA2157257C/en
Priority to KR1019950029566A priority patent/KR100188573B1/en
Priority to EP95114253A priority patent/EP0701283A3/en
Priority to US08/526,902 priority patent/US5698901A/en
Publication of JPH08222557A publication Critical patent/JPH08222557A/en
Priority to US08/782,573 priority patent/US6033979A/en
Application granted granted Critical
Publication of JP2751851B2 publication Critical patent/JP2751851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Plasma Technology (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体装置、及び高密度
実装基板等に絶縁材料として用いられるフッ素化非晶質
炭素膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fluorinated amorphous carbon film used as an insulating material for a semiconductor device, a high-density mounting substrate and the like.

【0002】[0002]

【従来の技術】今後の半導体装置、及びその実装基板等
の配線幅、配線間隔の減少によって、配線浮遊容量、及
び配線抵抗が増大するようになる。それにともなう配線
遅延の増大から、半導体装置の高速動作に障害が生じる
ようになってくる。一般に配線遅延は、絶縁材料の比誘
電率の平方根に比例するので、絶縁材料に比誘電率の低
いものを用いることによって配線遅延を減少させること
が可能になり、多層配線層における絶縁材料の見直しが
行われている。従来から半導体装置の層間絶縁膜には主
としてSiO2 が用いられており、成膜速度を向上させ
るために高密度プラズマを用い、さらに配線パターンへ
の埋め込み特性向上のために、基板にバイアス電圧を印
加して製造する方法が確立されている。しかしこの方法
で製造されるSiO2 膜の比誘電率は約4程度であり、
比誘電率がそれ以下である膜の堆積方法の開発が望まれ
ている。そこで次世代の低誘電率層間絶縁材料として、
比誘電率が3以下になるフッ素化非晶質炭素材料が有力
視されている。このフッ素化非晶質炭素材料の製造方法
としては、従来からプラズマによる化学気相成膜法が用
いられており、主に平行平板型低密度プラズマを用いた
製造方法が用いられている。第55回応用物理学会学術
講演会予稿集No.3.21a−G−11(1994年
9月19日)にはフッ素プラズマ処理によるポリイミド
樹脂の含フッ素化により比誘電率を3以下にした例が記
載されている。
2. Description of the Related Art As the wiring width and wiring interval of a semiconductor device and its mounting substrate are reduced in the future, the wiring stray capacitance and the wiring resistance will increase. As a result, an increase in wiring delay causes a problem in high-speed operation of the semiconductor device. In general, the wiring delay is proportional to the square root of the dielectric constant of the insulating material, so it is possible to reduce the wiring delay by using an insulating material having a low relative dielectric constant. Has been done. Conventionally, SiO 2 has been mainly used for an interlayer insulating film of a semiconductor device. A high-density plasma is used to improve a film forming rate, and a bias voltage is applied to a substrate to improve a filling characteristic in a wiring pattern. A method of applying and manufacturing has been established. However, the relative dielectric constant of the SiO 2 film manufactured by this method is about 4, and
It is desired to develop a method for depositing a film having a relative dielectric constant of less than that. Therefore, as a next-generation low dielectric constant interlayer insulating material,
Fluorinated amorphous carbon materials having a relative dielectric constant of 3 or less are considered promising. As a method for producing the fluorinated amorphous carbon material, a chemical vapor deposition method using plasma has conventionally been used, and a production method using a parallel plate type low density plasma has been mainly used. Proceedings of the 55th Annual Conference of the Japan Society of Applied Physics No. 3.21a-G-11 (September 19, 1994) describes an example in which the relative permittivity is reduced to 3 or less by fluorinating a polyimide resin by a fluorine plasma treatment.

【0003】[0003]

【発明が解決しようとする課題】配線間の層間絶縁材料
には、比誘電率ができるだけ低く、パターンの埋め込み
特性が良く、さらに単位時間当たりの製造量を増大させ
るために、堆積速度が少なくとも0.1μm /min程
度はあることが要求される。現在使用されているSiO
2 層間絶縁膜は、高密度プラズマを用いて、しかも基板
にバイアス電力を印加する事により、上記の絶縁材料に
要求される特性のうち、パターンの埋め込み特性、及び
堆積速度に関しては要求を満たす膜が得られている。し
かし比誘電率は約4程度であり、それ以下に低減させる
ことは困難である。そこで別の絶縁材料として比誘電率
が3以下になるフッ素化非晶質炭素膜を使用した場合、
比誘電率的には低い値を示すが、成膜速度及び埋め込み
平坦性に関してはSiO2 膜より劣っていた。
The interlayer insulating material between wirings has a dielectric constant as low as possible, has good pattern embedding characteristics, and has a deposition rate of at least 0 in order to increase the production volume per unit time. .1 μm / min is required. SiO currently used
(2) The inter-layer insulating film is a film that satisfies the requirements of the above-described insulating materials for pattern embedding characteristics and deposition rate by using high-density plasma and applying a bias power to the substrate. Has been obtained. However, the relative permittivity is about 4 and it is difficult to reduce it below that value. Therefore, when a fluorinated amorphous carbon film having a relative dielectric constant of 3 or less is used as another insulating material,
Although the value of the relative dielectric constant is low, the film formation rate and the buried flatness were inferior to those of the SiO 2 film.

【0004】従来のフッ素化非晶質炭素膜の成膜速度が
遅く、埋め込み平坦性が悪いのは、低密度のプラズマに
よって成膜が行われるため、プラズマによる原料モノマ
ーの分解速度が遅く、従って成膜に寄与するフッ素化炭
素ラジカル密度が小さいためである。そのため膜厚1μ
m の膜を堆積させるのに30分以上の時間を要し、実用
化のためには成膜速度を少なくとも倍以上に向上させる
必要がある。また従来の平行平板型の低密度プラズマ源
では、原料のフッ化炭素ガスのみでは非晶質炭素膜を堆
積させることはできず、成膜時に水素ガス等を添加して
初めて非晶質炭素膜が堆積される。すると添加した水素
は炭素原子と結合して膜中に取り込まれ、膜の架橋度を
低下させるので耐熱性の劣化が生じる。したがって水素
添加無しに成膜を行う新たな技術の開発が必要とされて
いる。また非晶質炭素膜の膜構造はイオン照射により大
きく変化するが、従来の平行平板型の場合、基板に印加
される自己バイアスのために照射されるイオンのエネル
ギーが大きく、非晶質炭素膜の堆積に最適なエネルギー
値にイオンエネルギーを制御することが原理的に困難で
あり、埋め込み平坦性の悪化をもたらしていた。
The film formation rate of the conventional fluorinated amorphous carbon film is low and the buried flatness is poor because the film is formed by low-density plasma, and the decomposition rate of the raw material monomer by the plasma is low. This is because the fluorinated carbon radical density that contributes to film formation is small. Therefore, film thickness 1μ
It takes 30 minutes or more to deposit the m 2 film, and for practical use, it is necessary to increase the film formation rate at least twice or more. In a conventional parallel plate type low-density plasma source, an amorphous carbon film cannot be deposited only with a raw material such as a fluorocarbon gas. Is deposited. Then, the added hydrogen bonds with carbon atoms and is taken into the film, and the degree of crosslinking of the film is reduced, so that heat resistance is deteriorated. Therefore, development of a new technique for forming a film without adding hydrogen is required. Although the film structure of the amorphous carbon film changes greatly due to ion irradiation, in the case of the conventional parallel plate type, the energy of ions irradiated due to self-bias applied to the substrate is large, and the amorphous carbon film In principle, it is difficult to control the ion energy to the optimum energy value for the deposition of GaN, and the burying flatness is deteriorated.

【0005】本発明の課題は平行平板型に変えて、別の
プラズマ源を用いることによって、これらの問題点を解
決し、高成膜速度で良好な埋め込み特性を示す、低誘電
率のフッ素化非晶質炭素膜の製造方法を提供する事にあ
る。
An object of the present invention is to solve these problems by using a different plasma source instead of the parallel plate type, and to obtain a low dielectric constant fluorinated compound exhibiting good filling characteristics at a high film forming rate. An object of the present invention is to provide a method for manufacturing an amorphous carbon film.

【0006】[0006]

【課題を解決するための手段】本発明では上記課題を解
決するために、原料にCx y (x=1−4,y=4−
8)ガスだけを用い、膜を堆積させる基板がプラズマ発
生部外に存在する高密度プラズマを用いてフッ素化非晶
質炭素膜の製造を行う。この様な高密度プラズマ源を用
いた場合、成膜に寄与するラジカル密度を高くすること
ができるので、これにより成膜速度を上昇させることが
できる。さらに、基板をプラズマ発生部外に存在させる
ため、基板に照射されるイオンエネルギーを小さく抑え
ることができ、水素源の添加無しにフッ素化非晶質炭素
膜を堆積させることが可能となる。さらに堆積させる基
板に高周波電力を印加し、基板の電位を制御し最適化す
ることにより、イオンのエネルギーを変化させ、耐熱
性、膜の平坦性等の膜質を制御する。
In the present invention, in order to solve the above-mentioned problems, C x F y (x = 1-4, y = 4-
8) A fluorinated amorphous carbon film is manufactured using only gas and high-density plasma in which the substrate on which the film is deposited exists outside the plasma generating portion. When such a high-density plasma source is used, the radical density contributing to the film formation can be increased, so that the film formation speed can be increased. Further, since the substrate is provided outside the plasma generation unit, the ion energy applied to the substrate can be suppressed to be small, and the fluorinated amorphous carbon film can be deposited without adding a hydrogen source. Further, high-frequency power is applied to the substrate to be deposited to control and optimize the potential of the substrate, thereby changing ion energy and controlling film quality such as heat resistance and film flatness.

【0007】[0007]

【作用】本発明で製造するフッ素化非晶質炭素膜は、C
4 、C2 6 、C3 8 、C4 8 等のフッ素化炭素
系のモノマー分子をプラズマで励起させ、ラジカル分
子、イオンなどを基板上で反応させて形成される。一般
にプラズマによる膜の堆積現象は、堆積性のラジカル等
による堆積反応と、イオンあるいはエッチング性のラジ
カルによるエッチング反応の組み合わせで起こっている
と考えられている。プラズマ源に高密度プラズマを用い
ると、平行平板型に比べてモノマー分子の解離速度が早
くなるため、堆積性のフッ化炭素ラジカル密度が高くな
り、堆積反応が促進されて成膜の高速化を行うことがで
きる。
The fluorinated amorphous carbon film produced according to the present invention has C
It is formed by exciting fluorinated carbon-based monomer molecules such as F 4 , C 2 F 6 , C 3 F 8 and C 4 F 8 with plasma, and reacting radical molecules, ions and the like on the substrate. In general, it is considered that the deposition phenomenon of a film by plasma is caused by a combination of a deposition reaction by a deposition radical or the like and an etching reaction by ions or an etching radical. When a high-density plasma is used as the plasma source, the dissociation rate of the monomer molecules is faster than in the parallel plate type, so that the density of the depositable fluorocarbon radicals is increased, and the deposition reaction is accelerated to increase the film deposition speed. It can be carried out.

【0008】また従来の平行平板型では、基板に印加さ
れる自己バイアス電圧によりイオンが加速されるため、
イオン照射によるエッチング反応が促進される。従って
CF系のガスのみでプラズマを発生させた場合、エッチ
ング反応速度が堆積反応速度よりも高くなり、フッ素化
非晶質炭素膜の堆積は見られない。この場合に膜を堆積
させるには、エッチング物質と考えられているフッ素原
子を、水素ガス等を添加して除去しなければならない。
しかしヘリコン波やマイクロ波放電等の高密度プラズマ
を用いて、しかもプラズマ発生部と成膜部を別にしたプ
ラズマ源では、イオン密度が多いにも関わらずイオンエ
ネルギーを小さく抑えることができ、これらの高密度プ
ラズマ源ではエッチング反応が抑制され、水素ガスの添
加無しに成膜を行うことが可能となり、従来の平行平板
型で膜中に取り込まれ、膜の耐熱性を劣化させていた水
素原子を除外することができる。さらに試料に高周波電
力を印加して試料の電位を制御することにより、照射イ
オンエネルギーを最適化して、膜の耐熱性、平坦性等の
向上を図る。
In the conventional parallel plate type, the ions are accelerated by the self-bias voltage applied to the substrate.
The etching reaction by ion irradiation is promoted. Therefore, when plasma is generated only with CF-based gas, the etching reaction rate becomes higher than the deposition reaction rate, and no deposition of the fluorinated amorphous carbon film is observed. In this case, in order to deposit a film, fluorine atoms considered as an etching substance must be removed by adding hydrogen gas or the like.
However, in a plasma source that uses high-density plasma such as helicon waves or microwave discharge, and separates a plasma generation unit and a film formation unit, the ion energy can be kept small despite the high ion density. With a high-density plasma source, the etching reaction is suppressed and it is possible to form a film without adding hydrogen gas.Hydrogen atoms that have been taken into the film by the conventional parallel plate type and have deteriorated the heat resistance of the film can be removed. Can be excluded. Further, by applying high-frequency power to the sample to control the potential of the sample, the irradiation ion energy is optimized and the heat resistance and flatness of the film are improved.

【0009】[0009]

【実施例】本発明を図面に基づいて説明する。図1及び
図2は、本発明で使用するフッ素化非晶質炭素膜を形成
させるための装置の概略図である。図1はヘリコン波プ
ラズマ源、図2はマイクロ波プラズマ源が装着されてい
る。試料101、201はそれぞれ試料台102及び2
02に装着され、試料台はプラズマ発生部以外に存在し
ている。試料台にはプラズマ源に供給する高周波電力1
03またはマイクロ波電力203とは別に、高周波電力
104または204を印加することができ、試料にバイ
アス電圧を印加することが可能である。また試料台は任
意の温度に加熱及び冷却を行うことができる。まずシリ
コン基板等の試料101、201をそれぞれ試料台10
2、202に設置し、その後装置にCF4 、C2 6
3 8 、C4 8 等のフッ素化炭素ガスを導入し、真
空度10-3Torrで、高周波及びマイクロ波を印加し
て放電させ、フッ化炭素のプラズマを発生させる。この
フッ化炭素プラズマにより非晶質炭素膜を堆積させる。
図で107、207は磁石、108、206は真空ポン
プ、109、205は原料のガスボンベである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 and 2 are schematic views of an apparatus for forming a fluorinated amorphous carbon film used in the present invention. 1 is equipped with a helicon wave plasma source, and FIG. 2 is equipped with a microwave plasma source. Samples 101 and 201 are mounted on sample tables 102 and 2 respectively.
02, and the sample stage is located other than the plasma generating section. High frequency power 1 to be supplied to the plasma source on the sample stage
03 or microwave power 203, high-frequency power 104 or 204 can be applied, and a bias voltage can be applied to the sample. The sample stage can be heated and cooled to any temperature. First, the samples 101 and 201 such as a silicon substrate
2, 202, and then CF 4 , C 2 F 6 ,
A fluorinated carbon gas such as C 3 F 8 or C 4 F 8 is introduced, and a high frequency and a microwave are applied at a degree of vacuum of 10 −3 Torr to cause discharge, thereby generating a fluorocarbon plasma. An amorphous carbon film is deposited by this fluorocarbon plasma.
In the figure, 107 and 207 are magnets, 108 and 206 are vacuum pumps, and 109 and 205 are raw material gas cylinders.

【0010】次に具体的な実施例を示す。従来の平行平
板型での成膜では、全ガス流量を50sccmに固定
し、CF4 ガスにCH4 ガスを添加して高周波電力(1
3.56MHz)を200W印加して成膜した。図3、
図4は、それぞれ従来の場合の成膜速度、比誘電率とガ
ス流量比の関係を示す図である。成膜速度及び膜の比誘
電率(1MHz)は原料の混合比によって変化し、それ
ぞれ図3及び図4に示す値となる。このように比誘電率
が3以下の膜が得られているが、成膜速度が遅いために
単位時間当たりの量産数が少ないという製造上の問題が
存在していた。
Next, a specific embodiment will be described. In film formation by a conventional parallel plate type, the total gas flow rate was fixed to 50 sccm, by the addition of CH 4 gas to CF 4 gas frequency power (1
(3.56 MHz) was applied at 200 W to form a film. FIG.
FIG. 4 is a diagram showing a relationship between a film forming speed, a relative dielectric constant, and a gas flow ratio in a conventional case. The film forming speed and the relative dielectric constant (1 MHz) of the film change depending on the mixing ratio of the raw materials, and have the values shown in FIGS. 3 and 4, respectively. Thus, a film having a relative dielectric constant of 3 or less has been obtained, but there is a manufacturing problem that the number of mass-produced units per unit time is small due to a low film formation rate.

【0011】そこで高密度プラズマ源を用いて、成膜に
寄与するラジカル量を増加させれば、成膜速度は上昇す
ると考えられるので、まずヘリコン波により発生された
高密度プラズマを用いて成膜を行った。原料ガスにCF
4 及びC2 6 を用いて、希釈する水素ガスとしてはH
2 を用いた。ヘリコン波を発生させるのに用いた高周波
電力(13.56MHz)は2kW一定とした。試料台
の温度は冷却により50℃に抑えた。成膜速度の水素希
釈量依存性を図5に示す。図中の曲線1がCF4 を用い
た場合、曲線2がC2 6 を用いた場合である。なお原
料のCF4 及びC2 6 ガス流量は100sccmに固
定して成膜した。この場合の電子密度は測定の結果5×
1012/cm3 、プラズマポテンシャルは20Vであっ
た。ここで図から分かるように、ヘリコンプラズマを用
いることで、フッ素化非晶質炭素膜を水素添加無しで成
膜させることができた。すなわち発明者らは、基板とプ
ラズマ発生部が別々に存在する高密度プラズマ源を用い
ることによって、完全に炭素とフッ素原子のみから成る
フッ素化非晶質炭素を形成する手法を見いだした。さら
に、非晶質炭素膜の成膜速度を平行平板型に比べて約1
0倍程度に向上させる手法を確立した。
[0011] Therefore, if the amount of radicals contributing to the film formation is increased by using a high-density plasma source, the film formation rate is considered to increase. First, the film formation is performed by using the high-density plasma generated by the helicon wave. Was done. CF for source gas
4 and C 2 F 6 , the hydrogen gas to be diluted is H
2 was used. The high-frequency power (13.56 MHz) used to generate the helicon wave was kept constant at 2 kW. The temperature of the sample stage was kept at 50 ° C. by cooling. FIG. 5 shows the hydrogen dilution amount dependence of the film formation rate. Curve 1 in the figure is a case where CF 4 is used, and curve 2 is a case where C 2 F 6 is used. The film was formed with the flow rates of the raw material CF 4 and C 2 F 6 gases fixed at 100 sccm. The electron density in this case was 5 ×
10 12 / cm 3 and the plasma potential were 20V. As can be seen from the figure, by using helicon plasma, a fluorinated amorphous carbon film could be formed without adding hydrogen. That is, the present inventors have found a method for forming fluorinated amorphous carbon consisting entirely of carbon and fluorine atoms by using a high-density plasma source in which a substrate and a plasma generation unit are separately provided. Furthermore, the film formation rate of the amorphous carbon film is about 1 times lower than that of the parallel plate type.
We established a method to improve it about 0 times.

【0012】続いてマイクロ波を用いて成膜を行った。
原料は同様にCF4 とC2 6 ガスを用いた。成膜速度
の水素希釈量依存性をそれぞれ図6に示す。曲線1がC
4を用いた場合、曲線2がC2 6 を用いた場合であ
る。なおガス流量及びマイクロ波(2.45GHz)電
力はヘリコンと同様に、100sccm及び2kWとし
た。また試料台の温度は同様に冷却により50℃に抑え
た。マイクロ波を用いた場合の電子密度は2×1012
cm3 、プラズマポテンシャルは16Vであった。ヘリコ
ンと同様にマイクロ波放電によっても、水素希釈無しで
フッ素化非晶質炭素膜が成膜されることが分かった。成
膜速度はヘリコンに対しては遅くなったが、平行平板型
からは大幅に上昇させることができた。
Subsequently, a film was formed using a microwave.
Similarly, CF 4 and C 2 F 6 gases were used as raw materials. FIG. 6 shows the hydrogen dilution amount dependence of the film forming rate. Curve 1 is C
When F 4 is used, curve 2 is the case where C 2 F 6 is used. The gas flow rate and microwave (2.45 GHz) power were set to 100 sccm and 2 kW, similarly to the helicon. The temperature of the sample stage was similarly controlled to 50 ° C. by cooling. The electron density when using microwaves is 2 × 10 12 /
cm 3 and the plasma potential was 16V. It was found that a fluorinated amorphous carbon film could be formed without dilution with hydrogen by microwave discharge as well as helicon. The deposition rate was slower for the helicon, but could be increased significantly from the parallel plate type.

【0013】このように高密度プラズマを用いることに
より、成膜速度を従来の平行平板型に比べて大幅に上昇
させることができるのは、平行平板型に比べて成膜に寄
与するラジカル密度が上昇するためと考えられる。また
水素希釈無しでもフッ素化非晶質炭素膜を堆積できるの
は、これらの高密度プラズマ源では、基板とプラズマと
の電位差で加速され、膜に照射されるイオンのエネルギ
ーを、平行平板型に比べて小さく抑えることができ、エ
ッチング反応を抑制させることができるためと考えられ
る。
As described above, the use of high-density plasma makes it possible to greatly increase the film forming speed as compared with the conventional parallel plate type. It is thought to rise. The reason that fluorinated amorphous carbon films can be deposited without hydrogen dilution is that, with these high-density plasma sources, the energy of ions that are accelerated by the potential difference between the substrate and the plasma and are applied to the film is reduced to a parallel plate type. This is considered to be possible because the etching reaction can be suppressed to a smaller value and the etching reaction can be suppressed.

【0014】以上CF4 及びC2 6 を用いて成膜した
場合について記載したが、C3 8、C4 8 等の他の
フッ化炭素ガスを用いた場合でも、同様に平行平板型で
は膜堆積が起こらないのに対し、高密度プラズマを用い
た場合は膜が堆積し、堆積速度はC2 6 を用いた場合
と同等であった。
The case where the film is formed using CF 4 and C 2 F 6 has been described above. However, even when other fluorocarbon gas such as C 3 F 8 or C 4 F 8 is used, the parallel plate is similarly formed. While film deposition did not occur in the mold, a film was deposited when high-density plasma was used, and the deposition rate was equivalent to that when C 2 F 6 was used.

【0015】この様に水素ガスの添加無しにフッ素化非
晶質炭素膜を成膜する手法を確立したので、続いて水素
ガスの添加無しにCF4 、C2 6 ガスのみを用いて、
さらに試料台に高周波(400kHz)を印加して、試
料の電位を制御し、試料に照射されるイオンのエネルギ
ーを変化させてフッ素化非晶質炭素膜の膜質に与える影
響を調べた。試料台の温度はこの場合も50℃とした。
平行平板型の場合、電極に設置された試料には自己バイ
アス電圧が印加されるので、バイアス電圧を制御するこ
とによるイオンエネルギーの制御は困難であるが、ヘリ
コン波、マイクロ波等の高密度プラズマを用いて、しか
も成膜部とプラズマ発生部を別にすると、試料台に高周
波電力を印加する事により試料台の電位を制御すること
ができ、これにより基板に照射されるイオンのエネルギ
ーを制御することが可能になる。
As described above, a method for forming a fluorinated amorphous carbon film without adding hydrogen gas has been established. Subsequently, only CF 4 and C 2 F 6 gases are used without adding hydrogen gas.
Furthermore, a high frequency (400 kHz) was applied to the sample stage to control the potential of the sample, and the effect of changing the energy of ions irradiated on the sample to the quality of the fluorinated amorphous carbon film was examined. The temperature of the sample stage was also 50 ° C. in this case.
In the case of the parallel plate type, since the self-bias voltage is applied to the sample placed on the electrode, it is difficult to control the ion energy by controlling the bias voltage, but high-density plasma such as helicon waves and microwaves is difficult. When the film forming unit and the plasma generating unit are separated from each other, the potential of the sample stage can be controlled by applying high-frequency power to the sample stage, thereby controlling the energy of ions irradiated to the substrate. It becomes possible.

【0016】CF4 ガスを用いて高周波バイアス電力を
変化させたときの成膜速度の変化を図7に示す。曲線1
はヘリコン波を用いて成膜した場合、曲線2はマイクロ
波を用いて成膜した場合である。バイアス電力の上昇に
伴い、両者ともに成膜速度が減少していき、電力200
W以上では両者とも非晶質炭素膜が成膜されない事が分
かった。これは電力上昇に伴い、イオンのエネルギーが
上昇するため、エッチング反応が促進されたためと考え
られる。従来の平行平板型の場合、CF系ガスのみでは
膜が堆積しなかったのは、この高密度プラズマ源でバイ
アス電力を200W以上印加したときに相当するエネル
ギーのイオンが存在しているためであると考えられる。
またC3 8 、C4 8 等の他のフッ化炭素ガスについ
ても、高密度プラズマを用いて成膜したところ、バイア
ス電力の印加によって膜の成膜速度が減少していく同じ
現象が見られた。
FIG. 7 shows a change in the film forming speed when the high frequency bias power is changed using CF 4 gas. Curve 1
Is a case where a film is formed using a helicon wave, and a curve 2 is a case where the film is formed using a microwave. As the bias power increases, the film forming speed decreases in both cases, and the power 200
It was found that an amorphous carbon film was not formed in both cases above W. This is considered to be due to the fact that the energy of ions increases with an increase in the power, thereby promoting the etching reaction. In the case of the conventional parallel plate type, the film was not deposited only by the CF-based gas because ions of the energy corresponding to the bias power of 200 W or more were applied by this high-density plasma source. it is conceivable that.
Also for other fluorocarbon gases such as C 3 F 8 and C 4 F 8 , when the film was formed using high-density plasma, the same phenomenon that the film formation speed was reduced by the application of bias power was observed. Was seen.

【0017】バイアス電力印加が膜の耐熱性、比誘電
率、パターン埋め込み性に与える効果について評価し
た。真空雰囲気中で加熱したとき、膜が分解して膜の重
量が減少し始める温度、膜中のフッ素含有量、および膜
の比誘電率(1MHz)を調べた。結果を表1に示す。
The effects of bias power application on the heat resistance, relative dielectric constant, and pattern embedding of the film were evaluated. When heated in a vacuum atmosphere, the temperature at which the film began to decompose and the weight of the film began to decrease, the fluorine content in the film, and the relative dielectric constant (1 MHz) of the film were examined. Table 1 shows the results.

【0018】[0018]

【表1】 [Table 1]

【0019】この様にバイアスを印加していくことによ
り、膜の誘電率は若干上昇するが、いずれも膜の耐熱性
が向上することがわかった。すなわち発明者らは、高密
度プラズマを用いて、しかも成膜時に試料に高周波電力
を印加する事が、フッ素化非晶質炭素膜の耐熱性の向上
に有効であることを見いだした。またバイアス電力を印
加して照射エネルギーを上昇させると、膜中のフッ素量
は減少していく事が分かった。膜中のフッ素量が減少す
ると、より炭素−炭素結合が膜中に形成されることにな
り、すなわち膜の架橋度が上昇すると考えられる。一般
に樹脂材料等の耐熱性は膜の架橋構造で決まり、従って
バイアス電力印加による耐熱性の向上は、膜の架橋度が
上昇したためであると考えられる。また表1の比較例の
平行平板型では、高密度プラズマでバイアス電力を印加
したときに相当するエネルギーのイオンが膜に照射され
ていると考えられるが、それにも関わらず膜の耐熱性が
低いのは、成膜時に水素ガスの添加を行わなければなら
ず、そのためより低温で脱離する水素原子が膜中に存在
するためであると考えられる。
By applying a bias in this manner, it was found that the dielectric constant of the film slightly increased, but the heat resistance of the film was improved in each case. That is, the inventors have found that using high-density plasma and applying high-frequency power to the sample during film formation is effective for improving the heat resistance of the fluorinated amorphous carbon film. It was also found that when the irradiation energy was increased by applying the bias power, the amount of fluorine in the film was reduced. It is considered that when the amount of fluorine in the film decreases, more carbon-carbon bonds are formed in the film, that is, the degree of crosslinking of the film increases. Generally, the heat resistance of a resin material or the like is determined by the crosslinked structure of the film, and it is considered that the improvement of the heat resistance by applying the bias power is due to an increase in the degree of crosslinking of the film. Further, in the parallel plate type of the comparative example in Table 1, it is considered that ions having energy corresponding to that when bias power is applied by high-density plasma are applied to the film, but despite this, the heat resistance of the film is low. This is considered to be because hydrogen gas must be added at the time of film formation, and therefore, hydrogen atoms which are eliminated at a lower temperature are present in the film.

【0020】続いてアルミニウム配線を公知の微細加工
技術によって形成したシリコン基板上にフッ素化非晶質
炭素膜を堆積させ、パターンの埋め込み特性について調
べた。配線幅、配線間隔0.4μm 、配線高さ0.8μ
m のパターンを用いてヘリコン、及びマイクロ波で、基
板にバイアス電力を印加しないで成膜した場合、C
4 、C2 6 、C3 8 、C4 8 のどのガスを用い
た場合も、パターンを完全に埋め込むことができず、配
線間にボイドの発生が見られた。しかしバイアス電力を
印加して成膜した場合は、いずれの場合も、ボイドの発
生なくパターン中にフッ素化非晶質炭素膜を埋め込む事
ができた。通常ボイドの発生は、アルミニウム等の配線
材料の側壁への堆積速度が、配線材料上への堆積速度に
比べて遅い場合に見られる。バイアス電力印加が埋め込
み特性向上に効果的であるのは、バイアス電力印加によ
ってイオンを加速し、配線材料上で生じるエッチング反
応のみを選択的に促進させ、配線材料側壁と上部との成
膜速度の差を減少させるためであると考えられる。
Subsequently, a fluorinated amorphous carbon film was deposited on a silicon substrate on which aluminum wiring was formed by a known fine processing technique, and the filling characteristics of the pattern were examined. Wiring width, wiring interval 0.4μm, wiring height 0.8μ
When a film is formed using a helicon and a microwave using the pattern of
When using any of F 4 , C 2 F 6 , C 3 F 8 , and C 4 F 8 gases, the pattern could not be completely buried, and voids were observed between the wirings. However, when the film was formed by applying the bias power, in each case, the fluorinated amorphous carbon film could be embedded in the pattern without generating voids. Usually, voids are generated when the deposition rate of the wiring material such as aluminum on the side wall is lower than the deposition rate on the wiring material. The reason that bias power application is effective for improving the burying characteristic is that ions are accelerated by bias power application to selectively promote only the etching reaction occurring on the wiring material, and to reduce the film forming rate between the wiring material side wall and the upper part. This is thought to be to reduce the difference.

【0021】以上はヘリコン、及びマイクロ波を用いた
実施例であるが、そのほかにも高密度で、しかもプラズ
マ発生部と堆積させる基板とを別の場所に分離する事が
できるプラズマ源であれば、誘導結合型など他のプラズ
マ源に関しても同様に本発明を適用でき、本発明と同様
の効果を得ることができる。
The above is an embodiment using a helicon and a microwave. In addition to the above, any other plasma source having a high density and capable of separating a plasma generating portion and a substrate to be deposited into another place can be used. The present invention can be similarly applied to other plasma sources such as an inductive coupling type, and the same effect as the present invention can be obtained.

【0022】[0022]

【発明の効果】以上説明したように、本発明は半導体装
置及び実装基板等の多層配線用絶縁膜用の低誘電率絶縁
材料である。フッ素化非晶質炭素膜の製造方法に関し
て、高密度プラズマ源を用いて、プラズマ発生部と成膜
部を分離することにより、水素の含有されていない良質
の膜を高速で成膜可能とする手法を確立した。さらに成
膜中に試料に高周波電力を印加することにより、イオン
のエネルギーを最適化し、耐熱性の高い膜を形成する手
法及び、フッ素化非晶質炭素膜の埋め込み特性を向上さ
せる手法を確立した。
As described above, the present invention is a low dielectric constant insulating material for an insulating film for a multilayer wiring such as a semiconductor device and a mounting substrate. Regarding the method for producing a fluorinated amorphous carbon film, a high-density plasma source can be used to separate a plasma generation unit and a film formation unit to form a high-quality film containing no hydrogen at high speed. The method was established. Furthermore, by applying high-frequency power to the sample during film formation, a method for optimizing ion energy to form a film with high heat resistance and a method for improving the filling characteristics of a fluorinated amorphous carbon film were established. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】ヘリコン波プラズマ源を用いたフッ素化非晶質
炭素膜の製造装置の概略図である。
FIG. 1 is a schematic diagram of an apparatus for producing a fluorinated amorphous carbon film using a helicon wave plasma source.

【図2】マイクロ波プラズマ源を用いたフッ素化非晶質
炭素膜の製造装置の概略図である。
FIG. 2 is a schematic diagram of an apparatus for producing a fluorinated amorphous carbon film using a microwave plasma source.

【図3】平行平板型プラズマ源を用いた場合のフッ素化
非晶質炭素膜の成膜速度を示す図である。
FIG. 3 is a diagram showing a film formation rate of a fluorinated amorphous carbon film when a parallel plate type plasma source is used.

【図4】平行平板型プラズマ源を用いた場合のフッ素化
非晶質炭素膜の比誘電率を示す図である。
FIG. 4 is a diagram showing a relative dielectric constant of a fluorinated amorphous carbon film when a parallel plate type plasma source is used.

【図5】ヘリコン波プラズマ源を用いた時の成膜速度の
水素添加量依存性を示す図である。
FIG. 5 is a diagram showing the dependence of the film formation rate on the amount of hydrogen added when a helicon wave plasma source is used.

【図6】マイクロ波プラズマ源を用いた時の成膜速度の
水素添加量依存性を示す図である。
FIG. 6 is a diagram showing the dependence of the film formation rate on the amount of hydrogen added when a microwave plasma source is used.

【図7】成膜速度のバイアス電力依存性を示す図であ
る。
FIG. 7 is a diagram showing a bias power dependence of a film forming speed.

【符号の説明】[Explanation of symbols]

101 試料 102 試料台 103 高周波電源 104 高周波電源 105 石英管 106 アンテナ 107 磁石 108 真空ポンプ 109 ガスボンベ 110 真空漕 201 試料 202 試料台 203 マイクロ波発生装置 204 高周波電源 205 ガスボンベ 206 真空ポンプ 207 磁石 208 真空漕 101 sample 102 sample stand 103 high frequency power supply 104 high frequency power supply 105 quartz tube 106 antenna 107 magnet 108 vacuum pump 109 gas cylinder 110 vacuum tank 201 sample 202 sample table 203 microwave generator 204 high frequency power supply 205 gas cylinder 206 vacuum pump 207 magnet 208 vacuum tank

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 プラズマを用いたフッ素化非晶質炭素膜
の製造方法に関して、原料にCF 4 、C 2 6 、C 3 8
4 8 より選ばれたガスのみを用いて、しかもプラズマ
源として当該炭素膜を堆積させる基板がプラズマ発生部
外に存在する高密度プラズマを用い、かつプラズマに供
給する電力以外に当該炭素膜を堆積させる基板にも高周
波電力を供給することを特徴とするフッ素化非晶質炭素
膜の製造方法。
1. A method for producing a fluorinated amorphous carbon film using plasma, wherein CF 4 , C 2 F 6 , C 3 F 8 ,
Using only a gas selected from C 4 F 8 , and using a high-density plasma in which a substrate on which the carbon film is deposited as a plasma source is present outside the plasma generating portion, and using a carbon film other than the power supplied to the plasma. A method for producing a fluorinated amorphous carbon film, characterized in that high-frequency power is also supplied to a substrate on which is deposited.
【請求項2】プラズマ発生装置にマイクロ波放電を用い
ることを特徴とする請求項1に記載のフッ素化非晶質炭
素膜の製造方法。
2. The method for producing a fluorinated amorphous carbon film according to claim 1, wherein a microwave discharge is used for the plasma generator.
【請求項3】プラズマ発生装置にヘリコン波放電を用い
ることを特徴とする請求項1に記載のフッ素化非晶質炭
素膜の製造方法。
3. The method for producing a fluorinated amorphous carbon film according to claim 1, wherein a helicon wave discharge is used for the plasma generator.
JP7021429A 1994-09-12 1995-02-09 Method for producing fluorinated amorphous carbon film Expired - Lifetime JP2751851B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP7021429A JP2751851B2 (en) 1995-02-09 1995-02-09 Method for producing fluorinated amorphous carbon film
CA002157257A CA2157257C (en) 1994-09-12 1995-08-30 Semiconductor device with amorphous carbon layer and method of fabricating the same
KR1019950029566A KR100188573B1 (en) 1994-09-12 1995-09-11 Semiconductor device with amorphous carbon layer
EP95114253A EP0701283A3 (en) 1994-09-12 1995-09-11 Semiconductor device with amorphous carbon layer and method of fabricating the same
US08/526,902 US5698901A (en) 1994-09-12 1995-09-12 Semiconductor device with amorphous carbon layer for reducing wiring delay
US08/782,573 US6033979A (en) 1994-09-12 1997-01-10 Method of fabricating a semiconductor device with amorphous carbon layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7021429A JP2751851B2 (en) 1995-02-09 1995-02-09 Method for producing fluorinated amorphous carbon film

Publications (2)

Publication Number Publication Date
JPH08222557A JPH08222557A (en) 1996-08-30
JP2751851B2 true JP2751851B2 (en) 1998-05-18

Family

ID=12054752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7021429A Expired - Lifetime JP2751851B2 (en) 1994-09-12 1995-02-09 Method for producing fluorinated amorphous carbon film

Country Status (1)

Country Link
JP (1) JP2751851B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2956571B2 (en) 1996-03-07 1999-10-04 日本電気株式会社 Semiconductor device
JP3228183B2 (en) 1996-12-02 2001-11-12 日本電気株式会社 Insulating film, semiconductor device having the insulating film, and method of manufacturing the same
KR100295380B1 (en) 1997-04-02 2001-08-07 가네꼬 히사시 Semiconductor device capable of having amorphous carbon fluoride film of low dielectric constant as interlayer insulation material and method of manufacturing the same
JP3178375B2 (en) * 1997-06-03 2001-06-18 日本電気株式会社 Method of forming insulating film
JP3429171B2 (en) 1997-11-20 2003-07-22 東京エレクトロン株式会社 Plasma processing method and semiconductor device manufacturing method
WO1999049705A1 (en) 1998-03-20 1999-09-30 Tokyo Electron Limited Plasma processing apparatus
JP4141021B2 (en) 1998-09-18 2008-08-27 東京エレクトロン株式会社 Plasma deposition method
JP4904482B2 (en) * 2005-01-18 2012-03-28 国立大学法人東北大学 Semiconductor device
TWI510665B (en) * 2009-02-17 2015-12-01 Tokyo Electron Ltd A method for forming a fluorocarbon layer using a plasma reaction process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574960A (en) * 1991-03-25 1993-03-26 Fujitsu Ltd Manufacture of semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
応用物理 Vol.63 No.6(1994)p.559−567

Also Published As

Publication number Publication date
JPH08222557A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
US4732761A (en) Thin film forming apparatus and method
KR100188573B1 (en) Semiconductor device with amorphous carbon layer
US9362107B2 (en) Flowable low-k dielectric gapfill treatment
US6340843B1 (en) Plasma CVD dielectric film and process for forming the same
JP3141827B2 (en) Method for manufacturing semiconductor device
JP2748864B2 (en) Semiconductor device, method of manufacturing the same, method of manufacturing amorphous carbon film, and plasma CVD apparatus
JPH0982495A (en) Plasma producing device and method
KR20010053278A (en) Plasma processing method
JP2000038688A (en) Method and device for plasma treating
KR100327950B1 (en) Process for treating a substrate and apparatus for the same
JP2751851B2 (en) Method for producing fluorinated amorphous carbon film
JP3429171B2 (en) Plasma processing method and semiconductor device manufacturing method
JP3469761B2 (en) Method for manufacturing semiconductor device
US8123969B2 (en) Process for removing high stressed film using LF or HF bias power and capacitively coupled VHF source power with enhanced residue capture
US20180226261A1 (en) Method of anisotropically etching graphene
US7588803B2 (en) Multi step ebeam process for modifying dielectric materials
KR102426960B1 (en) Method for forming silicon oxide film using plasmas
TW425605B (en) Plasma film-forming method
US6528865B1 (en) Thin amorphous fluorocarbon films
JP2001135631A (en) Semiconductor device and its manufacturing method
KR101353258B1 (en) Method of gap filling in a semiconductor device
JPH11162960A (en) Plasma film forming method
JPH0969518A (en) Method for depositing silicon compound based insulation film
JP2830874B2 (en) Semiconductor device, method of manufacturing the same, and method of manufacturing an amorphous carbon film
WO2023157690A1 (en) Film forming method and film forming apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 16

EXPY Cancellation because of completion of term