JP2749355B2 - Electrostatic deflection device - Google Patents

Electrostatic deflection device

Info

Publication number
JP2749355B2
JP2749355B2 JP1068326A JP6832689A JP2749355B2 JP 2749355 B2 JP2749355 B2 JP 2749355B2 JP 1068326 A JP1068326 A JP 1068326A JP 6832689 A JP6832689 A JP 6832689A JP 2749355 B2 JP2749355 B2 JP 2749355B2
Authority
JP
Japan
Prior art keywords
cylinder
groove
electrode
electrodes
electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1068326A
Other languages
Japanese (ja)
Other versions
JPH02247966A (en
Inventor
義久 大饗
章夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1068326A priority Critical patent/JP2749355B2/en
Priority to US07/472,984 priority patent/US5041731A/en
Priority to EP90400157A priority patent/EP0379442B1/en
Priority to DE69020747T priority patent/DE69020747T2/en
Publication of JPH02247966A publication Critical patent/JPH02247966A/en
Application granted granted Critical
Publication of JP2749355B2 publication Critical patent/JP2749355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔目次〕 概要 産業上の利用分野 従来の技術 発明が解決しようとする課題 課題を解決するための手段 作用 実施例 本発明の一実施例 (第1〜5図) 発明の効果 〔概要〕 静電偏向装置に関し、 物理的強度を保持したまま静電偏向装置を小型化する
ことができ、かつ、電極を極めて精度良く配置するとと
もに、いかなる部分がチャージアップしてもビームに
は、影響を及ぼさないようにすることができる静電偏向
装置を提供することを目的とし、 絶縁体からなる両端開放の円筒の内周面に、該円筒の
上端部から下端部に至る複数の直線状の溝によって複数
の電極片を該円筒と一体的に等間隔に形成し、前記溝の
底部又は底部に近い部分を、該溝の前記内周面における
開口幅よりも広げ、且つ、前記円筒の内周面及び前記溝
の内壁面のうちの前記円筒の中心軸から見通せる部分を
金属膜で被覆するとともに、前記溝の内壁面のうち、前
記電極片によって前記円筒の中心軸から見通せない部分
に、前記円筒の上端部から下端部に至る該金属膜で被覆
されない絶縁領域を設けたことを特徴とする。
DETAILED DESCRIPTION OF THE INVENTION [Table of Contents] Overview Industrial application Field of the Invention Prior Art Problems to be Solved by the Invention Means for Solving the Problems Action Embodiment One Embodiment of the Present Invention (FIGS. 1 to 5) [Outline] Regarding the electrostatic deflecting device, it is possible to reduce the size of the electrostatic deflecting device while maintaining the physical strength, and to arrange the electrodes with extremely high accuracy, and to beam even if any part is charged up. The object of the present invention is to provide an electrostatic deflecting device capable of preventing the influence from being exerted on the inner peripheral surface of a cylinder made of an insulator and having both ends opened, and a plurality of cylinders extending from the upper end to the lower end of the cylinder. A plurality of electrode pieces are formed at equal intervals integrally with the cylinder by the linear groove of the above, the bottom of the groove or a portion near the bottom is wider than the opening width of the inner peripheral surface of the groove, and The inner peripheral surface of the cylinder and the front A portion of the inner wall surface of the groove that can be seen from the center axis of the cylinder is covered with a metal film, and a portion of the inner wall surface of the groove that is not seen from the center axis of the cylinder due to the electrode piece is an upper end of the cylinder. An insulating region extending from a portion to a lower end and not covered with the metal film is provided.

〔産業上の利用分野〕[Industrial applications]

本発明は、静電偏向装置に係り、詳しくは、荷電粒子
ビームを試料上で走査するための静電偏向装置に関す
る。
The present invention relates to an electrostatic deflection device, and more particularly to an electrostatic deflection device for scanning a charged particle beam on a sample.

偏向は荷電粒子ビーム装置における基本技術の一つで
ある。荷電粒子の一つである電子ビームを用いた露光装
置においては、低収差高速偏向が要求されるため、偏向
器を大偏向用と小偏向用に分離し、小偏向用としては、
走査速度が速く、低電圧で動作する静電偏向器が使用さ
れている。
Deflection is one of the basic technologies in charged particle beam devices. In an exposure apparatus using an electron beam, which is one of charged particles, since low aberration and high speed deflection are required, a deflector is separated into a large deflection and a small deflection.
An electrostatic deflector operating at a low voltage with a high scanning speed is used.

〔従来の技術〕[Conventional technology]

従来の静電偏向装置は小偏向用として使用され、偏向
能率を良くするために最終レンズ内に配置されていた。
同様の理由で大偏向用の磁界型偏向装置も最終レンズ内
に配置する必要がある。したがって、磁界型偏向装置と
静電偏向装置は偏向能率の関係や、装置自体の大きさの
関係等から、磁界型偏向器の内側に静電偏向装置を配置
しなければならなかった。すなわち、磁界中に電極を配
置することになるため、磁界を乱すことになる。これを
避けるため、多極の電極を製作する場合には個々の電極
を絶縁体で形成し、その表面を金属薄膜で被覆して組み
立ることにより、静電偏向装置を構成するものが一般的
である。
Conventional electrostatic deflecting devices have been used for small deflections and have been placed in the final lens to improve deflection efficiency.
For the same reason, a magnetic field type deflection device for large deflection needs to be arranged in the final lens. Therefore, the magnetic field type deflector and the electrostatic deflector have to be arranged inside the magnetic field type deflector due to the relationship between the deflection efficiency and the size of the device itself. That is, since the electrodes are arranged in the magnetic field, the magnetic field is disturbed. In order to avoid this, when manufacturing multi-pole electrodes, it is common to construct an electrostatic deflection device by forming each electrode with an insulator, covering the surface with a metal thin film and assembling it. It is.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、このような従来の静電偏向装置にあっ
ては、絶縁体の表面を金属薄膜で被覆した個々の電極を
組み上げて装置を構成する構造となっていたため、以下
に述べるような問題点があった。
However, such a conventional electrostatic deflecting device has a structure in which an electrode is assembled by assembling individual electrodes each having an insulator surface coated with a metal thin film, and thus has the following problems. there were.

すなわち、個々の絶縁体を組み上げて電極を構成する
関係上、電極の取り付け精度には限界があり、電極の大
きさが一定の場合電極の極数が増えると対向する電極間
距離が大きくならざるを得ない。したがって、同じ偏向
量を得るためにはより高い電圧を印加する必要が生じ、
大きな電源が必要になるばかりか、走査速度を遅くする
要因となっている。また、静電偏向装置が大きくなるこ
とにより静電偏向装置の外側にある磁界型偏向装置を構
成する電磁コイルも大きくなり、コイルのインダクタン
スの増大から走査速度を一段と低下させてしまうことに
なる。さらに、個々の電極の工作精度は高いものであっ
ても、静電偏向装置自体は小さいものであるため組み立
てに非常に手間を要し、組み立て精度の向上が図れない
という問題点があった。
That is, since the electrodes are constructed by assembling the individual insulators, there is a limit in the electrode mounting accuracy, and when the size of the electrodes is constant, if the number of poles of the electrodes increases, the distance between the facing electrodes cannot be increased. Not get. Therefore, it is necessary to apply a higher voltage to obtain the same deflection amount,
Not only does a large power supply become necessary, but it also causes a reduction in scanning speed. In addition, as the size of the electrostatic deflecting device increases, the size of the electromagnetic coil constituting the magnetic field type deflecting device outside the electrostatic deflecting device also increases, and the scanning speed is further reduced due to the increase in the inductance of the coil. Furthermore, even if the working accuracy of the individual electrodes is high, there is a problem that the electrostatic deflection device itself is very small, so that it takes a lot of time to assemble, and that the assembling accuracy cannot be improved.

また、支持体と全ての多極電極片を一体形成したもの
がある。しかし、このものは支持体と電極の一端がある
地点で一体化するような構造であったため、電極が長い
場合は強度が不足し、また、電極の一端が一体化する支
持体部では電極間を絶縁しなければならないことから、
絶縁部の露出によって該絶縁部に荷電粒子が当たること
により不確定な電位を生じるチャージアップが発生して
しまう。チャージアップによる電位は荷電粒子を不規則
に偏向してしまうため、精度低下を招く。これを避ける
ため、荷電粒子が露出した絶縁部に当たらないように支
持体部のさらに内側にアース接続された筒を配置し、ビ
ームに対する絶縁部のチャージアップの影響を打ち消し
ていた。したがって、アース接続された筒を支持体内部
に設けることから、静電偏向装置は大きなものとならざ
るを得ず、前述したように走査速度の低下等を招来して
いた。
In addition, there is one in which a support and all multipolar electrode pieces are integrally formed. However, since this structure has a structure in which the support and the one end of the electrode are integrated at a certain point, if the electrode is long, the strength is insufficient. Must be insulated from
Exposure of the insulating portion to charged particles impinging on the insulating portion causes a charge-up that generates an indeterminate potential. The potential due to the charge-up causes the charged particles to deflect irregularly, resulting in a decrease in accuracy. In order to avoid this, a cylinder connected to the ground is arranged further inside the support portion so that the charged particles do not hit the exposed insulating portion, thereby canceling the effect of charge-up of the insulating portion on the beam. Therefore, since the cylinder connected to the ground is provided inside the support, the electrostatic deflecting device must be large, leading to a reduction in the scanning speed as described above.

そこで本発明は、物理的強度を保持したまま静電偏向
装置を小型化することができ、かつ、電極を極めて精度
良く配置するとともに、いかなる部分がチャージアップ
してもビームには影響を及ぼさないようにすることがで
きる静電偏向装置を提供することを目的としている。
Therefore, the present invention can reduce the size of the electrostatic deflecting device while maintaining the physical strength, and arrange the electrodes with extremely high accuracy, and even if any part is charged up, the beam is not affected. It is an object of the present invention to provide an electrostatic deflecting device that can be configured as follows.

〔課題を解決するための手段〕[Means for solving the problem]

本発明による静電偏向装置は、上記目的達成のため、
絶縁体からなる両端開放の円筒の内周面に、該円筒の上
端部から下端部に至る複数の直線状の溝によって複数の
電極片を該円筒と一体的に等間隔に形成し、前記溝の底
部又は底部に近い部分を、該溝の前記内周面における開
口幅よりも広げ、且つ、前記円筒の内周面及び前記溝の
内壁面のうちの前記円筒の中心軸から見通せる部分を金
属膜で被覆するとともに、前記溝の内壁面のうち、前記
電極片によって前記円筒の中心軸から見通せない部分
に、前記円筒の上端部から下端部に至る該金属膜で被覆
されない絶縁領域を設けたことを特徴とする。
The electrostatic deflecting device according to the present invention achieves the above object,
A plurality of electrode pieces are formed at equal intervals integrally with the cylinder by means of a plurality of linear grooves extending from the upper end to the lower end of the cylinder on the inner peripheral surface of the cylinder having both ends open and formed of an insulator. The bottom or a portion close to the bottom is wider than the opening width of the groove on the inner peripheral surface, and the part of the inner peripheral surface of the cylinder and the inner wall surface of the groove that can be seen from the central axis of the cylinder is made of metal. While being covered with a film, an insulating region that is not covered with the metal film from the upper end to the lower end of the cylinder is provided in a portion of the inner wall surface of the groove that cannot be seen from the center axis of the cylinder by the electrode pieces. It is characterized by the following.

〔作用〕[Action]

本発明では、ビーム軸心から見通せる部分に形成され
た金属被膜が、見通せない部分の絶縁領域で分割され、
その結果、多数の電極片が形成される。
In the present invention, the metal film formed on the portion that can be seen from the beam axis is divided by the insulating region of the unseen portion,
As a result, many electrode pieces are formed.

したがって、電気的に絶縁された電極片が形成され、
該電極片は支持体である筒と一体成形されることから個
々の電極片を小型化しても十分な強度および加工・組立
精度を得ることができる。また、荷電粒子ビームから見
える部分は全て金属膜で被覆されているから、絶縁体露
出部がビームにあたることによって発生するチャージア
ップの影響が適切に回避される。
Therefore, an electrically insulated electrode piece is formed,
Since the electrode pieces are integrally formed with the cylinder as the support, sufficient strength and sufficient processing / assembly accuracy can be obtained even if the individual electrode pieces are miniaturized. In addition, since all portions visible from the charged particle beam are covered with the metal film, the influence of charge-up caused by the exposed insulator portion hitting the beam is appropriately avoided.

〔実施例〕〔Example〕

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be described with reference to the drawings.

原理説明 本発明は、絶縁体からなる筒の内面にほぼ荷電粒子ビ
ームの進行方向に沿って電極に等しい数の溝を設けると
ともに、該筒内面を金属膜被覆し、該溝の所定区域に絶
縁体を設けて電気的に絶縁することにより、該筒内面に
複数個の電極を形成する。また、該溝は荷電粒子ビーム
の放射線方向の照射に対して前記絶縁部が露出しないよ
うな区域を有する形状に画成されている。
Principle explanation The present invention provides an equal number of grooves on the inner surface of a cylinder made of an insulator along the traveling direction of the charged particle beam to the electrodes, and coats the inner surface of the cylinder with a metal film to insulate a predetermined area of the groove. By providing a body and electrically insulating, a plurality of electrodes are formed on the inner surface of the cylinder. The groove is defined in a shape having an area such that the insulating portion is not exposed to irradiation of the charged particle beam in the radiation direction.

したがって、複数個の電極片が筒の内面に一体的に形
成されることになり個々の電極片を小型化することがで
きるとともに、支持体と電極片を一体化することによっ
て電極片を小型化しても十分な強度を確保することがで
きる。
Therefore, a plurality of electrode pieces are integrally formed on the inner surface of the cylinder, so that each electrode piece can be downsized. In addition, the electrode piece can be downsized by integrating the support and the electrode piece. However, sufficient strength can be ensured.

一実施例 以下、上記基本原理に基づいて実施例を説明する。第
1〜5図は本発明に係る静電偏向装置の一実施例を示す
図であり、本実施例は電極を8個有する静電偏向装置に
適用した例である。第1図は静電偏向装置の斜視図、第
2図は第1図におけるI−I矢視断面図、第3図は第1
図におけるII−II矢視断面図である。
Embodiment An embodiment will be described below based on the above basic principle. FIGS. 1 to 5 show an embodiment of the electrostatic deflection apparatus according to the present invention. This embodiment is an example applied to an electrostatic deflection apparatus having eight electrodes. FIG. 1 is a perspective view of the electrostatic deflecting device, FIG. 2 is a sectional view taken along the line II in FIG. 1, and FIG.
FIG. 2 is a sectional view taken along the line II-II in FIG.

まず、構成を説明する。第1〜3図において、1は静
電偏向装置であり、2は絶縁体からなる円筒である。円
筒(筒)2には円筒2の内面2aから外面2bに向かって半
径方向(すなわち、荷電粒子ビームの放射線方向)にT
字型の変形溝(溝)3〜10が8個画成され、変形溝3〜
10を画成することにより電極片11〜18が8個形成され
る。変形溝3〜10は荷電粒子ビームを受ける区域の溝部
3a〜10aと、ビームを受ける区域外の溝部、すなわちビ
ームを受けない区域に位置する溝部3b〜10bとから構成
される。変形溝3〜10は、例えばワイヤカッターを用い
て形成することができるが、予め電極および支持体が形
成された型に絶縁体を注入、成形する態様であってもよ
い。
First, the configuration will be described. 1 to 3, reference numeral 1 denotes an electrostatic deflecting device, and reference numeral 2 denotes a cylinder made of an insulator. The cylinder (cylinder) 2 has T in the radial direction (ie, the radiation direction of the charged particle beam) from the inner surface 2a of the cylinder 2 to the outer surface 2b.
Eight shaped deformation grooves (grooves) 3 to 10 are defined, and the deformation grooves 3 to 10 are formed.
By defining 10, eight electrode pieces 11 to 18 are formed. Deformation grooves 3 to 10 are grooves in the area where the charged particle beam is received
3a to 10a and grooves 3b to 10b located outside the beam receiving area, that is, grooves 3b to 10b located in the area not receiving the beam. The deformed grooves 3 to 10 can be formed by using, for example, a wire cutter, but may be a mode in which an insulator is injected into a mold in which an electrode and a support are formed in advance and molded.

変形溝3〜10の形状は本実施例のようなT字型のもの
には限定されず、荷電粒子ビームの放射線を受けない区
域を持つものであればよく、他の実施例として第4図
(a)〜(g)に示すような形状のものでもよい。
The shape of the deformed grooves 3 to 10 is not limited to the T-shape as in the present embodiment, but may be any as long as it has an area which does not receive the radiation of the charged particle beam. Shapes as shown in (a) to (g) may be used.

すなわち、第4図(a)に示されたT字形の変形溝20
は荷電粒子ビームを受ける区域の溝部20aと、前記ビー
ムを受ける区域外の溝部20bとから構成される。また、
同図(b)に示された円形の変形溝21は荷電粒子ビーム
を受ける区域の溝部21aと、前記ビームを受ける区域外
の溝部21bとから構成される。また、同図(c)に示さ
れたL字形の変形溝22は荷電粒子ビームを受ける区域の
溝部22aと、前記ビームを受ける区域外の溝部22bとから
構成される。また、同図(d)に示されたL字形の変形
溝23は荷電粒子ビームを受ける区域の溝部23aと、前記
ビームを受ける区域外の溝部23bとから構成される。ま
た、同図(e)に示された円形の変形溝24は荷電粒子ビ
ームを受ける区域の溝部24aと、前記ビームを受ける区
域外の溝部24bとから構成される。また、同図(f)に
示されたL字形の変形溝25は荷電粒子ビームを受ける区
域の溝部25aと、前記ビームを受ける区域外の溝部25bと
から構成される。また、同図(g)に示された三角形の
変形溝26は荷電粒子ビームを受ける区域の溝部23aと、
前記ビームを受ける区域外の溝部26bとから構成され
る。
That is, the T-shaped deformed groove 20 shown in FIG.
Is composed of a groove 20a in an area for receiving the charged particle beam and a groove 20b outside the area for receiving the beam. Also,
The circular deformed groove 21 shown in FIG. 5B is composed of a groove 21a in an area for receiving the charged particle beam and a groove 21b outside the area for receiving the beam. The L-shaped deformed groove 22 shown in FIG. 4C is composed of a groove 22a in an area for receiving the charged particle beam and a groove 22b outside the area for receiving the beam. The L-shaped deformed groove 23 shown in FIG. 4D is composed of a groove 23a in an area for receiving the charged particle beam and a groove 23b outside the area for receiving the beam. Further, the circular deformed groove 24 shown in FIG. 3E is composed of a groove 24a in an area for receiving the charged particle beam and a groove 24b outside the area for receiving the beam. Further, the L-shaped deformed groove 25 shown in FIG. 6F is composed of a groove 25a in an area for receiving the charged particle beam and a groove 25b outside the area for receiving the beam. Also, the triangular deformed groove 26 shown in FIG. 9G has a groove 23a in an area for receiving the charged particle beam,
And a groove 26b outside the area for receiving the beam.

変形溝3〜10の個数は形成しようとする電極数に対応
するものであれば、8個には限定されないことは言うま
でもない。さらに、隣り合う2つの前記変形溝3〜10間
に位置する電極片11〜18は他の実施例として第5図に示
されている。第5図(a)〜(d)に示された電極片31
〜34は基部31a〜34aと、基部31a〜34aと一体的に形成さ
れ基部よりも大きな断面積を有する先端部31b〜34bと、
から構成される。第5図(a)における電極片31の先端
部31bは平坦な内面を有し、第5図(b)における電極
片32の先端部32bは円弧凹状の内面を有し、第5図
(c)における電極片33の先端部33bは半円凸上の内面
を有し、第5図(d)における電極片34の先端部34bは
三角凸状の内面を有する。
It goes without saying that the number of the deformation grooves 3 to 10 is not limited to eight as long as it corresponds to the number of electrodes to be formed. Further, electrode pieces 11 to 18 located between two adjacent deformed grooves 3 to 10 are shown in FIG. 5 as another embodiment. The electrode piece 31 shown in FIGS. 5 (a) to (d)
To 34 are bases 31a to 34a, and tips 31b to 34b formed integrally with the bases 31a to 34a and having a larger cross-sectional area than the base,
Consists of The tip 31b of the electrode piece 31 in FIG. 5 (a) has a flat inner surface, and the tip 32b of the electrode piece 32 in FIG. 5 (b) has an arc-shaped concave inner surface. In FIG. 5 (d), the tip 33b of the electrode piece 33 has a semicircular convex inner surface, and the tip 34b of the electrode piece 34 in FIG. 5 (d) has a triangular convex inner surface.

円筒2の内面2aは変形溝3〜10の溝部3b〜10bの一部
領域を除いて、例えば金属メッキにより全て金属膜で被
覆されている。個々の電極片11〜18は金属膜で被覆され
ない部分、すなわち、絶縁体が剥き出しになっている帯
状絶縁領域(絶縁部)3c〜10cによって電気的に分離さ
れている。この帯状絶縁領域は、円筒内面を全面金属膜
で被覆した後、ワイヤーカッタで剥離するか、放電加工
によって剥離することより形成する。帯状絶縁領域3c〜
10cは放射線方向にのびる荷電粒子ビームから見えない
位置であれば変形溝3〜10の溝部3b〜10bのどの位置に
形成してもよく、例えば第2図に示す(ア)の位置ある
いは(イ)の位置の何れの位置に形成してもよい。した
がって、対向する電極片3〜10の内面2a同士が一対の電
極11a〜18aを形成することになる。そして、その電極11
a〜18aは支持部材である円筒2と一体形成された構造と
なっていることから物理的強度が強く、かつ、小型化さ
れたものとなっている。また、帯状絶縁領域3c〜10cを
荷電粒子ビームから見えない位置に形成することによ
り、個々の電極片11〜18を電気的に分離する一方で、荷
電粒子ビームから見える部分には全て導体である金属膜
が被覆されていることにより、従来例のような露出した
絶縁部を排除してチャージアップの影響を回避すること
ができる。
The inner surface 2a of the cylinder 2 is entirely covered with a metal film by, for example, metal plating, except for a part of the grooves 3b to 10b of the deformed grooves 3 to 10. The individual electrode pieces 11 to 18 are electrically separated by portions not covered with the metal film, that is, strip-shaped insulating regions (insulating portions) 3c to 10c where the insulator is exposed. This band-shaped insulating region is formed by coating the entire inner surface of the cylinder with a metal film and then peeling it off with a wire cutter or peeling it off by electric discharge machining. Band-shaped insulating region 3c ~
10c may be formed at any position of the grooves 3b to 10b of the deformed grooves 3 to 10 as long as it is not visible from the charged particle beam extending in the radiation direction. For example, the position (a) shown in FIG. ) May be formed at any position. Therefore, the inner surfaces 2a of the opposing electrode pieces 3 to 10 form a pair of electrodes 11a to 18a. And the electrode 11
Since a to 18a have a structure integrally formed with the cylinder 2 as a support member, they have high physical strength and are miniaturized. Further, by forming the strip-shaped insulating regions 3c to 10c at positions that are not visible from the charged particle beam, the individual electrode pieces 11 to 18 are electrically separated, while all the portions visible from the charged particle beam are conductors. Since the metal film is covered, the exposed insulating portion as in the conventional example can be eliminated to avoid the influence of the charge-up.

第1図に示すように、電極片11〜18の端部は円筒2の
端部よりも突出させるとともに、帯状絶縁領域3c〜10c
を荷電粒子ビームから見えないように円筒2の端面上で
半径方向に延長させることにより電極11a〜18aに所定の
電圧を印加するための接点35を形成するようにしている
(第1図は電極18aの接点35のみを示す)。また、帯状
絶縁領域の端部の変形例として帯状絶縁領域36のような
形状のものでもよい。なお、第1図において、帯状絶縁
領域9c、10c及び36は、太線部で示した。さらに、本実
施例では全ての変形溝3〜10について金属膜で導通して
いるのでどこか1箇所(例えば、第2図中(ウ)の箇
所)でアースに落とすようにすればよい。
As shown in FIG. 1, the ends of the electrode pieces 11 to 18 are made to protrude beyond the end of the cylinder 2 and the band-shaped insulating regions 3c to 10c
Are extended in the radial direction on the end face of the cylinder 2 so as to be invisible from the charged particle beam, thereby forming a contact point 35 for applying a predetermined voltage to the electrodes 11a to 18a (FIG. 1 shows an electrode). Only the contact 35 of 18a is shown). Further, as a modification of the end portion of the strip-shaped insulating region, a shape like the strip-shaped insulating region 36 may be used. In FIG. 1, the band-shaped insulating regions 9c, 10c and 36 are indicated by thick lines. Further, in this embodiment, since all the deformed grooves 3 to 10 are electrically connected by the metal film, they may be dropped to the ground at one place (for example, (c) in FIG. 2).

以上述べたように、本実施例によれば、複数個の電極
片11〜18を円筒2の内面2aに形成することにより個々の
電極片11〜18を小型化することができ、同時に支持体で
ある円筒2と電極片11〜18を一体化することによって電
極片11〜18を小型化しても十分な強度を確保することが
できる。また、電極片11〜18の端部は支持体である円筒
2つの端部より突出させるようにしている。したがっ
て、電極片11〜18の端部においても支持体の絶縁体露出
部3c〜10c、36がビームから見えないため、静電偏向装
置1の如何なる部分もチャージアップの影響をビームに
及ぼさないようにすることができる。
As described above, according to the present embodiment, by forming a plurality of electrode pieces 11 to 18 on the inner surface 2a of the cylinder 2, the individual electrode pieces 11 to 18 can be reduced in size, and By integrating the cylinder 2 and the electrode pieces 11 to 18 as described above, sufficient strength can be ensured even if the electrode pieces 11 to 18 are downsized. Also, the ends of the electrode pieces 11 to 18 are made to protrude from the two ends of the cylinder as the support. Therefore, even at the ends of the electrode pieces 11 to 18, the insulator exposed portions 3c to 10c and 36 of the support are not visible from the beam, so that any part of the electrostatic deflection device 1 does not affect the beam due to charge-up. Can be

さらに、予め複数の電極および支持体が形成された型
の絶縁体を注入、成形する場合には、電極間相互の精度
はその型で決まり、円筒または多角筒の内面にワイヤカ
ッターを用いて変形溝3〜10あるいは20〜26を形成する
場合には、電極11a〜18a間相互の精度はその型の工作精
度で決定されるため、電極11a〜18aの組み立て精度とは
無関係となり、高精度の静電偏向装置を容易に得ること
が可能になる。
Furthermore, when injecting and molding an insulator of a mold in which a plurality of electrodes and a support are formed in advance, the accuracy between the electrodes is determined by the mold, and the inner surface of the cylinder or polygonal cylinder is deformed using a wire cutter. When the grooves 3 to 10 or 20 to 26 are formed, since the mutual accuracy between the electrodes 11a to 18a is determined by the machining accuracy of the mold, the accuracy is not related to the assembly accuracy of the electrodes 11a to 18a. It is possible to easily obtain an electrostatic deflecting device.

〔発明の効果〕〔The invention's effect〕

本発明によれば、物理的強度を保持したまま小型化す
ることができ、かつ、電極を極めて精度良く配置すると
ともに、いかなる部分がチャージアップしてもビームに
は影響を及ぼさないようにすることができる。
According to the present invention, it is possible to reduce the size while maintaining the physical strength, and to arrange the electrodes with extremely high accuracy, so that even if any part of the electrode is charged up, the beam is not affected. Can be.

【図面の簡単な説明】[Brief description of the drawings]

第1〜5図は本発明に係る静電偏向装置の一実施例を示
す図であり、 第1図はその斜視図、 第2図は第1図におけるI〜I矢視断面図、 第3図は第1図におけるII〜II矢視断面図、 第4図はその他の実施例の変形溝を示す破断平面図、 第5図はその他の実施例の電極片を示す破断平面図であ
る。 1……静電偏向器(静電偏向装置)、2……円筒
(筒)、2a……内面、2b……外面、3〜10、20〜26……
変形溝(溝)、3a〜10a、20a〜26a……ビームを受ける
区域の溝部、3b〜10b、20b〜26b……ビームを受ける区
域外の溝部、3c〜10c、36……帯状絶縁領域(絶縁
部)、11〜18、31〜34……電極片、11a〜18a……電極、
31a〜34a……基部、31b〜34b……先端部、35a……接
点。
1 to 5 are views showing an embodiment of the electrostatic deflecting device according to the present invention, FIG. 1 is a perspective view thereof, FIG. 2 is a sectional view taken along arrows I to I in FIG. The figure is a cross-sectional view taken along the arrows II to II in FIG. 1, FIG. 4 is a cutaway plan view showing a deformed groove of another embodiment, and FIG. 5 is a cutaway plan view showing an electrode piece of another embodiment. 1 ... electrostatic deflector (electrostatic deflector), 2 ... cylinder (tube), 2a ... inner surface, 2b ... outer surface, 3-10, 20-26 ...
Deformation grooves (grooves), 3a to 10a, 20a to 26a ... groove portions in the beam receiving area, 3b to 10b, 20b to 26b ... groove portions outside the beam receiving area, 3c to 10c, 36 ... band-shaped insulating region ( Insulating parts), 11-18, 31-34 ... electrode pieces, 11a-18a ... electrodes,
31a to 34a: base portion, 31b to 34b, distal end portion, 35a: contact point.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁体からなる両端開放の円筒の内周面
に、該円筒の上端部から下端部に至る複数の直線状の溝
によって複数の電極片を該円筒と一体的に形成し、 前記溝の底部又は底部に近い部分を、該溝の前記内周面
における開口幅よりも広げ、且つ、 前記円筒の内周面及び前記溝の内壁面のうちの前記円筒
の中心軸から見通せる部分を金属膜で被覆するととも
に、前記溝の内壁面のうち、前記電極片によって前記円
筒の中心軸から見通せない部分に、前記円筒の上端部か
ら下端部に至る該金属膜で被覆されない絶縁領域を設け
たことを特徴とする静電偏向装置。
1. A plurality of electrode pieces are integrally formed with an inner peripheral surface of a cylinder made of an insulator by a plurality of linear grooves extending from an upper end portion to a lower end portion of the cylinder, both ends being open. The bottom of the groove or a portion close to the bottom is wider than the opening width in the inner peripheral surface of the groove, and a portion of the inner peripheral surface of the cylinder and the inner wall surface of the groove that can be seen from the central axis of the cylinder. While covering with a metal film, of the inner wall surface of the groove, in the portion that can not be seen from the center axis of the cylinder by the electrode piece, the insulating region that is not covered with the metal film from the upper end to the lower end of the cylinder An electrostatic deflecting device characterized by being provided.
JP1068326A 1989-01-20 1989-03-20 Electrostatic deflection device Expired - Lifetime JP2749355B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1068326A JP2749355B2 (en) 1989-03-20 1989-03-20 Electrostatic deflection device
US07/472,984 US5041731A (en) 1989-01-20 1990-01-12 Deflection compensating device for converging lens
EP90400157A EP0379442B1 (en) 1989-01-20 1990-01-19 Deflection compensating device for converging lens
DE69020747T DE69020747T2 (en) 1989-01-20 1990-01-19 A deflection compensating device for converging lenses.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1068326A JP2749355B2 (en) 1989-03-20 1989-03-20 Electrostatic deflection device

Publications (2)

Publication Number Publication Date
JPH02247966A JPH02247966A (en) 1990-10-03
JP2749355B2 true JP2749355B2 (en) 1998-05-13

Family

ID=13370590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1068326A Expired - Lifetime JP2749355B2 (en) 1989-01-20 1989-03-20 Electrostatic deflection device

Country Status (1)

Country Link
JP (1) JP2749355B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293472A (en) * 1996-04-26 1997-11-11 Fujitsu Ltd Charged particle beam exposure device, its exposure method, and its manufacture
JP3402998B2 (en) * 1997-03-18 2003-05-06 株式会社東芝 Manufacturing method of electrostatic deflection electrode for charged beam writing apparatus
JP4610029B2 (en) * 1999-02-02 2011-01-12 株式会社アドバンテスト Electron beam irradiation device electrostatic deflector
JP2001118536A (en) 1999-10-19 2001-04-27 Nikon Corp Charged particle beam control element and charged particle beam apparatus
DE102005005801B4 (en) * 2005-02-04 2007-08-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Electrostatic deflection system for corpuscular radiation
JP5097512B2 (en) * 2006-11-21 2012-12-12 株式会社日立ハイテクノロジーズ Orbit corrector for charged particle beam and charged particle beam apparatus
JP5195171B2 (en) * 2008-08-29 2013-05-08 株式会社島津製作所 Ion beam processing equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100243A (en) * 1985-10-24 1987-05-09 Ulvac Corp Vacuum cooling apparatus for storage of fresh food
JPS62110243A (en) * 1985-11-08 1987-05-21 Nippon Kogaku Kk <Nikon> Electrostatic deflecting device

Also Published As

Publication number Publication date
JPH02247966A (en) 1990-10-03

Similar Documents

Publication Publication Date Title
JP2749355B2 (en) Electrostatic deflection device
JPH09139184A (en) Manufacture of electrostatic deflection unit
JPH07182968A (en) Field emission-type cold cathode and microwave tube using the same
US5079476A (en) Encapsulated field emission device
KR970005756B1 (en) Method for producing an electro-static lens
US5041731A (en) Deflection compensating device for converging lens
EP0152933B1 (en) Electron gun
JPH0234136B2 (en)
KR930011412B1 (en) Sputtering cathode according to the magnetron principle
EP0999572A3 (en) Electrostatic deflector for electron beam exposure apparatus
TW201135792A (en) High voltage shielding arrangement
US5786657A (en) Field emission electron gun capable of minimizing nonuniform influence of surrounding electric potential condition on electrons emitted from emitters
US2644026A (en) Radioactive lightining protector with accelerating elements
RU2093919C1 (en) Process of manufacture of electron gun
JP2816849B2 (en) Electrostatic deflector
JPS58917Y2 (en) Structure of multipole electrostatic electrode
JP2882412B2 (en) Electron beam exposure equipment
US3045141A (en) Electron beam tube
US4573755A (en) Spark gap device for a cathode ray tube socket
GB2088126A (en) Flat type cathode ray tubes
US6452335B1 (en) Field emission type cold-cathode electron gun with focusing electrode
JPH0815057B2 (en) Electron gun for color cathode ray tube
JPS5853021Y2 (en) multipolar electrode
JPS6029800Y2 (en) Electrostatic deflection type cathode ray tube
JPS61133536A (en) Electron gun

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 12