JP2745955B2 - Intake device for internal combustion engine - Google Patents

Intake device for internal combustion engine

Info

Publication number
JP2745955B2
JP2745955B2 JP4111675A JP11167592A JP2745955B2 JP 2745955 B2 JP2745955 B2 JP 2745955B2 JP 4111675 A JP4111675 A JP 4111675A JP 11167592 A JP11167592 A JP 11167592A JP 2745955 B2 JP2745955 B2 JP 2745955B2
Authority
JP
Japan
Prior art keywords
intake
low
valve
lift
intake valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4111675A
Other languages
Japanese (ja)
Other versions
JPH05306637A (en
Inventor
信 中村
信一 竹村
康志 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP4111675A priority Critical patent/JP2745955B2/en
Publication of JPH05306637A publication Critical patent/JPH05306637A/en
Application granted granted Critical
Publication of JP2745955B2 publication Critical patent/JP2745955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の吸気装置に
関し、特に吸気弁の作動を制御する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake device for an internal combustion engine, and more particularly to a technique for controlling the operation of an intake valve.

【0002】[0002]

【従来の技術】内燃機関において燃費やトルク特性の改
善を図った吸気装置として、気筒毎に2つの吸気弁を備
え、低回転域では一方の吸気弁の作動を停止し他方の吸
気弁のみを作動させることにより、吸気スワールを発生
させて混合気の混合性を高め、以て燃費を改善し、高回
転域では2つの吸気弁共に作動させて吸気充填効率を高
め、高いトルクを得られるようにしたものがある (特開
昭59−229008号公報等参照) 。
2. Description of the Related Art In an internal combustion engine, an intake system for improving fuel efficiency and torque characteristics is provided with two intake valves for each cylinder, and in a low rotation speed range, one intake valve is stopped and only the other intake valve is operated. When activated, the intake swirl is generated to enhance the mixture of the air-fuel mixture, thereby improving fuel efficiency. In a high rotation range, both intake valves are activated to increase intake charging efficiency and obtain high torque. (See Japanese Patent Application Laid-Open No. 59-229008, etc.).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、かかる
従来の吸気装置においては、低速でしか走行しないよう
な走行状態が所定期間以上継続すると、作動を停止して
いる吸気弁の開口部近傍に堆積したデポジットが成長
し、その後高速域に移行して開閉作動される際に大量の
デポジットが吸気ポートの開口面積を低減させて吸入空
気量を十分確保できずトルクが低下したり、吸気弁と弁
座との間に入り込んで気密不良に至るという問題点があ
った。
However, in such a conventional intake device, when a traveling state in which the vehicle travels only at a low speed continues for a predetermined period or more, the accumulated air accumulates in the vicinity of the opening of the intake valve whose operation is stopped. When the deposit grows and then shifts to the high-speed range and opens and closes, a large amount of deposit reduces the opening area of the intake port, making it impossible to secure a sufficient amount of intake air, reducing torque, and reducing the intake valve and valve seat. In the airtightness.

【0004】本発明は、このような従来の問題点に鑑み
なされたもので、気筒毎に備えられる2つの吸気弁の作
動を適切に制御することにより、燃費,トルク特性を良
好に確保しつつデポジットの成長を抑制して上記問題を
解決した内燃機関の吸気装置を提供することを目的とす
る。
The present invention has been made in view of such conventional problems, and by appropriately controlling the operation of two intake valves provided for each cylinder, it is possible to ensure good fuel economy and torque characteristics. It is an object of the present invention to provide an intake device for an internal combustion engine that solves the above problem by suppressing the growth of deposits.

【0005】[0005]

【課題を解決するための手段】このため本発明は、気筒
毎に2つの吸気弁を備えると共に、該2つの吸気弁のリ
フト・作用角特性を2段階に変化させる可変動弁機構
と、一方の吸気弁の作動を停止させる弁作動停止機構
と、を備えた内燃機関の吸気装置において、機関の回転
速度を検出する回転速度検出手段と、機関の負荷を検出
する負荷検出手段と、アイドル域では前記2つの吸気弁
を作動させ、アイドル域以外の低回転・低負荷域では
なくとも一方の吸気弁の作動を停止して他方の吸気弁の
み作動させ、低回転・高負荷域では2つの吸気弁を低リ
フト・小作用角の特性で作動させ、高回転域では高リフ
ト・大作用角の特性で作動させるように前記可変動弁機
構を制御する動弁機構制御手段と、を含んで構成した。
Accordingly, the present invention provides a variable valve mechanism having two intake valves for each cylinder, and changing the lift / working angle characteristics of the two intake valves in two stages. A rotational speed detecting means for detecting a rotational speed of the engine, a load detecting means for detecting a load on the engine, and an idle range. Then, the two intake valves are operated, and in the low-speed / low-load region other than the idling region, the amount is small.
At least one of the intake valves is stopped and only the other intake valve is activated, and the two intake valves are operated with the characteristics of low lift and small working angle in the low rotation and high load range, and high lift in the high rotation range. A valve mechanism control means for controlling the variable valve mechanism so as to operate with a characteristic of a large operating angle.

【0006】[0006]

【作用】アイドル域以外の低回転・低負荷域では少なく
とも一方の吸気弁の作動を停止して他方の吸気弁のみ作
動させることにより、例えば、燃料供給量が少なくとも
吸気スワールを発生させて燃料と空気との混合性を良く
することにより燃焼性を向上させることなどにより、燃
費の向上を図る。低回転・高負荷域では、高負荷の要求
に応じて2つの吸気弁を作動させて吸気ポートの開口面
積を確保すると同時に、吸気の慣性が小さいので2つの
吸気弁を低リフト・小作用角の特性で作動させることに
より吸気充填効率を高めるようにする。高回転域では、
吸気の慣性が大きいので、2つの吸気弁を高リフト・大
作用角の特性で作動させて吸気充填効率を確保し、最大
出力を十分大きく確保できるようにする。また、アイド
ル域では2つの吸気弁を作動させることにより、渋滞時
等で低速走行が長時間継続するような場合でも、吸気弁
が閉状態に長時間保持されることがなく、閉弁時に吸気
弁近傍に堆積したデポジットが少量のうちにアイドル域
で燃焼除去され、デポジットの成長が抑制される。
In a low-rotation / low-load range other than the idling range, at least one of the intake valves is stopped and only the other is operated, so that, for example, the fuel supply amount generates at least the intake swirl and the fuel is supplied. Fuel efficiency is improved by improving the combustibility by improving the mixing property with air. In the low rotation and high load range, the two intake valves are operated in response to a high load requirement to secure an opening area of the intake port, and at the same time, since the inertia of the intake is small, the two intake valves have a low lift and a small operating angle. By operating with the characteristics described above, the intake charging efficiency is increased. At high rpm,
Since the inertia of the intake air is large, the two intake valves are operated with the characteristics of a high lift and a large operating angle to secure the intake charging efficiency and to ensure a sufficiently large maximum output. By operating the two intake valves in the idle range, the intake valves are not held in the closed state for a long time even when the low-speed running continues for a long time due to traffic congestion or the like. The deposit deposited near the valve is burned and removed in the idle region in a small amount, and the growth of the deposit is suppressed.

【0007】低回転・高負荷域では、高負荷の要求に応
じて2つの吸気弁を作動させて吸気ポートの開口面積を
確保すると同時に、吸気の慣性が小さいので2つの吸気
弁を低リフト・小作用角の特性で作動させることにより
吸気充填効率を高めるようにする。高回転域では、吸気
の慣性が大きいので、2つの吸気弁を高リフト・大作用
角の特性で作動させて吸気充填効率を確保し、最大出力
を十分大きく確保できるようにする。
In the low rotation speed and high load range, two intake valves are operated in response to a demand for high load to secure an opening area of the intake port, and at the same time, since the inertia of the intake is small, the two intake valves are connected to a low lift / low load. By operating with the characteristic of a small operating angle, the intake charging efficiency is increased. In the high rotation range, the inertia of the intake air is large. Therefore, the two intake valves are operated with the characteristics of high lift and large operating angle to secure the intake charging efficiency and to ensure a sufficiently large maximum output.

【0008】また、アイドル域では2つの吸気弁を作動
させることにより、渋滞時等で低速走行が長時間継続す
るような場合でも、吸気弁が閉状態に長時間保持される
ことがなく、閉弁時に吸気弁近傍に堆積したデポジット
が少量のうちにアイドル域で燃焼除去され、デポジット
の成長が抑制される。
In the idle range, by operating the two intake valves, the intake valves are not kept in the closed state for a long time even when the low-speed running continues for a long time due to traffic congestion. The deposits deposited near the intake valve during valve opening are burned and removed in the idle region in a small amount, and the growth of the deposits is suppressed.

【0009】[0009]

【実施例】以下に、本発明の実施例を図に基づいて説明
する。一実施例の構成を示す図1〜図5において、内燃
機関は、各気筒毎に2つの吸気弁1A,1Bを備えると
共に、これら吸気弁1A,1Bのリフト・作用角特性を
夫々2段階に変化させ、かつ、一方の吸気弁1Bの作動
を停止可能な可変動弁機構を備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 to 5 showing a configuration of an embodiment, an internal combustion engine is provided with two intake valves 1A and 1B for each cylinder, and the lift / working angle characteristics of the intake valves 1A and 1B are respectively set in two stages. It is provided with a variable valve mechanism that can change and stop the operation of one intake valve 1B.

【0010】前記可変動弁機構について説明すると、図
示しないシリンダヘッドに配設されたメインロッカシャ
フト2にメインロッカアーム3の一端部が回転自由に軸
支されており、該メインロッカアーム3の中央部には、
メインロッカシャフトローラ4が玉軸受5を介してメイ
ンロッカアーム3に固定されたシャフト6に回転自由に
軸支されると共に、サブロッカアーム7がメインロッカ
アーム3に固定されたシャフト8に揺動自由に軸支され
ている。前記メインロッカシャフトローラ4はメインロ
ッカシャフト2と平行に配設されたカムシャフトに形成
された低リフト・小作用角特性用カム9に係合し、前記
サブロッカアーム2は、前記カムシャフトに形成された
高リフト・大作用角特性用カム10に係合している。
The variable valve operating mechanism will be described. One end of a main rocker arm 3 is rotatably supported by a main rocker shaft 2 provided on a cylinder head (not shown). Is
A main rocker shaft roller 4 is rotatably supported by a shaft 6 fixed to the main rocker arm 3 via a ball bearing 5, and a sub rocker arm 7 is rotatably supported by a shaft 8 fixed to the main rocker arm 3. Supported. The main rocker shaft roller 4 is engaged with a low lift / small working angle characteristic cam 9 formed on a camshaft disposed in parallel with the main rocker shaft 2, and the sub rocker arm 2 is formed on the camshaft. Engaged with the high lift / large working angle characteristic cam 10.

【0011】また、サブロッカアーム7をスプリング11
の付勢力でメインロッカシャフト3方向に付勢するプラ
ンジャ12がメインロッカアーム3に形成された孔13内を
摺動自由に嵌挿保持されている。サブロッカアーム7の
揺動側端部にはメインロッカシャフト2の軸方向に貫通
する孔14が開口され、メインロッカアーム1の前記孔14
に対向する両側壁部分にはサブロッカアーム7の所定の
揺動角位置で前記孔14に重合する孔15,16が開口されて
いる。これら孔14と孔15,16とが重合された状態で孔1
4,15,16内を軸方向摺動自由な第1〜第3のプランジ
ャ17,18,19及び排油孔付ストッパ20が嵌合され、第3
のプランジャ19端面の凹部とストッパ20との間にスプリ
ング21が介装されている。また、メインロッカアーム3
には、前記孔15の奥側端面とメインロッカシャフト2の
嵌挿孔22とを結ぶ油路24が形成され、メインロッカシャ
フト2には、前記油路24と連通する環状溝25及び該環状
溝25と連通して径方向に延びる油路26、該油路26と連通
して軸方向に延びる油路27が形成され、油路27の端部は
第1切換弁28を介して圧油供給源 (オイルポンプ) 29と
低圧油源 (オイルタンク) 50とに選択的に連通するよう
に接続されている。
The sub rocker arm 7 is connected to a spring 11
The plunger 12 urged in the direction of the main rocker shaft 3 by the urging force is slidably inserted and held in a hole 13 formed in the main rocker arm 3. A hole 14 penetrating in the axial direction of the main rocker shaft 2 is opened at the swinging end of the sub rocker arm 7.
Holes 15 and 16 are formed in the side wall portions opposite to each other so as to overlap with the hole 14 at a predetermined swing angle position of the sub rocker arm 7. In the state where the holes 14 and the holes 15 and 16 are superimposed, the hole 1
The first to third plungers 17, 18, and 19, which are freely slidable in the axial direction in 4, 15, and 16, and the stopper 20 with an oil drain hole are fitted into the third plunger.
A spring 21 is interposed between the concave portion on the end face of the plunger 19 and the stopper 20. Also, the main rocker arm 3
An oil passage 24 is formed between the inner end surface of the hole 15 and the insertion hole 22 of the main rocker shaft 2. The main rocker shaft 2 has an annular groove 25 communicating with the oil passage 24 and the annular groove 25. An oil passage 26 communicating with the groove 25 and extending in the radial direction is formed, and an oil passage 27 communicating with the oil passage 26 and extending in the axial direction is formed. The end of the oil passage 27 is connected to the hydraulic oil via a first switching valve 28. It is connected so as to selectively communicate with a supply source (oil pump) 29 and a low-pressure oil source (oil tank) 50.

【0012】そして、前記第1切換弁28が一方の切換位
置に制御されて油路27が低圧油源50に連通し、孔15内に
圧油が供給されない状態では、前記スプリング21が伸張
して第2のプランジャ18が孔15の端面に当接し、この状
態では第1〜第3のプランジャ17,18,19は夫々孔14,
孔15,孔16内のみに収められ、この状態で第1のプラン
ジャ17はサブロッカアーム7と一体に孔14の軸方向とは
直角な方向に揺動自由となる (図2 (A) 参照) 。その
結果、高リフト・大作用角特性カム10に係合するサブロ
ッカアーム7がメインロッカアーム1に対して相対的に
揺動自由となり、メインロッカアーム3の動きが高リフ
ト・大作用角特性カム10には拘束されないので、メイン
ロッカアーム3は低リフト・小作用角特性カム9との係
合に従って従動し、吸気弁1A (及び作動時の吸気弁1
B) は、リフト量が低く、作用角(リフト開始から終了
までのクランク角度) も小さい特性で作動する (図6に
実線で示す) 。
When the first switching valve 28 is controlled to the one switching position, the oil passage 27 communicates with the low-pressure oil source 50, and the pressure oil is not supplied into the hole 15, the spring 21 expands. The second plunger 18 abuts against the end face of the hole 15, and in this state, the first to third plungers 17, 18, 19 are respectively connected to the holes 14,
The first plunger 17 is housed only in the holes 15 and 16 and in this state, the first plunger 17 can swing freely in a direction perpendicular to the axial direction of the hole 14 integrally with the sub rocker arm 7 (see FIG. 2A). . As a result, the sub rocker arm 7 engaging with the high lift / large working angle characteristic cam 10 becomes freely swingable relative to the main rocker arm 1, and the movement of the main rocker arm 3 moves to the high lift / large working angle characteristic cam 10. Is not constrained, the main rocker arm 3 is driven in accordance with the engagement with the low lift / small operating angle characteristic cam 9, and the intake valve 1A (and the intake valve 1
B) operates with characteristics that the lift amount is small and the working angle (crank angle from the start to the end of the lift) is small (shown by a solid line in FIG. 6).

【0013】また、前記第1切換弁28が他方の切換位置
に制御されて油路27が圧油供給源29に連通されると油路
27,26、環状溝25,油路24を介して孔15に圧油が供給さ
れ、その結果、スプリング21が圧縮され第1のプランジ
ャ17が孔14と孔16とに跨がって嵌合されると共に第2の
プランジャ18も孔15と孔14とに跨がって嵌合され、この
状態ではサブロッカアーム7の揺動が阻止されメインロ
ッカアーム3に対して固定される。その結果、メインロ
ッカアーム3は高リフト・大作用角特性カム10との係合
に従って従動し、吸気弁1A (及び作動時の吸気弁1
B) は、リフト量,作用角共に相対的に大きい特性で作
動する (図6に鎖線で示す) 。
When the first switching valve 28 is controlled to the other switching position and the oil passage 27 communicates with the pressure oil supply source 29, the oil passage
Pressurized oil is supplied to the hole 15 through the annular grooves 27 and 26, the annular groove 25, and the oil passage 24. As a result, the spring 21 is compressed and the first plunger 17 is fitted over the hole 14 and the hole 16. At the same time, the second plunger 18 is fitted over the hole 15 and the hole 14, and in this state, the swing of the sub rocker arm 7 is prevented and the second rocker 18 is fixed to the main rocker arm 3. As a result, the main rocker arm 3 is driven in accordance with the engagement with the high lift / large working angle characteristic cam 10, and the intake valve 1A (and the intake valve 1
B) operates with characteristics that both the lift amount and the operating angle are relatively large (shown by a chain line in FIG. 6).

【0014】次に、前記弁作動停止機構について説明す
る。一方の吸気弁1Aのステムヘッドと係合するロッド
30はメインロッカアーム3にナット31を介して締結され
ているが、他方の吸気弁1Bのステムヘッドと係合する
ロッド32に対しては、メインロッカアーム3に対して一
体に揺動させるときと、軸方向に相対移動自由として吸
気弁1Bの作動を停止させるときとに切り換える弁作動
停止機構が設けられる。
Next, the valve operation stopping mechanism will be described. Rod engaged with stem head of one intake valve 1A
30 is fastened to the main rocker arm 3 via a nut 31, but when the rod 32 engaging with the stem head of the other intake valve 1B swings integrally with the main rocker arm 3, A valve operation stopping mechanism is provided for switching between when the operation of the intake valve 1B is stopped as the relative movement is free in the axial direction.

【0015】即ち、ロッド32の吸気弁1Bのステムヘッ
ドと係合する底部フランジとメインロッカアーム3との
間にはスプリング33が嵌挿され、ロッド32はスプリング
33の付勢力に抗して軸方向摺動自由にメインロッカアー
ム3に嵌挿されている。該ロッド32の周壁及び該ロッド
32の嵌挿孔に面するメインロッカアーム3部分にはロッ
ド32のメインロッカアーム3に対する所定の軸方向位置
で相互に重合する孔34,35が形成され、これら孔34,35
内には第4及び第5のプランジャ36,37とスプリング38
とが嵌挿され、メインロッカアーム3には前記孔35の奥
側端面に連通する油路39と該油路39に直角に交差してメ
インロッカシャフト3の嵌挿孔に至る油路40が形成さ
れ、メインロッカシャフト3には、前記油路40と連通す
る環状溝41及び該環状溝41と連通して径方向に延びる油
路42、該油路42と連通して軸方向に延びる油路43が形成
され、油路43の端部は第2切換弁44を介して前記圧油供
給源29と低圧油源50とに選択的に連通するように接続さ
れている。
That is, a spring 33 is fitted between the bottom flange of the rod 32 engaging with the stem head of the intake valve 1B and the main rocker arm 3, and the rod 32 is
The main rocker arm 3 is inserted into the main rocker arm 3 so as to slide freely in the axial direction against the urging force of 33. The peripheral wall of the rod 32 and the rod
In the part of the main rocker arm 3 facing the insertion hole 32, holes 34 and 35 are formed which overlap each other at a predetermined axial position of the rod 32 with respect to the main rocker arm 3, and these holes 34 and 35 are formed.
Inside the fourth and fifth plungers 36, 37 and spring 38
The main rocker arm 3 has an oil passage 39 communicating with the rear end face of the hole 35 and an oil passage 40 which intersects the oil passage 39 at right angles to the insertion hole of the main rocker shaft 3. The main rocker shaft 3 includes an annular groove 41 communicating with the oil passage 40, an oil passage 42 communicating with the annular groove 41 and extending in the radial direction, and an oil passage communicating with the oil passage 42 and extending in the axial direction. An oil passage 43 is formed, and an end of the oil passage 43 is connected to the pressure oil supply source 29 and the low pressure oil source 50 via a second switching valve 44 so as to be selectively communicated.

【0016】そして、前記第2切換弁44が一方の切換位
置に制御されて油路43が低圧油源30に連通し、孔35内に
圧油が供給されない状態では、前記スプリング38が伸張
して第4プランジャ36が孔35の端面に当接し、この状態
では第4,第5プランジャ36,37は夫々孔34,35内のみ
に収められ、第5プランジャ37はロッド32と一体にロッ
ド32の軸方向に摺動自由となる。その結果、メインロッ
カアーム3が揺動してもロッド32はメインロッカアーム
3に対して相対移動するため吸気弁1Bの作動が停止さ
れる。尚、完全に停止させるのではなく、燃料溜まり等
を防止するため僅かにリフトするようにしてもよい (図
6に点線で示す) 。
When the second switching valve 44 is controlled to one of the switching positions, the oil passage 43 communicates with the low-pressure oil source 30 and the pressure oil is not supplied into the hole 35, the spring 38 expands. As a result, the fourth plunger 36 abuts against the end face of the hole 35, and in this state, the fourth and fifth plungers 36 and 37 are accommodated only in the holes 34 and 35, respectively. Is free to slide in the axial direction. As a result, even if the main rocker arm 3 swings, the rod 32 moves relative to the main rocker arm 3 so that the operation of the intake valve 1B is stopped. Instead of completely stopping, the lift may be slightly lifted to prevent accumulation of fuel or the like (shown by a dotted line in FIG. 6).

【0017】また、油路43が圧油供給源29に連通される
と油路42、環状溝41,油路40を介して孔35aに圧油が供
給され、その結果、スプリング38が圧縮され第5プラン
ジャ37が孔35,34に跨がって嵌合され、ロッド32がメイ
ンロッカアーム3に対して固定されるので、メインロッ
カアーム3の揺動時、メインロッカアーム3と一体にロ
ッド32も揺動して吸気弁1Bを作動させる。
When the oil passage 43 communicates with the pressure oil supply source 29, pressure oil is supplied to the hole 35a via the oil passage 42, the annular groove 41, and the oil passage 40, and as a result, the spring 38 is compressed. Since the fifth plunger 37 is fitted over the holes 35 and 34 and the rod 32 is fixed to the main rocker arm 3, when the main rocker arm 3 swings, the rod 32 swings integrally with the main rocker arm 3. To operate the intake valve 1B.

【0018】一方、機関回転速度検出手段としてクラン
ク角センサ等の回転速度センサ45と、負荷検出手段とし
てスロットル弁開度を検出し、かつ、所定開度以下でO
Nとなるアイドルスイッチ46を付設したスロットルセン
サ47と、を備え、これらセンサからの検出信号はコント
ロールユニット48に入力される。コントロールユニット
48は前記回転速度と負荷の検出信号に基づいて前記した
ように第1切換弁28及び第2切換弁44の切換位置を制御
することにより、吸気弁1A及び吸気弁1Bのリフト・
作用角特性と吸気弁1Bの作動停止の有無を制御する。
On the other hand, a rotation speed sensor 45 such as a crank angle sensor is detected as engine rotation speed detection means, and a throttle valve opening is detected as load detection means.
And a throttle sensor 47 provided with an idle switch 46 serving as N. A detection signal from these sensors is input to a control unit 48. control unit
48 controls the switching position of the first switching valve 28 and the second switching valve 44 based on the rotation speed and the load detection signal as described above, and thereby lifts and lifts the intake valves 1A and 1B.
The operating angle characteristic and whether or not the operation of the intake valve 1B is stopped is controlled.

【0019】以下に、前記コントロールユニット48によ
る機関運転状態に応じた吸気弁の作動制御について説明
する。尚、各吸気弁1A,1Bの作動と該作動特性を与
える前記各機構の作動との関係は既述しているので、該
関係については以下の説明では省略する。また、本実施
例では、運転領域に応じて理論空燃比より稀薄なリーン
空燃比と、理論空燃比と、理論空燃比より過濃なリッチ
空燃比とに切り換えて制御する空燃比制御が、前記コン
トロールユニット48による図示しない燃料噴射弁の噴射
量制御によって行われ、前記吸気弁作動の制御に前記空
燃比制御を組み合わせることでより運転性能の向上を図
っている。
The control of the operation of the intake valve by the control unit 48 in accordance with the operating state of the engine will be described below. Since the relationship between the operation of each of the intake valves 1A and 1B and the operation of each of the mechanisms for providing the operation characteristics has already been described, the relationship is omitted in the following description. Further, in the present embodiment, the air-fuel ratio control that switches and controls the lean air-fuel ratio leaner than the stoichiometric air-fuel ratio, the stoichiometric air-fuel ratio, and the rich air-fuel ratio richer than the stoichiometric air-fuel ratio in accordance with the operation range is described above. The operation is performed by controlling the injection amount of a fuel injection valve (not shown) by the control unit 48. The operation performance is further improved by combining the control of the intake valve operation with the control of the air-fuel ratio.

【0020】図7は第1の実施例における運転状態毎の
吸気弁の作動パターンを示す。回転速度センサ45及びス
ロットルセンサ47からの検出信号に基づいて検出される
アイドル時以外の低中回転・低負荷域 (図示I領域) に
は、吸気弁1Aのみを作動させ、吸気弁1Bの作動を停
止させる。また、空燃比制御についてはリーン空燃比に
制御される。この結果、吸気弁1Aから燃焼室への吸気
の流れを燃焼室中心に対して偏心させることや、吸気弁
1Aを装着した吸気ポートを渦巻き状の所謂スワールポ
ートとすること等によって、燃焼室内に強い吸気スワー
ルを発生させることができ、それにより、吸入空気流量
の小さい当該領域でも燃料と空気との混合性が高められ
るため、空燃比のリーン化を可及的に促進でき、常用域
の燃費を向上できる。尚、吸気弁1Aのリフト・作用角
特性は、低リフト・小作用角特性として吸気スワールを
より強化して稀薄化をより促進するか又は高リフト・大
作用角特性として吸気ポンピングロスを小さくするかの
いずれの場合が燃費上得策であるか、その他排気エミッ
ショ特性等も考慮して適切である方を選択すればよい。
FIG. 7 shows the operation pattern of the intake valve for each operation state in the first embodiment. In the low / medium rotation / low load region (region I in the drawing) other than at the time of idling detected based on detection signals from the rotation speed sensor 45 and the throttle sensor 47, only the intake valve 1A is operated and the operation of the intake valve 1B is operated. To stop. The air-fuel ratio control is controlled to a lean air-fuel ratio. As a result, the flow of the intake air from the intake valve 1A to the combustion chamber is decentered with respect to the center of the combustion chamber, and the intake port to which the intake valve 1A is attached is formed as a spiral so-called swirl port. A strong intake swirl can be generated, thereby increasing the mixability of fuel and air even in the region where the intake air flow rate is small, so that the lean air-fuel ratio can be promoted as much as possible, and the fuel efficiency in the normal range Can be improved. The lift-operating-angle characteristic of the intake valve 1A may be enhanced as a low-lift-small-operating-angle characteristic to further enhance leaning, or as a high-lift-large-acting-angle characteristic to reduce intake pumping loss. Whichever of the cases is the best in terms of fuel economy, or the one that is more appropriate in consideration of other exhaust emission characteristics and the like may be selected.

【0021】また、低中回転・高負荷領域 (図示II領
域) では吸気弁1A,1B共に、低リフト・小作用角特
性で作動させる。空燃比制御については理論空燃比又は
リッチ空燃比に制御する。この領域では高負荷を要求さ
れるため吸気充填効率を高めることが優先されるので、
2つの吸気弁を作動させ、また、回転速度が高くないた
め吸気慣性が小さく、そのため慣性過給効果に適合すべ
く低リフト・小作用角特性を採用するのである。これに
より、可及的に高いトルクを発生させることができる。
In the low / medium rotation / high load region (region II in the drawing), both the intake valves 1A and 1B are operated with a low lift / small working angle characteristic. The air-fuel ratio is controlled to a stoichiometric air-fuel ratio or a rich air-fuel ratio. Since high load is required in this area, it is important to increase the intake charging efficiency.
The two intake valves are operated, and since the rotation speed is not high, the intake inertia is small. Therefore, a low lift and small operating angle characteristic is adopted to adapt to the inertia supercharging effect. As a result, as high a torque as possible can be generated.

【0022】高回転領域 (図示III領域) では、2つの
吸気弁1A,1Bを高リフト・大作用角特性で作動させ
る。また、空燃比制御については、理論空燃比又はリッ
チ空燃比 (特に高負荷領域で) に制御する。かかる領域
では、高回転速度であるため吸気慣性が大きく、吸気流
速,流量も増大するので慣性効果を高め開口面積を増大
させるように高リフト・大作用角特性で作動させて吸気
充填効率を確保するのである。
In the high rotation region (region III in the drawing), the two intake valves 1A and 1B are operated with high lift and large working angle characteristics. As for air-fuel ratio control, control is performed at a stoichiometric air-fuel ratio or a rich air-fuel ratio (particularly in a high load region). In such a region, the intake speed is high due to the high rotational speed, and the intake flow velocity and flow rate also increase, so the intake effect is secured by operating with high lift and large operating angle characteristics to increase the inertia effect and increase the opening area. You do it.

【0023】以上のような運転条件別の制御を行って、
実用燃費,全域のトルク向上を図るのである。また、ア
イドルスイッチ46により検出されるアイドル域 (図示
1’) では、吸気弁1A,1B共に低リフト・小作用角
の特性で作動させる。これにより、低中回転・低負荷の
常用領域で前記制御により一方の吸気弁1Bの作動が停
止した状態で作動停止された吸気弁1Bにデポジットが
堆積されても、通常は常用領域で運転している間にアイ
ドル状態が挟まれることが多く、該デポジットが少量で
あるうちにアイドル状態に入り、燃焼除去される。その
ため、デポジットが多量に堆積されることがなく、高回
転,高負荷領域で2つの吸気弁1A,1Bが同時に作動
される運転に移行した際に多量に堆積したデポジットに
より吸気が阻害されて出力不足を招いたり、燃焼性が損
なわれて性能が低下したりすることを防止できる。尚、
空燃比制御については、比較的大きな外部負荷が加わっ
た場合と、そうでない場合とで回転の安定性と燃費とを
考慮しつつリーン空燃比,理論空燃比,リッチ空燃比の
いずれかを採用すればよい。
By performing control according to the operating conditions as described above,
The aim is to improve practical fuel economy and torque throughout. In the idle range (1 'in the figure) detected by the idle switch 46, both the intake valves 1A and 1B are operated with characteristics of low lift and small working angle. Accordingly, even if deposits are deposited on the intake valve 1B that has been stopped in a state where the operation of one of the intake valves 1B has been stopped by the above-described control in the low-medium-speed, low-load normal region, the operation is normally performed in the normal region. During this period, the idle state is often caught, and while the deposit is in a small amount, it enters the idle state and is burned off. Therefore, a large amount of deposit is not deposited, and when the operation shifts to an operation in which the two intake valves 1A and 1B are simultaneously operated in a high-speed and high-load region, the intake is obstructed by the large amount of deposited deposit and the output is reduced. It is possible to prevent shortage and deterioration of performance due to impaired flammability. still,
Regarding air-fuel ratio control, one of lean air-fuel ratio, stoichiometric air-fuel ratio, and rich air-fuel ratio should be adopted in consideration of rotational stability and fuel efficiency when a relatively large external load is applied and when it is not. I just need.

【0024】図8及び図9は、夫々第2及び第3の実施
例における運転状態毎の吸気弁の作動パターンを示す。
第1の実施例と異なるのは、低回転の中負荷領域 (図示
II’) のみ吸気弁1Bの作動を停止させて理論空燃比又
はリッチ空燃比制御を行うか (第2実施例,図8参照)
、又は、2つの吸気弁1A,1Bを低リフト・小作用
角特性で作動させリーン空燃比制御を行うようにしたも
の (第3実施例,図9参照) である。尚、吸気弁の作動
特性は、例えば低リフト・小作用角特性とする。また、
アイドル領域はリーン空燃比制御とする。これらのよう
にすれば、低回転低負荷領域では吸気弁1Bを作動停止
させてリーン空燃比制御するため、アイドル領域と低回
転低負荷領域との間及び低回転低負荷領域と低回転中負
荷領域との間で空燃比の切換と吸気弁の作動数の切換と
が同時に行われることがないため、切換時のトルクショ
ックを軽減できる。また、高回転領域では2つの吸気弁
を作動させて理論空燃比又はリッチ空燃比制御するた
め、低回転中負荷領域と高回転領域との間でも空燃比の
切換と吸気弁の作動数の切換とが同時に行われることが
なく、切換時のトルクショックを軽減できる。
FIGS. 8 and 9 show the operation patterns of the intake valve for each operating state in the second and third embodiments, respectively.
The difference from the first embodiment lies in the low-load, medium-load region (shown in the figure).
II ') Only whether the stoichiometric air-fuel ratio or the rich air-fuel ratio control is performed by stopping the operation of the intake valve 1B (second embodiment, see FIG. 8)
Alternatively, a lean air-fuel ratio control is performed by operating two intake valves 1A and 1B with low lift and small working angle characteristics (third embodiment, see FIG. 9). The operating characteristics of the intake valve are, for example, low lift and small operating angle characteristics. Also,
In the idle region, lean air-fuel ratio control is performed. In this manner, in the low-speed low-load region, the intake valve 1B is deactivated to control the lean air-fuel ratio. Therefore, the low-speed low-load region and the low-speed low-load region are interposed between the idle range and the low-speed low-load region. Since the switching of the air-fuel ratio and the switching of the number of actuations of the intake valves are not performed at the same time between the regions, the torque shock at the time of the switching can be reduced. In addition, in the high rotation region, the two intake valves are operated to control the stoichiometric air-fuel ratio or the rich air-fuel ratio. Therefore, the switching of the air-fuel ratio and the switching of the operation number of the intake valve are also performed between the low rotation medium load region and the high rotation region. Are not performed at the same time, and the torque shock at the time of switching can be reduced.

【0025】尚、以上の実施例では吸気弁作動制御を異
なる空燃比制御と組み合わせたものについて示し、これ
らのものでは、両制御の相乗効果で運転性能を可及的に
高めることができるが、たが、運転条件によらず空燃比
を一定とする簡易な空燃比制御のものに適用しても本発
明に係る吸気弁作動制御の効果を十分に発揮できるもの
である。また、本願発明は、一部に気筒の2つの吸気弁
と排気弁 (2つの場合は2つ)を作動停止にし、いわゆ
る一部の気筒を休止運転にする内燃機関に適用すること
も可能である。
In the above embodiment, the combination of the intake valve operation control and the different air-fuel ratio control is shown. In these devices, the driving performance can be enhanced as much as possible by the synergistic effect of both controls. However, the effect of the intake valve operation control according to the present invention can be sufficiently exhibited even when applied to a simple air-fuel ratio control in which the air-fuel ratio is kept constant regardless of operating conditions. The invention of the present application is also based on two intake valves of a cylinder.
And the exhaust valves (two in the case of two) are deactivated, so-called
To an internal combustion engine that puts some cylinders into idle operation
Is also possible.

【0026】[0026]

【発明の効果】以上説明してきたように、本発明によれ
ば、運転領域に応じて気筒毎の2つの吸気弁のリフト・
作用角特性及び一方の吸気弁の作動の有無を制御する構
成としたため、実用燃費,全域のトルク特性を可及的に
改善できると共に、アイドル領域では、2つの吸気弁を
同時に作動させることにより、作動停止時に吸気弁近傍
に堆積するデポジットの成長を抑制でき、デポジットに
より吸気抵抗が増大して出力低下を招いたり、燃焼性不
良による性能低下 (排気エミッション特性の悪化を含
む) を招いたりすることを防止できる。
As described above, according to the present invention, the lift / lift of the two intake valves for each cylinder according to the operating range.
By controlling the working angle characteristic and the operation of one of the intake valves, it is possible to improve the practical fuel consumption and the torque characteristic of the entire region as much as possible. In the idle region, the two intake valves are simultaneously operated, The growth of deposits that accumulate near the intake valve when the operation is stopped can be suppressed, and the deposits increase the intake resistance and cause a decrease in output, or poor combustion properties cause a decrease in performance (including deterioration of exhaust emission characteristics). Can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る吸気装置の吸気弁作動
機構部を示す底面図
FIG. 1 is a bottom view showing an intake valve operating mechanism of an intake device according to an embodiment of the present invention.

【図2】図1のY−Y矢視断面図及び同矢視部分の異な
る作動時の断面図
FIG. 2 is a cross-sectional view taken along the line YY of FIG.

【図3】図1のZ−Z矢視断面図FIG. 3 is a sectional view taken along the line ZZ of FIG. 1;

【図4】図1のX−X矢視断面図FIG. 4 is a sectional view taken along line XX of FIG. 1;

【図5】図1のA−A矢視断面図FIG. 5 is a sectional view taken along the line AA of FIG. 1;

【図6】同上実施例の2つの吸気弁のリフト・作用角特
性を示す線図
FIG. 6 is a diagram showing lift-operating angle characteristics of two intake valves of the embodiment.

【図7】同上実施例の運転領域別の吸気弁の作動特性と
空燃比制御のパターンの一例を示す表及び運転領域図
FIG. 7 is a table and an operation region diagram showing an example of an operation characteristic of an intake valve and an air-fuel ratio control pattern for each operation region in the embodiment.

【図8】同じく運転領域別の吸気弁の作動特性と空燃比
制御のパターンの別の例を示す表及び運転領域図
FIG. 8 is a table and an operation region diagram showing another example of the operation characteristics of the intake valve and the pattern of the air-fuel ratio control in each operation region.

【図9】同じく運転領域別の吸気弁の作動特性と空燃比
制御のパターンの更に別の例を示す表及び運転領域図
FIG. 9 is a table and an operating region diagram showing still another example of the operating characteristics of the intake valve and the pattern of the air-fuel ratio control in each operating region.

【符号の説明】[Explanation of symbols]

1A,1B 吸気弁 3 メインロッカアーム 7 サブロッカアーム 9 低リフト・小作用角特性カム 10 高リフト・大作用角特性カム 17 第1プランジャ 24,26,27 油路 25 環状溝 28 第1切換弁 32 ロッド 36 第4プランジャ 37 第5プランジャ 39,40,42,43 油路 41 環状溝 44 第2切換弁 45 回転速度センサ 46 アイドルスイッチ 47 スロットルセンサ 48 コントロールユニット 1A, 1B Intake valve 3 Main rocker arm 7 Sub rocker arm 9 Low lift / small working angle characteristic cam 10 High lift / large working angle characteristic cam 17 First plunger 24, 26, 27 Oil passage 25 Annular groove 28 First switching valve 32 Rod 36 4th plunger 37 5th plunger 39, 40, 42, 43 Oil passage 41 Annular groove 44 Second switching valve 45 Rotation speed sensor 46 Idle switch 47 Throttle sensor 48 Control unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02B 31/02 F02B 31/02 L F02D 41/02 320 F02D 41/02 320 (56)参考文献 特開 平5−118209(JP,A) 特開 平4−187853(JP,A) 実開 平1−61411(JP,U) 実開 昭62−117235(JP,U) 実公 平4−13381(JP,Y2) 実公 平4−47371(JP,Y2)──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F02B 31/02 F02B 31/02 L F02D 41/02 320 F02D 41/02 320 (56) References JP-A-5-118209 (JP) JP-A-4-187853 (JP, A) JP-A-1-61411 (JP, U) JP-A-62-1117235 (JP, U) JP-A-4-13381 (JP, Y2) JP-A 4-47371 (JP, Y2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】気筒毎に2つの吸気弁を備えた内燃機関の
吸気装置において、 前記2つの吸気弁のリフト・作用角特性を夫々2段階に
変化させる可変動弁機構と、一方の吸気弁の作動を停止
させる弁作動停止機構と、を備えると共に、 機関の回転速度を検出する回転速度検出手段と、 機関の負荷を検出する負荷検出手段と、 アイドル域では前記2つの吸気弁を作動させ、アイドル
域以外の低回転・低負荷域では少なくとも一方の吸気弁
の作動を停止して他方の吸気弁のみ作動させ、低回転・
高負荷域では2つの吸気弁を低リフト・小作用角の特性
で作動させ、高回転域では高リフト・大作用角の特性で
作動させるように前記可変動弁機構及び弁作動停止機構
を制御する制御手段と、 を備えて構成したことを特徴とする内燃機関の吸気装置
An intake system for an internal combustion engine having two intake valves for each cylinder, a variable valve mechanism for changing the lift / working angle characteristics of each of the two intake valves in two stages, and one intake valve. A valve operation stop mechanism for stopping the operation of the engine, a rotation speed detection means for detecting a rotation speed of the engine, a load detection means for detecting a load on the engine, and operating the two intake valves in an idle range. In the low-speed / low-load range other than the idling range, at least one of the intake valves is stopped and only the other intake valve is operated.
The variable valve mechanism and the valve operation stop mechanism are controlled so that the two intake valves operate with the characteristics of low lift and small working angle in the high load range, and operate with the characteristics of high lift and large working angle in the high rotation range. And an intake device for an internal combustion engine.
JP4111675A 1992-04-30 1992-04-30 Intake device for internal combustion engine Expired - Fee Related JP2745955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4111675A JP2745955B2 (en) 1992-04-30 1992-04-30 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4111675A JP2745955B2 (en) 1992-04-30 1992-04-30 Intake device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH05306637A JPH05306637A (en) 1993-11-19
JP2745955B2 true JP2745955B2 (en) 1998-04-28

Family

ID=14567342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4111675A Expired - Fee Related JP2745955B2 (en) 1992-04-30 1992-04-30 Intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2745955B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9399964B2 (en) 2014-11-10 2016-07-26 Tula Technology, Inc. Multi-level skip fire
JP5967064B2 (en) * 2013-12-13 2016-08-10 トヨタ自動車株式会社 Control device for internal combustion engine
US11236689B2 (en) 2014-03-13 2022-02-01 Tula Technology, Inc. Skip fire valve control
CN109139278B (en) * 2014-11-10 2021-01-01 图拉技术公司 Method for controlling an internal combustion engine and engine controller

Also Published As

Publication number Publication date
JPH05306637A (en) 1993-11-19

Similar Documents

Publication Publication Date Title
JP2741266B2 (en) Engine intake and exhaust control device
JP2689751B2 (en) Variable valve train for engines
KR0127493B1 (en) Valve actuator responsive to gear shift for reducing torque shock
JP2809005B2 (en) Variable valve train for internal combustion engines
JPS60113007A (en) Control device of intake and exhaust valve in internal- combustion engine
JP2004263580A (en) Variable valve system for internal combustion engine
JP2745955B2 (en) Intake device for internal combustion engine
JP2004293483A (en) Intake device of spark ignition type reciprocal engine
JP2940413B2 (en) Internal combustion engine with variable cylinder mechanism
JP2741267B2 (en) Engine intake and exhaust control device
JP3438374B2 (en) Intake device for internal combustion engine
JPH0584363B2 (en)
JP2522207Y2 (en) Variable valve train for engines
JPS5910357Y2 (en) Intake air amount control device
JP2770703B2 (en) Engine with variable valve timing mechanism
JPH0417787Y2 (en)
JP2663762B2 (en) Variable valve train for engines
JP2588362B2 (en) Multi-cylinder internal combustion engine
JPH06212926A (en) Variable valve device for internal combustion engine
JPS59170415A (en) Internal-combustion engine
JPH08105336A (en) Internal combustion engine having variable cylinder mechanism
JP3902331B2 (en) EGR device for engine
JPH08105333A (en) Internal combustion engine having variable cylinder mechanism
JPS62247110A (en) Intake device of engine
JPH02241937A (en) Controller for engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees