JP2747082B2 - How to find the coefficient of friction during powder molding - Google Patents

How to find the coefficient of friction during powder molding

Info

Publication number
JP2747082B2
JP2747082B2 JP2108703A JP10870390A JP2747082B2 JP 2747082 B2 JP2747082 B2 JP 2747082B2 JP 2108703 A JP2108703 A JP 2108703A JP 10870390 A JP10870390 A JP 10870390A JP 2747082 B2 JP2747082 B2 JP 2747082B2
Authority
JP
Japan
Prior art keywords
die
powder
coefficient
friction
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2108703A
Other languages
Japanese (ja)
Other versions
JPH049639A (en
Inventor
晋 水沼
忠継 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2108703A priority Critical patent/JP2747082B2/en
Publication of JPH049639A publication Critical patent/JPH049639A/en
Application granted granted Critical
Publication of JP2747082B2 publication Critical patent/JP2747082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/005Control arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、粉体の金型成形時の摩擦係数を求める方法
に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for determining a coefficient of friction at the time of molding a powder.

[従来の金属] 金属粉やセラミック粉を金型により成形し焼結により
製品を製造する分野においては、製品の形状や寸法精度
に対する要求が厳しい。このような要求に応じえるた
め、あるいは製造歩留まりを向上させるためには粉体原
料の製造、成形、焼結などの各工程において各種外乱要
因を少なくすることが重要である。このためには、各工
程における重要な工程支配要因を常に管理し一定の水準
に保つことが必要である。
[Conventional Metal] In the field of manufacturing a product by sintering a metal powder or a ceramic powder by using a metal mold and sintering, there are strict requirements for the shape and dimensional accuracy of the product. In order to meet such demands or to improve the production yield, it is important to reduce various disturbance factors in each process such as production, molding, and sintering of powder raw materials. For this purpose, it is necessary to always manage important process control factors in each process and keep them at a certain level.

焼結品の形状や寸法は、成形体の密度分布と焼結時の
温度分布により決まる。
The shape and dimensions of the sintered product are determined by the density distribution of the compact and the temperature distribution during sintering.

成形体の密度分布に影響をおよぼす要因は非常に多
い。たとえば、原料粉の粒度分布、潤滑剤、金型の材
質、プレス方法などである。従来はこれらの要因の変化
と焼結品の形状や寸法精度との関係を調査し、経験的に
これら要因に対する最適な操業条件を見いだしていた。
しかしこれら各種要因の影響は複雑であり、影響度を定
量化するのはかなり困難であった。ところで、別の見方
をすれば成形体の密度分布は力学的にはダイス内の粉体
の応力−ひずみ挙動とダイス壁部の摩擦挙動によって決
まる(例えば、「塑性と加工」第27巻,第308号,(198
6−10),p1125〜1131、及び「平成元年度 塑性加工春
季講演会」(1989−5),p195〜198参照)。したがっ
て、上記各種要因が焼結時の形状、寸法におよぼす効果
を理解しやすくするために、まず各種要因が応力−ひず
み関係と摩擦係数におよぼす効果を高め、その後応力−
ひずみ関係と摩擦係数が焼結時の形状、寸法におよぼす
影響について考察するのが適切と言える。
There are many factors that affect the density distribution of a compact. For example, the particle size distribution of the raw material powder, the lubricant, the material of the mold, the pressing method, and the like. Conventionally, the relationship between the change of these factors and the shape and dimensional accuracy of the sintered product has been investigated, and the optimum operating conditions for these factors have been empirically found.
However, the effects of these various factors were complex and it was quite difficult to quantify the effects. From another point of view, the density distribution of the compact is mechanically determined by the stress-strain behavior of the powder in the die and the friction behavior of the die wall (for example, “Plasticity and Processing”, Vol. 27, No. No. 308, (198
6-10), pp. 1255-1131, and "Spring Lecture on Plastic Working in 1989" (1989-5), pp. 195-198). Therefore, in order to make it easier to understand the effects of the various factors on the shape and dimensions during sintering, the various factors first enhance the effect on the stress-strain relationship and the friction coefficient, and then increase the stress-strain.
It is appropriate to consider the effect of the strain relationship and the coefficient of friction on the shape and dimensions during sintering.

[発明が解決しようとする課題] 上記のような方法をとるためには、応力−ひずみ関係
と摩擦係数を求める必要がある。応力−ひずみ関係につ
いてはCIP(Cold Isostatic Pressing)時、あるいは潤
滑をよくし摩擦がほとんど無視できるような条件下での
単軸金型圧縮時の荷重と密度の関係から求めることがで
きる。この方法は公知である(上記の文献参照)。
[Problems to be Solved by the Invention] In order to adopt the above method, it is necessary to obtain a stress-strain relationship and a friction coefficient. The stress-strain relationship can be determined from the relationship between the load and the density during CIP (Cold Isostatic Pressing), or when compressing a single-shaft die under conditions where lubrication is improved and friction is almost negligible. This method is known (see the above-mentioned literature).

金型成形時の摩擦係数の求め方はかならずしも公知で
はない。従来摩擦係数が求められた例はあるが、それが
金型成形時の摩擦係数と同じであるという保証はない
(「The International Journal of Powder Metallurg
y」vol.23,No23,p83〜93、及び「Journal of Powder &
Bulk Solid Technology」,11(1987)2;1−5参照)。
たとえば、この「Journal of Powder & Bulk Solid Te
chnology」においては、二つの板の間に粉体を挟み、圧
力をかけながら板を互いに逆方向にスライドさせること
により摩擦係数を求めているが、金型成形とは変形様式
が大きく異なっている。
It is not always known how to determine the coefficient of friction during molding. Conventionally, the coefficient of friction has been determined, but there is no guarantee that the coefficient of friction is the same as the coefficient of friction during molding ("The International Journal of Powder Metallurg").
y ”vol.23, No23, p83-93, and“ Journal of Powder &
Bulk Solid Technology ", 11 (1987) 2; 1-5).
For example, this "Journal of Powder & Bulk Solid Te
In "chnology", the friction coefficient is determined by sandwiching a powder between two plates and sliding the plates in opposite directions while applying pressure, but the deformation mode is greatly different from that of die molding.

そこで本発明者らが、摩擦係数の測定法について種々
検討した結果、以下のような方法が最適であることが判
明した。
The inventors of the present invention have studied various methods for measuring the coefficient of friction and found that the following method is optimal.

[課題を解決するための手段] 本発明に係る摩擦係数を求める方法は、粉体の単軸圧
縮用金型において、ダイスの内面を構成するダイス壁部
の一つ以上の部分がダイス本体から切り離された構造を
もち、この切り離されたダイス壁部(可動ダイス)がダ
イス内の粉体から受ける壁面に垂直な力Pとプレス方向
の壁面内摩擦力Fを可動ダイスに取り付けたロードセル
で測定し、粉体と壁面の間の摩擦係数μをμ=F/Pの関
係から求めることを特徴とする。
[Means for Solving the Problems] A method for obtaining a friction coefficient according to the present invention is a method for producing a single-axis compression of a powder, wherein one or more portions of a die wall constituting an inner surface of a die are separated from a die body. With the structure separated, the force P perpendicular to the wall surface which the separated die wall (movable die) receives from the powder in the die and the frictional force F in the wall in the pressing direction are measured by a load cell attached to the movable die. In addition, the friction coefficient μ between the powder and the wall surface is obtained from the relationship μ = F / P.

第1図、第2図で原理を説明する。第1図は四角形状
単軸金型プレスの横断面図、第2図は縦断面図を示して
いる。1はダイス本体、2はダイスの一部であるが本体
1から切り離されており、可動ダイスと呼ぶ。可動ダイ
スがダイス本体から切り離されているのは、ダイス内面
で粉体と接している部分2′にかかる面圧Pと摩擦力F
を測定するためである。これらの値がわかれば摩擦係数
μはμ=F/Pの関係から求めることができる。以下、プ
レス作業方法について説明する。最初に可動ダイスの背
面からプレストレスfをかけておく。この力は可動ダイ
スとダイス本体とが接触する面7、7′、8、8′にか
かる。この状態で面圧Pを0にセットしておく。fはガ
タを吸収するためと、粉体が可動ダイスとダイス本体の
接触面7,7′、8,8′に最初に入り込むのを防ぐためにか
ける力なのであまり大きい力である必要なない。
The principle will be described with reference to FIGS. FIG. 1 is a transverse sectional view of a square-shaped single-shaft die press, and FIG. 2 is a longitudinal sectional view. 1 is a die main body, 2 is a part of the die, but is separated from the main body 1 and is called a movable die. The movable die is separated from the die body because the surface pressure P and the frictional force F applied to the portion 2 ′ in contact with the powder on the inner surface of the die.
It is for measuring. If these values are known, the coefficient of friction μ can be determined from the relationship μ = F / P. Hereinafter, a press operation method will be described. First, a prestress f is applied from the back of the movable die. This force is applied to the surfaces 7, 7 ', 8, 8' where the movable die and the die body contact. In this state, the surface pressure P is set to 0. f is a force applied to absorb backlash and to prevent the powder from first entering the contact surfaces 7, 7 ', 8, 8' of the movable die and the die body, so that a large force is not required.

以上のような手順で求められた摩擦係数と公知の方法
で求められた応力−ひずみ関係曲線が、常に同じになる
ように操業条件を制御すれば同じ密度分布の成形体が得
られ、焼結時の温度分布を一定になるように制御すれば
同一形状、寸法の製品が得られる。この方法の利点は、
摩擦係数や応力−ひずみ関係が粉体の諸材質特性値や金
型条件などの各種工程支配要因と関係をつけやすいとい
うことにある。
By controlling the operating conditions so that the friction coefficient determined by the above procedure and the stress-strain relationship curve determined by a known method are always the same, a compact having the same density distribution can be obtained, If the temperature distribution at the time is controlled to be constant, a product having the same shape and dimensions can be obtained. The advantage of this method is
This is because the friction coefficient and the stress-strain relationship are easily related to various process controlling factors such as various material property values of the powder and mold conditions.

以上の原理の説明では内面が四角形の金型を例として
用いたが、円形形状でもまた多角形形状でも同様の測定
ができることは明らかである。
In the above description of the principle, a mold having a square inner surface is used as an example, but it is clear that the same measurement can be performed with a circular shape or a polygonal shape.

[実施例] 第3図、第4図は装置の一例を示したものである。ダ
イス内面四角形(20mm口)を構成する四辺のうち、相対
する二辺に対応するダイス壁部分が可動ダイスになって
いる。第3図は縦断面図、第4図は第3図中に示したB
−B断面図である。
Embodiment FIG. 3 and FIG. 4 show an example of the apparatus. The die wall corresponding to the two opposing sides of the four sides constituting the inner surface square (20 mm opening) is a movable die. FIG. 3 is a longitudinal sectional view, and FIG.
It is -B sectional drawing.

1はダイス本体、2は可動ダイス、3は上パンチ、4
は下パンチ、5−1,5−2,5−4,5−5はダイス内壁に垂
直な面圧Pを測定するためのロードセル、5−3,5−6
はダイス内面の摩擦力Fを測定するためのロードセルで
ある。6−1,6−2はそれぞれ上パンチ、下パンチの荷
重PU,PDを測定するためのロードセルである。9は可動
ダイスにプレストレスを与えるためのボールスクリュ
ー、10は可動ダイスとダイス本体の間の摺動面の摩擦を
0に近づけるためのボールスクリューである。
1 is a die body, 2 is a movable die, 3 is an upper punch, 4
Is a lower punch, 5-1,5-2,5-4,5-5 is a load cell for measuring the surface pressure P perpendicular to the inner wall of the die, 5-3,5-6
Is a load cell for measuring the frictional force F on the inner surface of the die. Reference numerals 6-1 and 6-2 denote load cells for measuring the loads P U and P D of the upper punch and the lower punch, respectively. Reference numeral 9 denotes a ball screw for applying a prestress to the movable die, and reference numeral 10 denotes a ball screw for reducing friction of a sliding surface between the movable die and the die body to zero.

第5図はアルミナ粉にグラファイトを5重量%混合し
た材料を20gダイス内に投入し圧縮した場合の荷重の測
定例を示したものである。横軸は時間t、縦軸は荷重P
である。aは上パンチ下降時、bは停止時、c、dは上
昇時である。PUは上パンチ荷重、P=P1+P2は垂直力、
P3は摩擦力である。
FIG. 5 shows a measurement example of a load when a material obtained by mixing 5% by weight of graphite with alumina powder is put into a 20-g die and compressed. The horizontal axis is time t, and the vertical axis is load P
It is. a is when the upper punch is lowered, b is when stopped, and c and d are when ascended. P U is the upper punch load, P = P 1 + P 2 is the normal force,
P 3 is a friction force.

第6図はアルミナ粉とグラファイト粉の混合体の摩擦
係数μ=P3/(P1+P2)とアスペクト比X/Dの関係を示し
たものである。材質A、材質B、材質Cのグラファイト
量はそれぞれ0.5、50重量%である。図中の30g、20gな
どはダイス内へ投入する粉体の量を示している。μは摩
擦係数の平均値である。Xはダイス底から上パンチ面ま
での距離、Dはダイス内径である。
FIG. 6 shows the relationship between the friction coefficient μ = P 3 / (P 1 + P 2 ) and the aspect ratio X / D of the mixture of alumina powder and graphite powder. The graphite amounts of the material A, the material B, and the material C are 0.5 and 50% by weight, respectively. 30g, 20g, etc. in the figure indicate the amount of powder to be charged into the die. μ is the average value of the coefficient of friction. X is the distance from the die bottom to the upper punch surface, and D is the die inner diameter.

第7図はソフトフェライト粉体の場合の同様の例であ
る。摩擦係数μ=P6/(P4+P5)もほぼ同様の値であっ
た。上記のようにして得られた摩擦係数の値は、潤滑剤
(グラファイト)の量に対して合理的な変化をしてお
り、またバルク材の従来の経験値とくらべても妥当な値
である。
FIG. 7 shows a similar example in the case of soft ferrite powder. The coefficient of friction μ = P 6 / (P 4 + P 5 ) was almost the same value. The value of the coefficient of friction obtained as described above has a reasonable change with respect to the amount of the lubricant (graphite), and is a reasonable value compared with the conventional empirical value of the bulk material. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は四角形状単軸金型プレスの横断面図、第2図は
縦断面図を示している。第3図、第4図は実施例で用い
た装置の一例を示したものである。第5図はアルミナ粉
にグラファイトを5重量%混合した材料を20gダイス内
に投入し圧縮した場合の荷重の測定例を示したものであ
る。第6図はアルミナ粉とグラファイト粉の混合体の摩
擦係数μとアスペクト比の関係を示したものである。第
7図はソフトフェライト粉体の場合の摩擦係数の同様の
測定例である。 1……ダイス本体、2……可動ダイス、3……上パン
チ、4……下パンチ、5−1,5−2,5−4,5−5……ダイ
ス内壁に垂直な面圧Pを測定するためのロードセル、5
−3,5−6……ダイス内面の摩擦力Fを測定するための
ロードセル、6−1,6−2……それぞれ上パンチ、下パ
ンチの荷重PU,PDを測定するためのロードセル、7,7′,
8,8′……可動ダイスとダイス本体とが垂直に接触する
面、9……可動ダイスにプレストレスを与えるためのボ
ールスクリュー、10……可動ダイスとダイス本体の間の
摺動面の摩擦を0に近づけるためのボールスクリュー
FIG. 1 is a transverse sectional view of a square-shaped single-shaft die press, and FIG. 2 is a longitudinal sectional view. FIG. 3 and FIG. 4 show an example of the apparatus used in the embodiment. FIG. 5 shows a measurement example of a load when a material obtained by mixing 5% by weight of graphite with alumina powder is put into a 20-g die and compressed. FIG. 6 shows the relationship between the friction coefficient μ of the mixture of alumina powder and graphite powder and the aspect ratio. FIG. 7 shows a similar measurement example of the coefficient of friction in the case of soft ferrite powder. 1 ... die body, 2 ... movable die, 3 ... upper punch, 4 ... lower punch, 5-1, 5-2, 5-4, 5-5 ... surface pressure P perpendicular to the inner wall of the die Load cell for measurement, 5
-3, 5-6: load cells for measuring the friction force F on the inner surface of the die, 6-1 and 6-2: load cells for measuring the loads P U , P D of the upper punch and the lower punch, respectively. 7,7 ′,
8, 8 ': surface where the movable die and the die body are in vertical contact, 9: ball screw for applying prestress to the movable die, 10: friction of the sliding surface between the movable die and the die body Ball screw to bring the value closer to 0

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粉体の単軸圧縮用金型において、ダイスの
内面を構成するダイス壁部の一つ以上の部分がダイス本
体から切り離された構造をもち、この切り離されたダイ
ス壁部(可動ダイス)がダイス内の粉体から受ける壁面
に垂直な力Pとプレス方向の壁面内摩擦力Fを可動ダイ
スに取り付けたロードセルで測定し、粉体と壁面の間の
摩擦係数μをμ=F/Pの関係から求めることを特徴とす
る粉体の金型成形時の摩擦係数を求める方法。
1. A die for uniaxial compression of powder, wherein one or more portions of a die wall constituting an inner surface of a die are separated from a die body, and the separated die wall ( The force P perpendicular to the wall surface received by the movable die) from the powder in the die and the frictional force F in the wall surface in the pressing direction are measured by a load cell attached to the movable die, and the friction coefficient μ between the powder and the wall is μ = A method of determining a friction coefficient at the time of molding a powder, which is determined from an F / P relationship.
JP2108703A 1990-04-26 1990-04-26 How to find the coefficient of friction during powder molding Expired - Fee Related JP2747082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2108703A JP2747082B2 (en) 1990-04-26 1990-04-26 How to find the coefficient of friction during powder molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2108703A JP2747082B2 (en) 1990-04-26 1990-04-26 How to find the coefficient of friction during powder molding

Publications (2)

Publication Number Publication Date
JPH049639A JPH049639A (en) 1992-01-14
JP2747082B2 true JP2747082B2 (en) 1998-05-06

Family

ID=14491480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2108703A Expired - Fee Related JP2747082B2 (en) 1990-04-26 1990-04-26 How to find the coefficient of friction during powder molding

Country Status (1)

Country Link
JP (1) JP2747082B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10135283C2 (en) * 2001-07-19 2003-09-18 Fette Wilhelm Gmbh Process for pressing powder material
DE102010011995A1 (en) * 2010-03-17 2011-09-22 Peter Luxner Method for operating pressing device, involves pressing powder and granulates in die plate of press with die, where radial warping of mold against wall of die plate set during pressing of powder and granulates is measured
JP6347201B2 (en) * 2014-10-23 2018-06-27 新日鐵住金株式会社 Friction coefficient measuring apparatus and method

Also Published As

Publication number Publication date
JPH049639A (en) 1992-01-14

Similar Documents

Publication Publication Date Title
James Particle deformation during cold isostatic pressing of metal powders
US3284195A (en) Method of fabricating articles from powders
JP2747082B2 (en) How to find the coefficient of friction during powder molding
Michrafy et al. Wall friction and its effects on the density distribution in the compaction of pharmaceutical excipients
US4260582A (en) Differential expansion volume compaction
Schwartz et al. Model for compaction of ceramic powders
US3075244A (en) Manufacture of articles from powdered materials
Niesz A review of ceramic powder compaction
Roure et al. Analysis of die compaction of tungsten carbide and cobalt powder mixtures
US5916497A (en) Manufacturing of ceramic articles
CN110085338B (en) UO 2 Preparation method and preparation device of/Cr composite fuel pellet
US4441874A (en) Apparatus for differential expansion volume compaction
Klemm et al. Influence of admixing of lubricants on compressibility and compactibility of uranium dioxide powders
US2835573A (en) Hot pressing with a temperature gradient
Strijbos et al. Stress and density distributions in the compaction of powders
JP3521088B2 (en) Molding method of metal powder for powder metallurgy
US3576925A (en) Method of preparing fuel plates for a nuclear reactor
Majling et al. Porosimeter as a Means to Measure the Compactibility of Powders
Balakrishna et al. Light attrition of uranium dioxide powder
Ewsuk et al. Science-Based Ceramic Powder Processing
CN205659760U (en) Laboratory swager
Riskulov et al. ASPECTS OF THE FRICTIONAL MATERIALS APPLICATION FOR THE MACHINERY PARTS
Yanai et al. Powder characteristics influencing density distribution in green pellet
RU1801774C (en) Method for briquetting metal chip
Ahasan et al. Simulation studies on the densification behaviour of sintered aluminium preforms

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees