JP2743715B2 - Spacecraft Optical Equipment - Google Patents

Spacecraft Optical Equipment

Info

Publication number
JP2743715B2
JP2743715B2 JP4167805A JP16780592A JP2743715B2 JP 2743715 B2 JP2743715 B2 JP 2743715B2 JP 4167805 A JP4167805 A JP 4167805A JP 16780592 A JP16780592 A JP 16780592A JP 2743715 B2 JP2743715 B2 JP 2743715B2
Authority
JP
Japan
Prior art keywords
light
optical axis
parallel plane
angle
spacecraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4167805A
Other languages
Japanese (ja)
Other versions
JPH068900A (en
Inventor
良彦 勝山
彰典 佐藤
直樹 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4167805A priority Critical patent/JP2743715B2/en
Publication of JPH068900A publication Critical patent/JPH068900A/en
Application granted granted Critical
Publication of JP2743715B2 publication Critical patent/JP2743715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、人工衛星などの宇宙航
行体に搭載された撮像装置の指向方向のズレの補正に利
用する。本発明は、打ち上げ環境、姿勢変動などの外乱
による光学系指向方向のズレをオンボードで補正するこ
とができる宇宙航行体搭載光学装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for correcting a deviation in the directional direction of an image pickup device mounted on a spacecraft such as an artificial satellite. The present invention relates to an optical device mounted on a spacecraft capable of correcting on-board deviation of the directional direction of an optical system due to disturbances such as a launch environment and attitude change.

【0002】[0002]

【従来の技術】従来の宇宙航行体搭載光学装置は、打ち
上げ時の振動による撮像素子の微小な位置ズレ、あるい
は、軌道上での姿勢変更や可動装置の作動に伴って発生
する外乱に起因する画像の微小なズレを補正する場合
に、地上にデータを送信し画像処理により補正するか、
オンボードで補正する場合には、図4に示すように反射
ミラー7を搭載して角度を変え光軸指向方向の補正を行
っていた。
2. Description of the Related Art A conventional optical device mounted on a spacecraft is caused by a slight displacement of an image pickup device due to vibration at the time of launching, or a disturbance generated due to a change in attitude in orbit and an operation of a movable device. When correcting a small deviation of the image, send the data to the ground and correct it by image processing,
When performing on-board correction, as shown in FIG. 4, a reflection mirror 7 is mounted to change the angle and correct the optical axis directing direction.

【0003】[0003]

【発明が解決しようとする課題】地上での画像補正の場
合には、プログラミング開発を要し、画像処理に人為的
な操作を伴うために作業量が膨大になり、したがって画
像処理に多くの時間がかかるために情報の即時入手がで
きず、また、元の画像データの歪みを細部まで除去しき
れないために更に高精度な画像要求がなされた場合の技
術的対処が困難であるなどの問題がある。
In the case of image correction on the ground, programming development is required, and the amount of work is enormous because image processing involves an artificial operation, so that much time is required for image processing. The problem is that information cannot be obtained immediately, and the distortion of the original image data cannot be completely removed. There is.

【0004】光学系の集光手段3の前方に反射ミラー7
を配置し、光軸に対する2軸の角度を調節して指向方向
を制御する図4に示す方式では、光軸の指向方向はリア
ルタイムに補正できるものの、光学系が大型化されるの
に伴って反射ミラー7およびその駆動機構が大型化し、
軽量化および低電力化が要求される宇宙航行体搭載用機
器としては適せず、また、反射ミラー7の大型化に伴っ
て高速な制御応答性が得にくく、さらに、1本の光学系
を分光して複数の撮像素子で受像するマルチバンド構成
の場合には、各バンド間の相対誤差を補正することがで
きないなどの問題がある。
A reflecting mirror 7 is provided in front of the condensing means 3 of the optical system.
In the method shown in FIG. 4 in which the direction of the optical axis is controlled by adjusting the angle of the two axes with respect to the optical axis, the direction of the optical axis can be corrected in real time, but with the increase in the size of the optical system, The reflection mirror 7 and its driving mechanism are enlarged,
It is not suitable as a spacecraft mounting device that requires light weight and low power, and it is difficult to obtain high-speed control response with the increase in the size of the reflection mirror 7. In the case of a multi-band configuration in which images are separated and received by a plurality of image sensors, there is a problem that a relative error between the bands cannot be corrected.

【0005】本発明はこのような問題を解決するもの
で、小型化をはかるとともに、オンボードで指向方向を
補正することができる装置を提供することを目的とす
る。
An object of the present invention is to solve such a problem, and an object of the present invention is to provide a device capable of reducing the size and correcting the directivity on-board.

【0006】[0006]

【課題を解決するための手段】本発明は、レンズ系を含
む集光手段と、前記集光手段の光軸上に配置され光を透
過する平行平面透過ガラスと、この平行平面透過ガラス
の周辺を支持しこのガラスの前記光軸に対する角度を調
節する複数のリニアアクチュエータと、補正量を演算し
て前記リニアアクチュエータを動作させる制御手段とを
備えたことを特徴とする。
SUMMARY OF THE INVENTION The present invention provides a light condensing means including a lens system, a parallel plane transmission glass disposed on an optical axis of the light condensing means and transmitting light, and a periphery of the parallel plane transmission glass. And a plurality of linear actuators for adjusting the angle of the glass with respect to the optical axis, and control means for calculating a correction amount and operating the linear actuator.

【0007】前記光軸上の集光位置に撮像素子が配置さ
れ、前記制御手段は、この撮像素子の出力信号が最大に
なるように前記リニアアクチュエータにより角度を制御
する手段を含むことが望ましい。
[0007] It is preferable that an image pickup device is disposed at a light condensing position on the optical axis, and the control means includes means for controlling an angle by the linear actuator so that an output signal of the image pickup device is maximized.

【0008】[0008]

【作用】制御手段が撮像素子が検出した位置ズレ情報を
入力し、その情報に基づいて補正量を演算する。次い
で、演算した補正量分だけ光軸が移動するように各リニ
アアクチュエータを伸縮させて平行平面透過ガラスの光
束に対する角度を調節する。これにより、オンボードで
指向方向のズレを補正することができ、光路上の光束が
絞られた位置に平行平面透過ガラスを配置できることか
ら小型化することが可能となり、さらに、マルチバンド
光学系の場合には各撮像素子の直前に平行平面透過ガラ
スを配置することによりバンド間のズレを補正すること
ができる。
The control means inputs positional deviation information detected by the image sensor, and calculates a correction amount based on the information. Next, each linear actuator is expanded and contracted so that the optical axis moves by the calculated correction amount, and the angle of the parallel plane transmission glass with respect to the light beam is adjusted. As a result, it is possible to correct the deviation of the directivity direction on-board, and it is possible to arrange the parallel plane transmission glass at a position where the light beam on the optical path is narrowed, so that the size can be reduced, and furthermore, the multi-band optical system can In such a case, the gap between the bands can be corrected by arranging the plane-parallel transmission glass immediately before each image sensor.

【0009】[0009]

【実施例】次に、本発明実施例を図面に基づいて説明す
る。図1は本発明第一実施例要部の構成および原理を示
す図、図3は本発明第一実施例および第二実施例の平行
平面透過ガラスとリニアアクチュエータとの取付け状態
を示す斜視図である。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing the configuration and principle of a main part of the first embodiment of the present invention, and FIG. 3 is a perspective view showing an attached state of a parallel plane transmission glass and a linear actuator according to the first and second embodiments of the present invention. is there.

【0010】本発明第一実施例は、画像を撮像する撮像
素子6と、この撮像素子6に光を集光するレンズ系を含
む集光手段3と、集光手段3を構成する集光レンズ間の
光軸上に配置され光を透過する平行平面透過ガラス1
と、この平行平面透過ガラス1の周辺を支持しこのガラ
ス1の光軸に対する角度を調節する複数のリニアアクチ
ュエータ2と、撮像素子6から位置ズレ情報を入力し補
正量を演算してリニアアクチュエータ2を動作させる制
御手段10とを備え、光軸上の集光位置に撮像素子6が
配置され、制御手段10は、この撮像素子6の出力信号
が最大になるようにリニアアクチュエータ2により角度
を制御する手段を含む。
In the first embodiment of the present invention, an image pickup element 6 for picking up an image, a light condensing means 3 including a lens system for condensing light on the image pickup element 6, and a light condensing lens constituting the light condensing means 3 Parallel plane transmission glass 1 arranged on the optical axis between and transmitting light
A plurality of linear actuators 2 that support the periphery of the parallel plane transmission glass 1 and adjust the angle of the glass 1 with respect to the optical axis; The imaging device 6 is disposed at a condensing position on the optical axis, and the control unit 10 controls the angle by the linear actuator 2 so that the output signal of the imaging device 6 is maximized. Including means to do.

【0011】光束は平行平面透過ガラス1を通過して撮
像素子6に入光する。ここで平行平面透過ガラス1をX
軸まわりに傾けることにより、光軸4は平行平面透過ガ
ラス1内で屈折し、Y方向に光束がずれ光軸5に示すよ
うにX軸まわりに角度が変更される。同様に平行平面透
過ガラス1をY軸まわりに回転させることによって光軸
はY軸まわりにも角度が変更される。
The light beam passes through the plane-parallel transmission glass 1 and enters the image sensor 6. Here, the parallel plane transmission glass 1 is X
By tilting around the axis, the optical axis 4 is refracted in the plane-parallel transmission glass 1, the light flux is shifted in the Y direction, and the angle is changed about the X axis as shown by the optical axis 5. Similarly, by rotating the parallel plane transmission glass 1 about the Y axis, the angle of the optical axis is also changed about the Y axis.

【0012】図2は本発明第二実施例の要部の構成を示
す図である。本発明第二実施例は、平行平面透過ガラス
1が集光手段3と撮像素子6との間に配置される。この
第二実施例の場合には光路上の光束が集光手段3によっ
て絞られた位置に平行平面透過ガラス1が配置されるた
めにより小型化することができ、マルチバンド光学系を
構成する装置に適する。指向方向ズレの補正は第一実施
例同様に行われる。
FIG. 2 is a diagram showing a configuration of a main part of a second embodiment of the present invention. In the second embodiment of the present invention, the plane-parallel transmission glass 1 is disposed between the light converging means 3 and the image sensor 6. In the case of the second embodiment, since the plane-parallel transmission glass 1 is disposed at a position where the light beam on the optical path is converged by the light condensing means 3, the size can be further reduced, and an apparatus constituting a multi-band optical system can be realized. Suitable for. The correction of the directional deviation is performed in the same manner as in the first embodiment.

【0013】[0013]

【発明の効果】以上説明したように本発明によれば、宇
宙航行体の姿勢変動や温度の分布差に伴って生じる光学
系の指向方向ズレをオンボードで補正することができ、
また、光路上の光束が絞られた位置に平行平面透過ガラ
スを配置することによって小型化することができ、さら
に、マルチバンド光学系の場合には各撮像素子の直前に
配置することによってバンド間のズレの補正も行うこと
ができる効果がある。
As described above, according to the present invention, it is possible to correct on-board the directional deviation of the optical system caused by the attitude fluctuation of the spacecraft and the temperature distribution difference,
Further, the size can be reduced by disposing the parallel plane transmission glass at a position where the light beam on the optical path is narrowed. In the case of a multi-band optical system, by disposing the glass immediately before each image sensor, the distance between bands can be reduced. There is an effect that the deviation can be corrected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明第一実施例の要部の構成および原理を示
す図。
FIG. 1 is a diagram showing a configuration and a principle of a main part of a first embodiment of the present invention.

【図2】本発明第二実施例の要部の構成を示す図。FIG. 2 is a diagram showing a configuration of a main part of a second embodiment of the present invention.

【図3】第一および第二実施例の平行平面透過ガラスと
リニアアクチュエータとの取付け状態を示す斜視図。
FIG. 3 is a perspective view showing an attached state of the parallel plane transmission glass and the linear actuator of the first and second embodiments.

【図4】従来例の要部の構成および原理を示す図。FIG. 4 is a diagram showing a configuration and a principle of a main part of a conventional example.

【符号の説明】[Explanation of symbols]

1 平行平面透過ガラス 2 リニアアクチュエータ 3 集光手段 4、5、8、9 光軸 6 撮像素子 7 反射ミラー 10 制御手段 DESCRIPTION OF SYMBOLS 1 Parallel plane transmission glass 2 Linear actuator 3 Condensing means 4, 5, 8, 9 Optical axis 6 Image sensor 7 Reflecting mirror 10 Control means

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】レンズ系を含む集光手段と、 前記集光手段の光軸上に配置され光を透過する平行平面
透過ガラスと、 この平行平面透過ガラスの周辺を支持しこのガラスの前
記光軸に対する角度を調節する複数のリニアアクチュエ
ータと、補正量を演算して前記リニアアクチュエータを
動作させる制御手段とを備えたことを特徴とする宇宙航
行体搭載光学装置。
1. A light collecting means including a lens system, a parallel plane transmitting glass disposed on an optical axis of the light collecting means and transmitting light, and supporting the periphery of the parallel plane transmitting glass and supporting the light of the glass. An optical device mounted on a spacecraft, comprising: a plurality of linear actuators for adjusting an angle with respect to an axis; and control means for calculating a correction amount and operating the linear actuator.
【請求項2】前記光軸上の集光位置に撮像素子が配置さ
れ、前記制御手段は、この撮像素子の出力信号が最大に
なるように前記リニアアクチュエータにより角度を制御
する手段を含む請求項1記載の宇宙航行体搭載光学装
置。
2. An image pickup device is arranged at a light condensing position on the optical axis, and the control means includes means for controlling an angle by the linear actuator so that an output signal of the image pickup device is maximized. 2. The optical device mounted on a spacecraft according to 1.
JP4167805A 1992-06-25 1992-06-25 Spacecraft Optical Equipment Expired - Fee Related JP2743715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4167805A JP2743715B2 (en) 1992-06-25 1992-06-25 Spacecraft Optical Equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4167805A JP2743715B2 (en) 1992-06-25 1992-06-25 Spacecraft Optical Equipment

Publications (2)

Publication Number Publication Date
JPH068900A JPH068900A (en) 1994-01-18
JP2743715B2 true JP2743715B2 (en) 1998-04-22

Family

ID=15856440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4167805A Expired - Fee Related JP2743715B2 (en) 1992-06-25 1992-06-25 Spacecraft Optical Equipment

Country Status (1)

Country Link
JP (1) JP2743715B2 (en)

Also Published As

Publication number Publication date
JPH068900A (en) 1994-01-18

Similar Documents

Publication Publication Date Title
US5229889A (en) Simple adaptive optical system
US4404592A (en) Video imagery device, especially for a homing unit
EP2588917B1 (en) Line of sight stabilization system
JPH10190549A (en) Inter-satellite connection method and its device
KR100336814B1 (en) Dynamic optical corrector
US5155327A (en) Laser pointing system
US6293027B1 (en) Distortion measurement and adjustment system and related method for its use
IL129878A (en) Optical system with two-stage aberration correction
JP2022517505A (en) Two-mirror tracking system for free-space optical communication
US5946143A (en) Dynamic aberration correction of conformal/aspheric domes and windows for missile and airborne fire control applications
US11892468B2 (en) Method and system for scanning of a transparent plate during earth observation imaging
US5978716A (en) Satellite imaging control system for non-repeatable error
US4576449A (en) Sighting mirror including a stabilizing device
JP2743715B2 (en) Spacecraft Optical Equipment
US8498055B2 (en) Space telescope system
US7385759B2 (en) Optical system with variable pointing and method implementing such a system
Traub et al. Third telescope project at the IOTA interferometer
US5223969A (en) Scanning method and apparatus for an opto-electronic camera having high resolution and a large field of view
JPH068897A (en) Image pick-up device nounted on space navigation body
JP4485441B2 (en) Optical transmission method and spacecraft for implementing this optical transmission method
US5362956A (en) Piston error sensor for phased optical arrays
US4411627A (en) Articulated light guide
Berta et al. Development of a commercial line of high-performance fast-steering mirrors
JPH04237038A (en) Image pickup action correction system
Cox et al. Four-meter diameter adaptive optical system technology demonstration

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees