JP2749597B2 - High strength aluminum alloy for molding dies and tools - Google Patents

High strength aluminum alloy for molding dies and tools

Info

Publication number
JP2749597B2
JP2749597B2 JP26109488A JP26109488A JP2749597B2 JP 2749597 B2 JP2749597 B2 JP 2749597B2 JP 26109488 A JP26109488 A JP 26109488A JP 26109488 A JP26109488 A JP 26109488A JP 2749597 B2 JP2749597 B2 JP 2749597B2
Authority
JP
Japan
Prior art keywords
alloy
aluminum alloy
tools
strength
strength aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26109488A
Other languages
Japanese (ja)
Other versions
JPH02107739A (en
Inventor
富晴 沖田
康人 中井
洋 石井
富士夫 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP26109488A priority Critical patent/JP2749597B2/en
Publication of JPH02107739A publication Critical patent/JPH02107739A/en
Application granted granted Critical
Publication of JP2749597B2 publication Critical patent/JP2749597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラスチック、ゴム等の成形金型及び工具
用材料として、好適な高強度アルミニウム合金に関す
る。
The present invention relates to a high-strength aluminum alloy suitable as a material for molding dies and tools such as plastic and rubber.

〔従来の技術〕[Conventional technology]

プラスチック、ゴム等の成形金型用材料として、従来
は、鋼製のものが中心であったが、鋼製の金型は、重
く、加工に手間がかかるうえに錆びやすい等の欠点があ
った。そのため、最近アルミニウム合金(特に7000系合
金、例えば7075、7N01合金等)製の金型が使用されるよ
うになってきた。
Conventionally, as a material for molding dies such as plastics and rubbers, steel materials are mainly used, but steel molds are disadvantageous in that they are heavy, require time for processing, and are easily rusted. . Therefore, recently, a mold made of an aluminum alloy (particularly, a 7000 series alloy, for example, 7075, 7N01 alloy, etc.) has been used.

アルミニウム合金製金型は、次のような特徴を有す
る。
The aluminum alloy mold has the following features.

熱伝導が良く、ショットサイクルが早くなり、生産性
が良い。
Good heat conduction, fast shot cycle and good productivity.

加工し易く、型彫り時間が短縮できる。It is easy to process and can shorten the time for engraving.

鋼製に比べ、重量が約1/3と軽く、着脱、保守が容易
で、超大型の製造が可能である。
Compared to steel, it is lighter in weight, about 1/3, easy to attach and detach, and easy to maintain.

型発泡成形、中空成形、真空成形、回転成形等におい
ては、鋼製同様の寿命がある。
In mold foaming molding, hollow molding, vacuum molding, rotational molding and the like, there is a service life similar to that of steel.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、従来のアルミニウム合金(7000系合
金、例えば7075、7N01合金等)では、射出成形における
金型の寿命は、製品形状や樹脂材料にもよるが、2万個
〜5万個が限度で、鋼製の1/10〜1/20の寿命であった。
特に7N01合金の場合は強度が比較的低いため、金型寿命
が劣った。又、従来のアルミニウム合金は、150℃程度
で強度、硬さが極端に低下するため高温における使用は
不適で、用途が限定されていた。しかし、7075合金等を
使用した場合、切削性が良いので鋼に比べて1/3程度の
加工時間ですみ、納期が短縮できた。これらの特性か
ら、射出成形においては、従来のアルミニウム合金製金
型は、少量生産品とか、試作品においてのみしか使用さ
れず、大量生産品の成形金型は鋼製に限られていた。
又、従来のアルミニウム合金(例えば7075等)は、溶接
した際、割れが発生し易いため、成形金型の補修溶液は
非常に難しいものであった。
However, with conventional aluminum alloys (7000 series alloys, for example, 7075, 7N01 alloys, etc.), the life of the mold in injection molding is limited to 20,000 to 50,000 pieces, depending on the product shape and resin material. The life was 1/10 to 1/20 of that of steel.
Particularly, in the case of the 7N01 alloy, the mold life was inferior because the strength was relatively low. Further, the conventional aluminum alloy has an extremely low strength and hardness at about 150 ° C., so that it is unsuitable for use at high temperatures, and its use is limited. However, when using 7075 alloy or the like, the workability was good, so the processing time was about 1/3 that of steel, and the delivery time was shortened. Due to these characteristics, in injection molding, conventional aluminum alloy dies have been used only for small-scale production products or prototypes only, and molding dies for mass production products have been limited to steel.
Further, a conventional aluminum alloy (for example, 7075 or the like) is liable to crack when welded, so that a repair solution for a molding die is very difficult.

本発明の目的は、プラスチック、ゴム等の型発泡成
形、中空成形、真空成形、回転成形等においては勿論、
射出成形用金型においても鋼製に匹敵する寿命を有し、
しかも、耐熱性、切削性、溶接性が優れた、金型用材料
として好適な高強度アルミニウム合金を提供することに
ある。
The object of the present invention is, of course, plastic foam, rubber foam molding, hollow molding, vacuum molding, rotational molding, etc.,
Injection molding dies also have a life equivalent to steel,
Moreover, it is an object of the present invention to provide a high-strength aluminum alloy having excellent heat resistance, machinability, and weldability and suitable as a mold material.

〔課題を解決するための手段および作用〕[Means and actions for solving the problem]

本発明者らは、上記したような従来のアルミニウム合
金(特に7000系合金、例えば7075、7N01合金等)製金型
の欠点を改善すべく鋭意研究を重ねた結果、Al−Zn−Mg
−Cu系合金に、各種の微量添加元素をコントロールして
添加することによって、射出成形用金型においても寿命
が、鋼製と同等で、しかも、耐熱性、切削性、溶接性等
の諸性質が従来のAl合金以上の、高強度アルミニウム合
金を見出した。本発明は、この知見に基づいてなされた
ものである。
The present inventors have intensively studied to improve the drawbacks of the above-mentioned conventional aluminum alloy (particularly 7000 series alloy, for example, 7075, 7N01 alloy, etc.) mold, and as a result, Al-Zn-Mg
-By controlling and adding various trace elements to Cu-based alloys, the life of injection molding dies is equivalent to that of steel, and various properties such as heat resistance, machinability, weldability, etc. Found a high-strength aluminum alloy more than the conventional Al alloy. The present invention has been made based on this finding.

すなわち、請求項1の発明は、Zn5.0〜8.0%、Mg2.0
〜3.5%、Cu0.50〜2.5%、Ni0.05〜1.2%、希土類元素
またはミッシュメタル0.05〜1.0%、Fe0.20〜0.45%、S
i0.05〜0.15%で且つFe+Si>0.25%、Fe/Si>3(以上
重量%)を必須成分として含有し、残部がAlと不可避不
純物からなることを特徴とする成形金型及び工具用アル
ミニウム合金であり、請求項2の発明は、Zn5.0〜8.0
%、Mg2.0〜3.5%、Cu0.50〜2.5%、Ni0.05〜1.2%、希
土類元素またはミッシュメタル0.05〜1.0%、Fe0.20〜
0.45%、Si0.05〜0.15%で且つFe+Si>0.25%、Fe/Si
>3を必須成分として含有し、さらに、Ti0.001〜0.1
%、B0.0001〜0.01%、Zr0.05〜0.25%、V0.03〜0.15%
(以上重量%)のうち1種以上を含有し、残部がAlと不
可避不純物からなることを特徴とする成形金型及び工具
用高強度アルミニウム合金であり、請求項3の発明は、
Zn5.0〜8.0%、Mg2.0〜3.5%、Cu0.50〜2.5%、Ni0.05
〜1.2%、希土類元素またはミッシュメタル0.05〜1.0
%、Fe0.20〜0.45%、Si0.05〜0.15%で且つFe+Si>0.
25%、Fe/Si>3を必須成分として含有し、さらに、Pb
とBi、PbとSn、または、PbとBiとSnを合計で0.5〜2.5%
(以上重量%)含有してなり、残部がAlと不可避不純物
からなることを特徴とする成形金型及び工具用アルミニ
ウム合金であり、請求項4の発明は、Zn5.0〜8.0%、Mg
2.0〜3.5%、Cu0.50〜2.5%、Ni0.05〜1.2%、希土類元
素またはミッシュメタル0.05〜1.0%、Fe0.20〜0.45
%、Si0.05〜0.15%で且つFe+Si>0.25%、Fe/Si>3
を必須成分として含有し、さらに、Ti0.001〜0.1%、B
0.0001〜0.01%、Zr0.05〜0.25%、V0.03〜0.15%のう
ち1種以上、及びPbとBi、PbとSn、または、PbとBiとSn
を合計で0.5〜2.5%(以上重量%)を含有し、残部がAl
と不可避不純物からなることを特徴とする成形金型及び
工具用高強度アルミニウム合金である。
That is, the invention according to claim 1 is characterized in that Zn 5.0 to 8.0%, Mg 2.0
~ 3.5%, Cu0.50 ~ 2.5%, Ni0.05 ~ 1.2%, Rare earth element or misch metal 0.05 ~ 1.0%, Fe0.20 ~ 0.45%, S
Aluminum for molding dies and tools, characterized by containing 0.05 to 0.15%, Fe + Si> 0.25% and Fe / Si> 3 (more than weight%) as essential components, with the balance being Al and unavoidable impurities. Alloy, wherein the invention of claim 2 is Zn 5.0 to 8.0
%, Mg 2.0-3.5%, Cu 0.50-2.5%, Ni 0.05-1.2%, rare earth element or misch metal 0.05-1.0%, Fe 0.20-
0.45%, Si 0.05-0.15% and Fe + Si> 0.25%, Fe / Si
> 3 as an essential component.
%, B0.0001 ~ 0.01%, Zr0.05 ~ 0.25%, V0.03 ~ 0.15%
(High-strength aluminum alloy for molding dies and tools), wherein at least one of the above-mentioned (% by weight) is contained, and the balance is composed of Al and inevitable impurities.
Zn5.0 ~ 8.0%, Mg2.0 ~ 3.5%, Cu0.50 ~ 2.5%, Ni0.05
~ 1.2%, rare earth element or misch metal 0.05 ~ 1.0
%, Fe 0.20 to 0.45%, Si 0.05 to 0.15% and Fe + Si> 0.
Contains 25%, Fe / Si> 3 as an essential component.
And Bi, Pb and Sn, or Pb, Bi and Sn in total 0.5-2.5%
(More than weight%), with the balance being Al and unavoidable impurities. A molding die and an aluminum alloy for tools, wherein the invention of Zn is 5.0-8.0% of Zn, Mg
2.0-3.5%, Cu 0.50-2.5%, Ni 0.05-1.2%, rare earth element or misch metal 0.05-1.0%, Fe 0.20-0.45
%, Si 0.05-0.15% and Fe + Si> 0.25%, Fe / Si> 3
As an essential component, and furthermore, Ti 0.001-0.1%, B
0.0001 to 0.01%, Zr 0.05 to 0.25%, V0.03 to 0.15%, at least one of them, and Pb and Bi, Pb and Sn, or Pb and Bi and Sn
In total of 0.5 to 2.5% (by weight or more), with the balance being Al
And high-strength aluminum alloys for molding dies and tools, characterized by being composed of aluminum alloys and unavoidable impurities.

本発明の成形金型用アルミニウム合金に含有させる各
成分の作用と含有量の限定理由は、次のごとくである。
The reason for limiting the action and content of each component contained in the aluminum alloy for a molding die of the present invention is as follows.

請求項1の発明において、Znの含有量は5.0〜8.0%
(%は重量%,以下同じ)とする。Znは強度強化要素と
して作用し、5.0%未満では充分な強度が得られず、8.0
%を越えると、靱性が低下し、応力腐食割れ、溶接割れ
が起こり易くなる。
In the invention of claim 1, the content of Zn is 5.0 to 8.0%.
(% Is% by weight, the same applies hereinafter). Zn acts as a strength strengthening element, and if it is less than 5.0%, sufficient strength cannot be obtained.
%, The toughness is reduced, and stress corrosion cracking and weld cracking are likely to occur.

Mgの含有量は2.0〜3.5%とする。Mgは強度強化要素と
して作用し、2.0%未満では充分な強度が得られず、3.5
%を越えると応力腐食割れが起こり易くなると共に、熱
間加工性が低下し、加工割れが生じやすくなる。
The content of Mg is set to 2.0 to 3.5%. Mg acts as a strength strengthening element. If it is less than 2.0%, sufficient strength cannot be obtained.
%, Stress corrosion cracking is liable to occur, and hot workability is reduced, and work cracking is liable to occur.

Cuの含有量は0.50〜2.5%とする。CuもZn、Mgと同様
に強度強化要素として作用し、0.50%未満では強度が得
られず、2.5%を越えると切削仕上げ面や靱性が低下す
る。
The content of Cu is set to 0.50 to 2.5%. Cu also acts as a strength strengthening element similarly to Zn and Mg. If it is less than 0.50%, strength cannot be obtained, and if it exceeds 2.5%, the cut surface and toughness decrease.

Niの含有量は0.05〜1.2%とする。Niは高温強度強化
要素として作用し、耐熱性を向上させ、0.05%未満では
効果がなく、1.2%を越えると切削性が低下する。
The content of Ni is 0.05 to 1.2%. Ni acts as a high-temperature strength reinforcing element and improves heat resistance. If it is less than 0.05%, there is no effect, and if it exceeds 1.2%, the machinability decreases.

希土類元素またはミッシュメタルは0.05〜1.0%とす
る。希土類元素またはミッシュメタルは合金の切削性を
大幅に改善するもので、0.05%未満では効果が小さく、
1.0%を越えると前記効果が飽和し、逆に切削時の工具
摩耗を増大させる。尚、希土類元素としては、La、Ce、
Pr、Nd、Sm等、又、ミッシュメタルとしては、Ce、Laを
主成分とする合金で、通常Ce45〜50%、La20〜40%、残
部その他の希土類元素(Nd、Sm、Pr等)からなり、希土
類元素、ミッシュメタル何れも同等の効果を示すも、希
土類元素は高価であり、ミッシュメタルとして添加した
方が経済的に有利である。
The content of the rare earth element or the misch metal is 0.05 to 1.0%. Rare earth elements or misch metals greatly improve the machinability of the alloy.
If it exceeds 1.0%, the above effect is saturated, and conversely, tool wear during cutting increases. In addition, as rare earth elements, La, Ce,
Pr, Nd, Sm, etc. The misch metal is an alloy mainly composed of Ce and La, usually from 45 to 50% Ce, 20 to 40% La, and the balance from other rare earth elements (Nd, Sm, Pr, etc.). Although both the rare earth element and the misch metal exhibit the same effect, the rare earth element is expensive and it is economically advantageous to add it as a misch metal.

Feは0.20〜0.45%、Siは0.05〜0.15%で且つFe+Si>
0.25%、Fe/Si>3とする。Fe及びSiは、強度と切削性
を向上させるも、下限未満では効果が少なく、上限を越
えると工具寿命が短くなり、切削仕上げ面も低下する。
又、Fe、Siは溶接割れを改善する効果があるが、Fe+Si
<0.25%、Fe/Si<3では効果がない。
Fe is 0.20-0.45%, Si is 0.05-0.15% and Fe + Si>
0.25%, Fe / Si> 3. Fe and Si improve the strength and the machinability, but the effect is small when the amount is less than the lower limit, and the tool life is shortened when the amount exceeds the upper limit, and the cut surface is also reduced.
Also, Fe and Si have the effect of improving weld cracking, but Fe + Si
<0.25%, Fe / Si <3 has no effect.

請求項2の発明は、請求項1の発明合金にさらに、T
i、B、Zr、Vから選ばれた1種以上を含有させるもの
であるが、これにより、上記合金の溶接性をさらに改善
させたり、強度やその他の性能をさらに向上させること
ができる。
The invention of claim 2 further includes T in addition to the invention alloy of claim 1.
It contains one or more selected from i, B, Zr, and V. With this, the weldability of the alloy can be further improved, and the strength and other performances can be further improved.

この場合、Tiは0.001〜0.1%とする。Tiは結晶粒微細
化効果要素で溶接割れを改善し、0.001%未満では効果
が無く、0.1%を越えるとAlと化合物を作って切削仕上
げ面や靱性を低下させる。
In this case, Ti is set to 0.001 to 0.1%. Ti improves welding cracking by the effect of grain refinement. If it is less than 0.001%, it has no effect, and if it exceeds 0.1%, it forms a compound with Al and decreases the cut surface and toughness.

Bの含有量は0.0001〜0.01%とする。BはTiと共に結
晶粒微細化に作用し、溶接割れを防止する。0.0001%未
満では効果が無く、0.01を越えると切削仕上げ面や靱性
を低下させる。
The content of B is set to 0.0001 to 0.01%. B acts together with Ti on crystal grain refinement and prevents welding cracks. If it is less than 0.0001%, there is no effect, and if it exceeds 0.01, the cut surface and toughness are reduced.

Zrの含有量は0.05〜0.25%とする。Zrは溶接割れ改善
要素として作用し、0.05%未満では効果が少なく、0.25
%を越えると巨大晶出物が生成するので好ましくない。
The content of Zr is 0.05 to 0.25%. Zr acts as a weld crack improving element.
%, It is not preferable because giant crystals are formed.

Vの含有量は0.03〜0.15%とする。VはCuと共存して
サブグレイン組織の形成に寄与し応力腐食性改善要素及
び溶接割れ改善要素として作用する。0.03%未満では効
果が無く、0.15%を越えると巨大晶出物が生成し、靱性
を劣化させるので好ましくない。
The content of V is set to 0.03 to 0.15%. V coexists with Cu to contribute to the formation of a sub-grain structure and acts as a stress corrosion improvement element and a weld crack improvement element. If it is less than 0.03%, there is no effect, and if it exceeds 0.15%, giant crystals are formed and the toughness is deteriorated.

請求項3の発明は、上記請求項1の発明合金にさら
に、PbとBi、PbとSn、または、PbとBiとSnを含有させる
ものであるが、これにより請求項1の発明合金の切削性
をさらに向上させることができる。
According to a third aspect of the present invention, the alloy of the first aspect further includes Pb and Bi, Pb and Sn, or Pb, Bi and Sn, thereby cutting the alloy of the first aspect. Properties can be further improved.

この場合、PbとBi、PbとSn、またはPbとBiとSnを合計
で0.5〜2.5%とする。0.5%未満では、前記の効果が少
なく、2.5%を越える粗大な化合物を作り、加工性を劣
化させる。
In this case, Pb and Bi, Pb and Sn, or Pb, Bi and Sn are set to 0.5 to 2.5% in total. If it is less than 0.5%, the above effect is small, and a coarse compound exceeding 2.5% is produced, thereby deteriorating workability.

請求項4の発明は、前記請求項2の発明合金にさら
に、PbとBi、PbとSn、または、PbとBiとSnを含有させる
ものであるが、これにより請求項2の発明合金の切削性
をさらに向上させることができる。
According to a fourth aspect of the present invention, the alloy of the second aspect further contains Pb and Bi, Pb and Sn, or Pb, Bi and Sn, thereby cutting the alloy of the second aspect. Properties can be further improved.

この場合、PbとBi、PbとSn、または、PbとBiとSnを合
計で0.5〜2.5%とする。0.5%未満では、前記の効果が
少なく、2.5%を越える粗大な化合物を作り、加工性を
劣化させる。
In this case, Pb and Bi, Pb and Sn, or Pb, Bi and Sn are set to 0.5 to 2.5% in total. If it is less than 0.5%, the above effect is small, and a coarse compound exceeding 2.5% is produced, thereby deteriorating workability.

本発明合金の製造方法としては、従来の金型等に用い
られるアルミニウム合金と同様の方法により製造できる
ものである。例えば通常の溶解法により棒状または板状
の鋳塊とし、これに均質化処理を施した後、熱間圧延も
しくは押出しにより、所望の形状、寸法にした後、通常
の温度、条件により溶体化処理、焼入処理、時効処理を
行なうものである。そしてこの材料に切削、溶接などの
必要な加工を施して金型等の製品とするものである。尚
本発明合金は鍛造加工、冷間加工など通常の加工は可能
である。
The alloy of the present invention can be manufactured by the same method as the aluminum alloy used for the conventional molds and the like. For example, a rod-shaped or plate-shaped ingot is formed by a normal melting method, and after performing homogenization treatment, hot rolling or extruding to obtain a desired shape and dimensions, and then performing a solution treatment under a normal temperature and condition. Quenching and aging treatments. The material is subjected to necessary processing such as cutting and welding to produce a product such as a mold. The alloy of the present invention can be subjected to ordinary working such as forging and cold working.

本発明は上記したようにAl−Zn−Mg−Cu系合金にNi、
希土類元素またはミッシュメタル、Fe、Siなどを添加し
て、常温強度および高温強度を向上せしめると共に切削
性を改善したものを請求項1の合金とし、これにTi、
B、Zr、Vなどのいずれか1種以上の元素を添加するこ
とにより、結晶粒の微細化を図り溶接割れを防止した他
耐食性、応力腐食性を改善して請求項2の合金とし、ま
た請求項1の合金にPb、Bi、Snなどを添加することによ
りさらに切削性を高めて請求項3の合金とし、さらに請
求項2の合金に上記のPbとBi、Snなどを添加して合金の
切削性をさらに向上せしめて請求項4の合金としたもの
である。したがって本発明合金は上記の常温強度、高温
強度、切削性、溶接性、耐食性などの諸特性が要求され
る金型や工具の他、溶接構造材料、その他の構造材とし
て適用できる。Tiは材料特性にあまり悪影響がなく結晶
粒微細化の効果があるため、JIS規格の不純物範囲であ
る0.05%程度までは含んでも良い。BはTiと共に添加さ
れることで結晶粒微細化に作用し、溶解割れを防止する
効果があるが、切削性を低下させるため通常その添加量
は0.01%程度までとされる。Zr、Cr、V等は共に溶解割
れ性を改善するために添加される元素であるが、Zrはこ
れらの元素のうちで最も結晶粒微細化効果が大きいた
め。0.25%程度までの添加が許容される。Cr、Vは0.15
%程度まで添加されることが多いが、この範囲の添加な
らば巨大晶出物が生成し靭性や切削性の低下に影響が少
ない。
The present invention, as described above, Al-Zn-Mg-Cu-based alloy Ni,
Rare earth element or misch metal, Fe, Si, etc. are added to improve the normal temperature strength and high temperature strength and to improve the machinability as the alloy according to claim 1, wherein Ti,
By adding one or more elements such as B, Zr, V, etc., the crystal grain is refined, welding cracks are prevented, and corrosion resistance and stress corrosion resistance are improved. By adding Pb, Bi, Sn or the like to the alloy of claim 1, the machinability is further improved to obtain the alloy of claim 3, and further, the alloy of claim 2 is further added with Pb, Bi, Sn or the like. The alloy according to claim 4 is obtained by further improving the machinability of the alloy. Therefore, the alloy of the present invention can be applied as a welding structure material and other structural materials, in addition to a mold and a tool requiring various properties such as the above-mentioned ordinary temperature strength, high temperature strength, machinability, weldability, and corrosion resistance. Since Ti does not have a bad influence on the material properties and has the effect of refining the crystal grains, it may contain up to about 0.05% which is the impurity range of the JIS standard. B, when added together with Ti, acts to refine the crystal grains and has the effect of preventing dissolution cracking. However, the amount of B is usually limited to about 0.01% to reduce machinability. Zr, Cr, V, etc. are all elements added to improve the melting cracking property, but Zr has the greatest effect of refining the crystal grains among these elements. Addition of up to about 0.25% is acceptable. Cr, V is 0.15
% In many cases, but if added in this range, giant crystals are formed, and there is little effect on the reduction in toughness and machinability.

〔実施例〕〔Example〕

以下に本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described.

実施例1 第1表、第2表に示す成分組織の溶湯を調整し、通常
の溶解法により、それぞれ219φの棒状鋳塊に鋳造する
ことによって、本発明アルミニウム合金No.1〜14、17〜
22、54〜59、比較アルミニウム合金No.29〜31、37〜4
3、46〜48、60〜62、及び従来アルミニウム合金(JIS
7075合金、7N01合金相当)を製造した。尚、表に記す比
較アルミニウム合金は、いずれも組成成分のうちのいず
れかの成分(第1、2表中に※印を付して表示)が本発
明合金の範囲から外れた組成のものである。
Example 1 Aluminum alloys Nos. 1 to 14 and 17 to 17 of the present invention were prepared by adjusting a molten metal having a composition shown in Tables 1 and 2 and casting them into rod-shaped ingots each having a diameter of 219 by a normal melting method.
22, 54-59, comparative aluminum alloy No. 29-31, 37-4
3, 46-48, 60-62 and conventional aluminum alloy (JIS
7075 alloy and 7N01 alloy). Each of the comparative aluminum alloys shown in the table has a composition in which any of the components (indicated by asterisks in Tables 1 and 2) is out of the range of the alloy of the present invention. is there.

次いで、この棒状鋳塊を450〜480℃で12時間均質化処
理した後、370〜420℃で22mmφの丸棒及び5mm厚さ×100
mm幅の平角板に押出し、次に470〜490℃で溶体化処理を
行なった後、約入処理を行なった。その後、7日間室温
に放置した後、120℃で24時間人工時効を行なった。
Next, after homogenizing this rod-shaped ingot at 450 to 480 ° C. for 12 hours, a round bar having a diameter of 22 mm and a thickness of 5 mm × 100 at 370 to 420 ° C.
It was extruded into a rectangular plate having a width of mm, then subjected to a solution treatment at 470 to 490 ° C., and then subjected to a filling treatment. Then, after leaving at room temperature for 7 days, artificial aging was performed at 120 ° C. for 24 hours.

このようにして製造した材料について、常温における
引張試験、150℃における高温引張試験、切削試験、溶
接割れ試験等を行なった結果を第3表、第4表に記し
た。
Tables 3 and 4 show the results of a tensile test at room temperature, a high-temperature tensile test at 150 ° C., a cutting test, a weld crack test and the like performed on the material thus manufactured.

〔試験方法〕〔Test method〕

(1)常温における引張試験 (a)試験片 :JIS Z 2201の4号試験片 (b)試験方法 :アムスラー万能試験機 (c)測定値 :引張強さ、耐力、伸び (2)高温(150℃)における引張試験 (a)試験片 :JIS G 0567の高温引張試験片 (b)試験方法 :JIS G 0567高温引張試験に基
づく (c)測定値 :引張強さ、耐力、伸び (3)切削試験 (a)切削条件 試料寸法 :22mmφ丸棒 設備 :NC旋盤 切削工具 :スローアウェイチップ 三菱
HTi10DNPR431 周速 :100mm/min 送り :0.04mm/rev 切り込み量:1mm 潤滑油 :使用せず (b)切粉処理性 切粉100個当たりの重量(g/100個)を測定
し、次の基準で判定する。
(1) Tensile test at normal temperature (a) Test piece: No. 4 test piece of JIS Z 2201 (b) Test method: Amsler universal testing machine (c) Measured value: Tensile strength, yield strength, elongation (2) High temperature (150 ℃) Tensile test (a) Test piece: High temperature tensile test piece of JIS G 0567 (b) Test method: Based on JIS G 0567 high temperature tensile test (c) Measured value: Tensile strength, yield strength, elongation (3) Cutting Test (a) Cutting conditions Sample size: 22mmφ round bar Equipment: NC lathe Cutting tool: Indexable insert Mitsubishi
HTi10DNPR431 Circumferential speed: 100mm / min Feed: 0.04mm / rev Cutting depth: 1mm Lubricating oil: Not used (b) Chip controllability Measure the weight per 100 chips (g / 100) and determine the following criteria. Is determined.

◎…2g/100以下 ○…2以上4g/100個未満 △…4以上6g/100個未満 ×…6g/100以上 (c)切削仕上げ面 切削仕上げ面の粗大粗さRmax(μm)を測
定し、次の基準で判定する。
◎… 2g / 100 or less ○… 2 or more and less than 4g / 100 pieces △… 4 or more and less than 6g / 100 pieces ×… 6g / 100 or more (c) Finished surface Measure the roughness Rmax (μm) of the finished surface. Is determined based on the following criteria.

◎…10μm未満 ○…10μm以上15μm未満 △…15μm以上20μm未満 ×…20μm以上 (4)溶接割れ試験 (a)試験片 :第2図に示す、フィッシュボ
ーン形試験片 (b)溶接条件 溶接方法 :TIG 溶接電流 :140A 溶接速度 :25〜30cm/min アルゴン流量:10/min 電極 :純タングステン、3.2mmφ (c)割れ評価 割れ率(%)を求め、次の基準で判定す
る。
◎: less than 10 μm ○: 10 μm to less than 15 μm △: 15 μm to less than 20 μm ×: 20 μm or more (4) Welding crack test (a) Test piece: Fishbone type test piece shown in Fig. 2 (b) Welding conditions Welding method : TIG Welding current: 140A Welding speed: 25-30cm / min Argon flow rate: 10 / min Electrode: Pure tungsten, 3.2mmφ (c) Crack evaluation Determine the crack rate (%) and judge it by the following criteria.

◎…5%未満 ○…5%以上10%未満 △…10%以上30%未満 ×…30%以上 第3表、第4表の結果から明らかなように本発明に係
わる成形金型用アルミニウム合金は比較材、従来材料に
比べて、常温における引張性能、高温における引張性
能、切削性、溶接性の何れかにおいても優れている。こ
れに対して比較材料は本発明の合金組成範囲を外れるた
め(※印)、切粉処理性、切削仕上および耐溶接割れ性
のいずれかまたはいずれも本発明合金より劣ることが認
められた。またNo.52、No.53の従来合金も上記の特性お
よび引張特性が悪いことが明らかである。
◎… less than 5% ○… 5% or more and less than 10% △… 10% or more and less than 30% ×… 30% or more As is evident from the results of Tables 3 and 4, the aluminum alloy for forming dies according to the present invention has tensile performance at room temperature, tensile performance at high temperature, machinability, and weldability as compared with comparative materials and conventional materials. In any case, it is excellent. On the other hand, since the comparative material was out of the alloy composition range of the present invention (marked with *), it was recognized that any or all of the chipping property, the cutting finish, and the weld cracking resistance were inferior to the alloy of the present invention. It is also clear that the conventional alloys No. 52 and No. 53 also have the above-mentioned poor properties and tensile properties.

実施例2 次に、本発明合金と、従来多く使用されていた鋼(S5
5C)及び従来アルミニウム合金(7075)の成形金型の寿
命について試験した。その結果を第5表に示す。
Example 2 Next, the alloy of the present invention and a steel (S5
5C) and a conventional aluminum alloy (7075) were tested for life. Table 5 shows the results.

〔試験方法〕〔Test method〕

(1)金型材料 本発明合金:No.15の成分の材料(T651処理材) 鋼 :S55C 従来アルミニウム合金:7075−T6517N01−T6 (2)金型形状 :第2図および第3図の形状 (電気部品 射出成形用金型) (3)樹脂材 :PP樹脂 (4)射出条件 設備 :東芝IS70E(75ton)射出成形機 樹脂温度:280℃ 金型温度:60℃ 射出速度:10〜40% 射出圧力:20〜35kgf/cm2 (5)金型寿命 :使用不可能になるまでのショット回
第5表のごとく、本発明合金製の成形金型の寿命は、
従来のアルミニウム合金(7075、7N01合金)より遥かに
優れ、鋼(S55C)に匹敵する寿命を示した。
(1) Die material Alloy of the present invention: Material of No. 15 component (T651 treated material) Steel: S55C Conventional aluminum alloy: 7075-T6517N01-T6 (2) Die shape: Shapes shown in FIGS. 2 and 3 (Electric parts injection mold) (3) Resin material: PP resin (4) Injection conditions Equipment: Toshiba IS70E (75ton) injection molding machine Resin temperature: 280 ° C Mold temperature: 60 ° C Injection speed: 10-40% Injection pressure: 20 to 35 kgf / cm 2 (5) Mold life: Number of shots before use becomes impossible As shown in Table 5, the life of the molding die made of the alloy of the present invention is as follows.
It is far superior to conventional aluminum alloys (7075 and 7N01 alloys) and has a service life comparable to steel (S55C).

〔発明の効果〕〔The invention's effect〕

本発明の合金は、上述したところから既に理解しうる
ように、プラスチック、ゴム等の成形金型用材料として
は、従来のアルミニウム合金よりは、強度、高温特性、
切削性、及び溶接性が優れ、金型の寿命も飛躍的に改善
され、鋼に匹敵するものである。本発明合金は押出加工
によるばかりでなく、圧延、鍛造等によっても製造でき
る。尚、本発明合金は溶接構造用材料や、治工具類にも
使用可能である。
The alloy of the present invention, as can be understood from the above, as a material for molding dies such as plastic and rubber, compared to conventional aluminum alloys, strength, high-temperature properties,
It has excellent machinability and weldability, and the life of the mold is dramatically improved. It is comparable to steel. The alloy of the present invention can be produced not only by extrusion but also by rolling, forging and the like. In addition, the alloy of the present invention can be used as a material for a welding structure or a jig.

【図面の簡単な説明】[Brief description of the drawings]

第1図はフィッシュボーン形割れ試験片の平面図、第2
図および第3図はPP樹脂製電気部品の射出成形用金型を
示す斜視図である。 1a……固定側プラ型、1b……可動側プラ型、2……固定
板、3……ガイドピン、4……ガイド穴、5……リター
ンピン穴、6……リターンピン、7……モールドベー
ス、12……フィッシュボーン形割れ試験片、12a……溶
接ビード、12b溶接割れ、12c……割れ長さ、12d……溶
接方向。
FIG. 1 is a plan view of a fishbone type cracked test piece, and FIG.
FIG. 3 and FIG. 3 are perspective views showing a mold for injection molding of electric parts made of PP resin. 1a: fixed-side plastic mold, 1b: movable-side plastic mold, 2: fixed plate, 3 ... guide pin, 4 ... guide hole, 5 ... return pin hole, 6 ... return pin, 7 ... Mold base, 12: Fishbone type crack test piece, 12a: Weld bead, 12b weld crack, 12c: Crack length, 12d: Weld direction.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Zn5.0〜8.0%、Mg2.0〜3.5%、Cu0.50〜2.
5%、Ni0.05〜1.2%、希土類元素またはミッシュメタル
0.05〜1.0%、Fe0.20〜0.45%、Si0.05〜0.15%で且つF
e+Si>0.25%、Fe/Si>3(以上重量%)を必須成分と
して含有し、残部がAlと不可避不純物からなることを特
徴とする成形金型及び工具用高強度アルミニウム合金。
(1) Zn 5.0-8.0%, Mg 2.0-3.5%, Cu 0.50-2.
5%, Ni 0.05-1.2%, rare earth element or misch metal
0.05-1.0%, Fe 0.20-0.45%, Si 0.05-0.15% and F
A high-strength aluminum alloy for molding dies and tools, comprising e + Si> 0.25% and Fe / Si> 3 (more than weight%) as essential components, with the balance being Al and unavoidable impurities.
【請求項2】Zn5.0〜8.0%、Mg2.0〜3.5%、Cu0.50〜2.
5%、Ni0.05〜1.2%、希土類元素またはミッシュメタル
0.05〜1.0%、Fe0.20〜0.45%、Si0.05〜0.15%で且つF
e+Si>0.25%、Fe/Si>3を必須成分として含有し、さ
らに、Ti0.001〜0.1%、B0.0001〜0.01%、Zr0.05〜0.2
5%、V0.03〜0.15%(以上重量%)のうち1種以上を含
有し、残部がAlと不可避不純物からなることを特徴とす
る成形金型及び工具用高強度アルミニウム合金。
2. Zn 5.0-8.0%, Mg 2.0-3.5%, Cu 0.50-2.
5%, Ni 0.05-1.2%, rare earth element or misch metal
0.05-1.0%, Fe 0.20-0.45%, Si 0.05-0.15% and F
e + Si> 0.25%, Fe / Si> 3 as essential components, and furthermore, Ti 0.001-0.1%, B 0.0001-0.01%, Zr 0.05-0.2
A high-strength aluminum alloy for forming dies and tools, characterized by containing at least one of 5% and V0.03 to 0.15% (or more by weight), with the balance being Al and unavoidable impurities.
【請求項3】Zn5.0〜8.0%、Mg2.0〜3.5%、Cu0.50〜2.
5%、Ni0.05〜1.2%、希土類元素またはミッシュメタル
0.05〜1.0%、Fe0.20〜0.45%、Si0.05〜0.15%で且つF
e+Si>0.25%、Fe/Si>3を必須成分として含有し、さ
らに、PbとBi、PbとSn、または、PbとBiとSnを合計で0.
5〜2.5%(以上重量%)含有してなり、残部がAlと不可
避不純物からなることを特徴とする成形金型及び工具用
高強度アルミニウム合金。
(3) Zn 5.0-8.0%, Mg 2.0-3.5%, Cu 0.50-2.
5%, Ni 0.05-1.2%, rare earth element or misch metal
0.05-1.0%, Fe 0.20-0.45%, Si 0.05-0.15% and F
Contains e + Si> 0.25% and Fe / Si> 3 as essential components, and further contains Pb and Bi, Pb and Sn, or Pb, Bi and Sn in a total amount of 0.1%.
A high-strength aluminum alloy for forming dies and tools, characterized by containing 5 to 2.5% (or more by weight) and the balance being Al and unavoidable impurities.
【請求項4】Zn5.0〜8.0%、Mg2.0〜3.5%、Cu0.50〜2.
5%、Ni0.05〜1.2%、希土類元素またはミッシュメタル
0.05〜1.0%、Fe0.20〜0.45%、Si0.05〜0.15%で且つF
e+Si>0.25%、Fe/Si>3を必須成分として含有し、さ
らに、Ti0.001〜0.1%、B0.0001〜0.01%、Zr0.05〜0.2
5%、V0.03〜0.15%(以上重量%)のうち1種以上、及
びPbとBi、PbとSn、または、PbとBiとSnを合計で0.5〜
2.5%(以上重量%)を含有し、残部がAlと不可避不純
物からなることを特徴とする成形金型及び工具用高強度
アルミニウム合金。
(4) Zn 5.0-8.0%, Mg 2.0-3.5%, Cu 0.50-2.
5%, Ni 0.05-1.2%, rare earth element or misch metal
0.05-1.0%, Fe 0.20-0.45%, Si 0.05-0.15% and F
e + Si> 0.25%, Fe / Si> 3 as essential components, and furthermore, Ti 0.001-0.1%, B 0.0001-0.01%, Zr 0.05-0.2
5%, at least one of V0.03 to 0.15% (more than weight%), and Pb and Bi, Pb and Sn, or Pb, Bi and Sn in total of 0.5 to
A high-strength aluminum alloy for forming dies and tools, containing 2.5% (or more by weight), with the balance being Al and unavoidable impurities.
JP26109488A 1988-10-17 1988-10-17 High strength aluminum alloy for molding dies and tools Expired - Fee Related JP2749597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26109488A JP2749597B2 (en) 1988-10-17 1988-10-17 High strength aluminum alloy for molding dies and tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26109488A JP2749597B2 (en) 1988-10-17 1988-10-17 High strength aluminum alloy for molding dies and tools

Publications (2)

Publication Number Publication Date
JPH02107739A JPH02107739A (en) 1990-04-19
JP2749597B2 true JP2749597B2 (en) 1998-05-13

Family

ID=17357002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26109488A Expired - Fee Related JP2749597B2 (en) 1988-10-17 1988-10-17 High strength aluminum alloy for molding dies and tools

Country Status (1)

Country Link
JP (1) JP2749597B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2184166C2 (en) * 2000-08-01 2002-06-27 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Aluminum-based high-strength alloy and product manufactured therefrom
TW201116371A (en) * 2009-11-13 2011-05-16 Metaltech Ind Co Ltd Wrench
CN106893907A (en) * 2015-12-21 2017-06-27 比亚迪股份有限公司 A kind of aluminium alloy and preparation method thereof
CN106893908A (en) * 2015-12-21 2017-06-27 比亚迪股份有限公司 A kind of aluminium alloy and preparation method thereof
JP7321457B2 (en) * 2020-02-28 2023-08-07 株式会社豊田自動織機 Aluminum alloy material, manufacturing method thereof, and impeller

Also Published As

Publication number Publication date
JPH02107739A (en) 1990-04-19

Similar Documents

Publication Publication Date Title
US8273193B2 (en) Lead-free, bismuth-free free-cutting silicon brass alloy
EP1904659B1 (en) A wrought aluminum aa7000-series alloy product and method of producing said product
EP2664687B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
US8263233B2 (en) Frame member for use in two-wheeled vehicle and all-terrain vehicle, and method for producing the same
US5512241A (en) Al-Cu-Li weld filler alloy, process for the preparation thereof and process for welding therewith
US6716390B2 (en) Aluminum alloy extruded material for automotive structural members
US8454766B2 (en) Extruded material of a free-cutting aluminum alloy excellent in embrittlement resistance at a high temperature
JP4801386B2 (en) Aluminum alloy plastic processed product, manufacturing method thereof, automotive parts, aging furnace, and aluminum alloy plastic processed product manufacturing system
JP3939414B2 (en) High-strength aluminum alloy screw and manufacturing method thereof
JP3726087B2 (en) Aluminum alloy forged material for transport machine structural material and method for producing the same
JP2749597B2 (en) High strength aluminum alloy for molding dies and tools
JP5275321B2 (en) Manufacturing method of plastic products made of aluminum alloy
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JP6886861B2 (en) Welding method of aluminum alloy
JP4631231B2 (en) Magnesium alloy wheel for vehicle and method for manufacturing the same
RU2247168C1 (en) Aluminum-based alloy
JPH02129348A (en) Manufacture of free-cutting high-strength aluminum alloy stock
JP2023146389A (en) Aluminum alloy extruded material for cutting work, recycling method of blazing sheet waste, and manufacturing method of aluminum alloy extruded material
TW202407111A (en) Wrought copper-zinc alloy, semi-finished product made from a wrought copper-zinc alloy, and method for producing such a semi-finished product
JPS63290240A (en) High strength aluminum free cutting alloy
JPS62170447A (en) Wear resistant aluminum alloy having superior machinability and workability
JPH0347938A (en) Non-heat treated type high strength aluminum alloy for machining
JPS63312945A (en) Non heat treatment type high strength free cutting aluminum alloy for cold forging and its production
JP2000144293A (en) Bending and arc welding-use automotive frame structural material consisting of aluminum-magnesium- silicon alloy extruded material
HU176201B (en) High-tensile alznmgcu alloy of decreased sensitivity to stress corrosion and method for producing same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees