JP2743661B2 - Light beam tracking reception method - Google Patents

Light beam tracking reception method

Info

Publication number
JP2743661B2
JP2743661B2 JP3279476A JP27947691A JP2743661B2 JP 2743661 B2 JP2743661 B2 JP 2743661B2 JP 3279476 A JP3279476 A JP 3279476A JP 27947691 A JP27947691 A JP 27947691A JP 2743661 B2 JP2743661 B2 JP 2743661B2
Authority
JP
Japan
Prior art keywords
light
light receiving
spot
center
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3279476A
Other languages
Japanese (ja)
Other versions
JPH05122155A (en
Inventor
公一 白玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3279476A priority Critical patent/JP2743661B2/en
Publication of JPH05122155A publication Critical patent/JPH05122155A/en
Application granted granted Critical
Publication of JP2743661B2 publication Critical patent/JP2743661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は空間伝搬型の光通信用受
信機において受信光ビームを追尾する光ビーム追尾受信
方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light beam tracking receiving system for tracking a received light beam in a space propagation type optical communication receiver.

【0002】[0002]

【従来の技術】従来のこの種の光ビーム追尾受信方式
は、4分割受光素子を受光レンズ系の焦点に置き、どの
象限に受信光のスポットが存在するかによって上記受信
光の到来方向と、上記受信レンズ系の光軸のずれを検出
し、このずれが最小となるように追尾動作を行ってい
た。
2. Description of the Related Art In this type of conventional light beam tracking reception system, a four-division light receiving element is placed at the focal point of a light receiving lens system, and the direction of arrival of the received light depends on which quadrant has a spot of the received light. The shift of the optical axis of the receiving lens system is detected, and the tracking operation is performed so as to minimize the shift.

【0003】図面を参照して従来例を説明すると、図3
(a)の略側面図はレンズ41および4分割受光素子4
2を含む光ビーム追尾受信方式を示し、また図3(b)
は4分割受光素子42の略正面図を示しているが、この
光ビーム追尾受信方式では、レンズ41の焦点位置にお
いた4分割受光素子42の4つの象限にそれぞれ配置さ
れた受光素子42a〜42dのそれぞれから電極43〜
46を引き出し、電極43〜46のいずれかと共通のア
ース電極47との間に流れる電流を検出して入射する受
信光Aの方向を知る。すなわち、電流の生じる受光素子
(42a〜42dのいずれか)に受信光Aのスポットが
存在することを知り、受信光Aの方向が光学軸48に対
し対称の方向にずれていることを検出できる。実際の光
ビーム追尾のためには、4つの受光素子42a〜42d
のどの受光面上にスポットがあるかという情報だけでは
不足であり、スポットがどの方向に何度ずれているかと
いう情報まで必要な場合が多く、4分割受光素子42を
レンズ41の焦点位置より光軸48上を少しずらして受
信光Aのスポットを広げ、受信光Aが図3(b)の斜線
部に示すように受光素子42a〜42dの複数に同時に
またがるように構成することがある。
A conventional example will be described with reference to the drawings.
The schematic side view of (a) shows the lens 41 and the four-divided light receiving element 4
2 shows an optical beam tracking receiving method including the second method, and FIG.
Shows a schematic front view of the four-division light-receiving element 42. In this light beam tracking reception system, the light-receiving elements 42a to 42d arranged in four quadrants of the four-division light-receiving element 42 at the focal position of the lens 41, respectively. From each of the electrodes 43 to
46 is drawn out, the current flowing between any one of the electrodes 43 to 46 and the common ground electrode 47 is detected, and the direction of the incoming received light A is known. That is, it is known that the spot of the received light A exists in the light receiving element (any one of 42a to 42d) where the current is generated, and it can be detected that the direction of the received light A is shifted in a symmetric direction with respect to the optical axis 48. . For actual light beam tracking, four light receiving elements 42a to 42d
It is not enough to simply provide information on which light receiving surface the spot is on, and in many cases it is necessary to provide information on in which direction the spot is displaced. There is a case where the spot of the received light A is widened by slightly shifting the position on the axis 48, and the received light A simultaneously straddles a plurality of the light receiving elements 42a to 42d as shown by the hatched portion in FIG.

【0004】この場合には、受信光Aのスポット中心の
4分割受光素子42の中心からのずれの量に応じて各受
光素子42a〜42dそれぞれの受光量が変るので、電
極43,44,45,46のそれぞれから取り出す電流
の量も変化し、これによって受信光Aのずれの方向,程
度がわかる。
In this case, the amount of light received by each of the light receiving elements 42a to 42d changes in accordance with the amount of deviation of the center of the spot of the received light A from the center of the four-divided light receiving element 42. , 46 also change, and thereby the direction and extent of the shift of the received light A can be determined.

【0005】[0005]

【発明が解決しようとする課題】この従来の光ビーム追
尾受信方式では、受光素子として4分割受光素子という
通信用としては感度,応答速度ともに専用の通信用受光
素子よりは低い素子を用いるため、通信系とは別の受光
レンズ系を使用するか、光学的に通信系光軸と結合させ
て単一の受光レンズ系を使用するが、前者は寸法,重量
の点で、後者は主に光学損失の点で問題があった。
In this conventional light beam tracking receiving system, a four-division light receiving element is used as a light receiving element for communication, which is lower in sensitivity and response speed than the dedicated communication light receiving element. Use a separate light-receiving lens system separate from the communication system, or use a single light-receiving lens system optically coupled to the optical axis of the communication system. There was a problem in terms of losses.

【0006】[0006]

【課題を解決するための手段】本発明の光ビーム追尾受
信方式は、入射する受信光の角度ずれを検出して追尾信
号を生じる光ビーム追尾受信方式において、前記受信光
を集光した集光スポットの直径と前記集光スポットを受
ける受光素子の円形の受光面の直径とをほぼ等しくした
光受信手段と、前記集光スポットを前記受光素子の受光
の中心からほぼ等距離の円周上を円形に回転させる
光スポット回転駆動手段と、前記回転の中心を前記受光
素子の受光面中心に移動するよう制御する集光スポット
回転中心制御手段とを有する。
According to the present invention, there is provided a light beam tracking receiving system, comprising: a light beam tracking receiving system for detecting an angular deviation of incident received light to generate a tracking signal; A light receiving means in which the diameter of the spot is substantially equal to the diameter of the circular light receiving surface of the light receiving element receiving the condensed spot, and the condensed spot is disposed on a circumference substantially equidistant from the center of the light receiving surface of the light receiving element. the collection is rotated in a circular
Light spot rotation driving means, and a condensing spot for controlling the center of rotation to move to the center of the light receiving surface of the light receiving element
Rotation center control means .

【0007】[0007]

【実施例】次に本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0008】図1は本発明の一実施例による光通信用受
信機に含まれる光ビーム追尾受信装置を示しており、図
1(a)は実施例のブロック図、図1(b)および
(c)は本実施例に使用する受光素子の受光面と受信光
スポットの位置関係を示す図である。
[0008] Figure 1 shows a light beam tracking receiver device included in the optical communication receiver according to an embodiment of the present invention, FIG. 1 (a) is a block diagram of an embodiment, FIG. 1 (b) and
(C) is a diagram showing a positional relationship between a light receiving surface of a light receiving element used in the present embodiment and a received light spot.

【0009】図1(a)の実施例のミラー1,2,レン
ズ3を含む受光レンズ系および光受信機4は通信系のそ
れを兼ねている。入射される受信光Aを受けるミラー1
は、駆動回路6のX方向制御出力端子35から出力され
る制御電圧V1により制御され、制御電圧V1に比例し
た角度だけ紙面に垂直な軸を中心に回転する。ミラー1
から受けた受信光Aをレンズ3に出射するミラー2は、
駆動回路6のY方向制御出力端子36から出力される制
御電圧V2により制御され、制御電圧V2に比例して紙
面とミラー2の交わる軸を中心に回転する。光受信機4
は、レンズ3から受信光Aの集光スポットBを受け、信
号出力端子5から通信信号を通信系装置(図示せず)に
出力するとともに、他の端子から受信光Aの受信レベル
を表わすAGC電圧等の受信レベル信号Vsを出力す
る。
The light receiving lens system including the mirrors 1, 2, and the lens 3 and the optical receiver 4 in the embodiment of FIG. 1A also serve as the communication system. Mirror 1 for receiving incoming light A
Is controlled by a control voltage V1 output from an X-direction control output terminal 35 of the drive circuit 6, and rotates around an axis perpendicular to the paper by an angle proportional to the control voltage V1. Mirror 1
The mirror 2 that emits the received light A received from the lens 3 to the lens 3
It is controlled by a control voltage V2 output from a Y-direction control output terminal 36 of the drive circuit 6, and rotates around an axis at which the paper surface and the mirror 2 intersect in proportion to the control voltage V2. Optical receiver 4
Receives the condensed spot B of the received light A from the lens 3, outputs a communication signal from a signal output terminal 5 to a communication device (not shown), and displays an AGC representing a reception level of the received light A from another terminal. It outputs a reception level signal Vs such as a voltage.

【0010】ここで、制御電圧V1は、V1=X+a・
sinωt(Xはバイアス,aは定数,ωは角周波数,
tは時刻)で表わされる信号である。バイアスXは光通
信用受信機の姿勢制御装置から(図示せず)X方向制御
入力端子33に入力される制御信号xと,光受信機4か
ら受信レベル入力端子21に入力される受信レベル信号
Vsとに基づいて作られ、角周波数ωは駆動回路6自身
によってミラー1,2に適切な回転速度を与える値が設
定される。同様に制御電圧V2は、V2=Y+a・co
sωtで表わされる信号である。バイアスYも姿勢制御
装置からY方向制御入力端子34に入力される制御信号
yと上記受信レベル信号Vsとに基づいて作られる。
Here, the control voltage V1 is V1 = X + a ·
sinωt (X is bias, a is constant, ω is angular frequency,
t is a signal represented by (time). The bias X is a control signal x input from the attitude control device (not shown) of the optical communication receiver to the X direction control input terminal 33 and a reception level signal input from the optical receiver 4 to the reception level input terminal 21. Vs and the angular frequency ω is set to a value that gives the mirrors 1 and 2 an appropriate rotation speed by the drive circuit 6 itself. Similarly, the control voltage V2 is V2 = Y + a · co
This is a signal represented by sωt. The bias Y is also generated based on the control signal y input from the attitude control device to the Y-direction control input terminal 34 and the reception level signal Vs.

【0011】従って、レンズ3に入射する受信光Aの光
束は、制御電圧V1,V2による2次元制御により、時
間的にバイアスX,Yによって定まる点を中心に円を描
く。これによってレンズ3より受信光Aを受ける光受信
機4の受光素子上(受光面11)に結ぶ受信光Aの(集
光)スポットBの中心も円を描く。
Therefore, the light flux of the received light A incident on the lens 3 draws a circle around a point determined by the biases X and Y in time by two-dimensional control by the control voltages V1 and V2. As a result, the center of the (convergent) spot B of the received light A connected to the light receiving element (light receiving surface 11) of the optical receiver 4 that receives the received light A from the lens 3 also draws a circle.

【0012】また、制御電圧V1,V2の大きさの角変
位ωtに従う変化量は、定数aによって定まる。そこ
で、図1(b)に示すように、受光レンズ系の焦点を少
しずらしておくとともに、受信光AのスポットBの中心
が描く円の直径を同形の受光素子の受光面11の直径と
ほぼ同サイズになるように定数aを定めておく。
The amount of change in the magnitude of the control voltages V1 and V2 according to the angular displacement ωt is determined by a constant a. Therefore, as shown in FIG. 1B, the focus of the light receiving lens system is slightly shifted, and the diameter of the circle drawn by the center of the spot B of the received light A is substantially equal to the diameter of the light receiving surface 11 of the light receiving element of the same shape. A constant a is determined so as to have the same size.

【0013】また、駆動回路6は、角変位ωtの0〜2
πまでの期間の受光量(光受信機4の受光素子に入力す
る受信光Aのレベル)の変化により、あとで図2によっ
て説明するようにバイアスX,Yの値を制御し、角変位
ωtの1周期における受信レベル信号Vsのレベル変化
を最小とするように制御する。すなわち、駆動回路6,
受光レンズ系,光受信機4および姿勢制御装置は、受信
光Aを受光面11に最大レベルかつ受信レベル変化少な
く入力するための負帰還回路を構成する。
Further, the drive circuit 6 has a function of the angular displacement ωt of 0 to 2
By changing the amount of received light (the level of the received light A input to the light receiving element of the optical receiver 4) up to π, the values of the biases X and Y are controlled as described later with reference to FIG. Is controlled so as to minimize the level change of the reception level signal Vs in one cycle. That is, the driving circuit 6,
The light receiving lens system, the optical receiver 4 and the attitude control device constitute a negative feedback circuit for inputting the received light A to the light receiving surface 11 with the maximum level and a small change in the received level.

【0014】従って、図1の光ビーム追尾受信装置は、
ミラー1,2の可変範囲で制限される以内の受信光Aの
入射角度ずれに対し、常に受光面11上に結ぶスポット
Bが図1(c)のごとく受光面11の中心から一定の円
周上を回転する点で安定する。なお、バイアスX,Yは
受光レンズ系の光軸の変化量に相当するので、このバイ
アスX,YをそれぞれX方向角度信号出力端子7および
Y方向角度信号出力端子8に取り出して光通信用受信機
全体の姿勢制御を行い、姿勢制御結果から制御信号x,
yを得てバイアスX,YをそれぞれX=0,Y=0の点
へ誘導できることは明らかである。
Therefore, the optical beam tracking receiver of FIG.
With respect to the incident angle deviation of the received light A within the range limited by the variable range of the mirrors 1 and 2, the spot B always connected to the light receiving surface 11 has a constant circumference from the center of the light receiving surface 11 as shown in FIG. Stable at the point of rotation above. Since the biases X and Y correspond to the amount of change in the optical axis of the light receiving lens system, the biases X and Y are taken out to the X-direction angle signal output terminal 7 and the Y-direction angle signal output terminal 8, respectively, and are used for optical communication reception. The attitude control of the entire machine is performed, and the control signals x,
Obviously, it is possible to obtain y and guide the biases X and Y to the points where X = 0 and Y = 0, respectively.

【0015】次に、図2を参照して駆動回路6の詳細な
説明をする。
Next, the driving circuit 6 will be described in detail with reference to FIG.

【0016】図1に示される光受信機4から受信レベル
入力端子21に加えられた受信レベル信号Vsと発振器
24の出力する正弦波信号sinωtとは掛け算器22
によって乗算され、信号Vs・cosωtが作られる。
Vsの時間変化とcosωtが同位相であれば、信号V
s・cosωtは振幅が大となり、逆相ならば打ち消し
あって小さくなる。信号Vs・cosωtは低域ろ波器
25によって角変位ωt一周期(0〜2π)の平均値X
1が取り出され、これとX方向制御入力端子33から入
力された光受信機4固有のX方向光軸ずれを補正する成
分である制御信号xとが加算器27によって加えられて
バイアス電圧(図2の説明においてはバイアスをバイア
ス電圧という)Xを生じる。バイアス電圧Xは、X方向
角度信号出力端子7に出力されるとともに、発振器24
からの正弦波信号sinωtを増幅器29によってa倍
した出力と加算器31によって加算され、加算結果の制
御信号V1=X+a・sinωtが得られる。制御信号
V1はX方向ミラー制御端子35に出力される。
The receiving level signal Vs applied from the optical receiver 4 shown in FIG. 1 to the receiving level input terminal 21 and the sine wave signal sinωt output from the oscillator 24 are multiplied by a multiplier 22.
To produce the signal Vs · cosωt.
If the time change of Vs and cosωt are in phase, the signal V
s · cos ωt has a large amplitude, and if the phases are opposite, they cancel each other and become small. The signal Vs · cosωt is averaged by one cycle (0 to 2π) of the angular displacement ωt by the low-pass filter 25.
1 is taken out, and a control signal x, which is a component for correcting the X-direction optical axis shift peculiar to the optical receiver 4 input from the X-direction control input terminal 33, is added by an adder 27 to generate a bias voltage (FIG. In the description of 2, the bias is referred to as a bias voltage) X. The bias voltage X is output to the X-direction angle signal output terminal 7 and the oscillator 24
The output obtained by multiplying the sine wave signal sinωt from the output signal by a by the amplifier 29 and the adder 31 are added to obtain a control signal V1 = X + a · sinωt as a result of the addition. The control signal V1 is output to the X-direction mirror control terminal 35.

【0017】同じように、発振器24から出力された正
弦波信号sinωtは、90°移相器33を経由して信
号cosωtとなり、この信号は受信レベル信号Vsと
掛け算器23によって乗算され、信号Vs・sinωt
が得られる。信号Vs・sinωtは、低域ろ波器26
によって角変位ωt一周期の平均値Y1が取り出され、
これとY方向制御入力端子34から入力された光受信機
4固有のY方向光軸ずれを補正する成分である制御信号
yとが加算器28によって加えられてバイアス電圧Yを
生じる。バイアス電圧Yは、Y方向角度信号出力端子8
に出力されるとともに、90°移相器33からの信号c
osωtを増幅器30によってa倍した出力と加算器3
2によって加算され、加算結果の制御信号V2=Y+a
・cosωtが得られる。制御信号V2はY方向ミラー
制御端子36に出力される。
Similarly, the sine wave signal sinωt output from the oscillator 24 becomes a signal cosωt via the 90 ° phase shifter 33, and this signal is multiplied by the reception level signal Vs by the multiplier 23 to obtain the signal Vs・ Sinωt
Is obtained. The signal Vs · sin ωt is output from the low-pass filter 26.
The average value Y1 of one cycle of the angular displacement ωt is extracted by
This and a control signal y which is input from the Y-direction control input terminal 34 and is a component for correcting the Y-direction optical axis deviation peculiar to the optical receiver 4 are added by the adder 28 to generate a bias voltage Y. The bias voltage Y is applied to the Y-direction angle signal output terminal 8
And the signal c from the 90 ° phase shifter 33
The output obtained by multiplying osωt by a by the amplifier 30 and the adder 3
2 and a control signal V2 = Y + a resulting from the addition
・ Cosωt is obtained. The control signal V2 is output to the Y-direction mirror control terminal 36.

【0018】このようにバイアス電圧X,Yは、ミラー
1,2で振られる受信光Aのスポットの方向と実際に受
信されるスポットBの変位方向が一致すると絶対値の大
なる電圧となるので、光受信機の姿勢制御のための角度
情報として使用できる。
As described above, the bias voltages X and Y become voltages having large absolute values when the direction of the spot of the received light A oscillated by the mirrors 1 and 2 coincides with the displacement direction of the spot B actually received. Can be used as angle information for controlling the attitude of the optical receiver.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、単
一の受光素子のまわりを受信光の集光スポットが回転
し、かつ集光スポットは受光素子の中心から等距離の円
周上を回転するように制御されるので、この受信光の受
信レベルおよび受信レベル変化から、光軸と受信光との
角度のずれおよびその大きさが検出でき、受信光学系を
通信系と追尾系の用途に共用でき、光路上に光学損失と
なる素子を必要としないので、受信光のスポットが受光
素子からあふれることによる損失を補いながら、光学系
の小型・軽量化ができるという利点がある。
As described above, according to the present invention, the condensed spot of the received light rotates around a single light receiving element, and the condensed spot is located on the circumference equidistant from the center of the light receiving element. Is controlled so as to rotate, and from the reception level of the reception light and the change in the reception level, the deviation of the angle between the optical axis and the reception light and the magnitude thereof can be detected, and the reception optical system is used for the communication system and the tracking system. Since there is no need for an element that causes optical loss on the optical path, it is advantageous in that the optical system can be reduced in size and weight while compensating for the loss due to the spot of the received light overflowing from the light receiving element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による光通信用受信機に含ま
れる光ビーム追尾受信装置を示しており、図1(a)は
実施例のブロック図、図1(b)および(c)は実施例
に使用する受光素子の受光面と受信光スポットの位置関
係を示す図である。
FIG. 1 shows an optical beam tracking receiver included in an optical communication receiver according to an embodiment of the present invention. FIG. 1 (a) is a block diagram of the embodiment, and FIGS. 1 (b) and (c). FIG. 3 is a diagram showing a positional relationship between a light receiving surface of a light receiving element used in the embodiment and a received light spot.

【図2】図1にの光ビーム追尾受信装置に使用する駆動
回路6の構成図である。
FIG. 2 is a configuration diagram of a drive circuit 6 used in the light beam tracking receiver shown in FIG.

【図3】従来例を示し、図3(a)は光ビーム追尾受信
方式の略側面図、図3(b)は図3(a)の従来例に使
用する4分割受光素子の略正面図である。
3 (a) is a schematic side view of a light beam tracking reception system, and FIG. 3 (b) is a schematic front view of a four-division light receiving element used in the conventional example of FIG. 3 (a). It is.

【符号の説明】[Explanation of symbols]

1,2 ミラー 3 レンズ 4 光受信機 5 信号出力端子 6 駆動回路 7 X方向角度信号出力端子 8 Y方向角度信号出力端子 11 受光素子の受光面 21 受信レベル入力端子 22,23 掛け算器 24 発振器 25,26 低域ろ波器 27,28,31,32 加算器 29,30 増幅器 33 X方向制御入力端子 34 Y方向制御入力端子 35 X方向制御出力端子 36 Y方向制御出力端子 41 レンズ 42 4分割受光素子 42a〜42d 受光素子 43〜46 出力電極 47 アース電極 48 光軸 1, mirror 3 lens 4 optical receiver 5 signal output terminal 6 drive circuit 7 X direction angle signal output terminal 8 Y direction angle signal output terminal 11 light receiving surface of light receiving element 21 reception level input terminal 22, 23 multiplier 24 oscillator 25 , 26 Low-pass filters 27, 28, 31, 32 Adders 29, 30 Amplifiers 33 X-direction control input terminal 34 Y-direction control input terminal 35 X-direction control output terminal 36 Y-direction control output terminal 41 Lens 42 Four-divided light receiving Element 42a-42d Light receiving element 43-46 Output electrode 47 Earth electrode 48 Optical axis

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 入射する受信光の角度ずれを検出して追
尾信号を生じる光ビーム追尾受信方式において、 前記受信光を集光した集光スポットの直径と前記集光ス
ポットを受ける受光素子の円形の受光面の直径とをほぼ
等しくした光受信手段と、前記集光スポットを前記受光
素子の受光面の中心からほぼ等距離の円周上を円形に回
転させる集光スポット回転駆動手段と、前記回転の中心
を前記受光素子の受光面中心に移動するよう制御する
光スポット回転中心制御手段とを有することを特徴とす
る光ビーム追尾受信方式。
1. A light beam tracking reception system that detects an angular deviation of incident reception light and generates a tracking signal, wherein: a diameter of a condensed spot where the received light is condensed; and a circular shape of a light receiving element that receives the condensed spot. A light receiving unit having a light receiving surface having substantially the same diameter as a light receiving surface , a condensed spot rotating driving unit for rotating the condensed spot in a circle on a circumference substantially equidistant from the center of the light receiving surface of the light receiving element, A collection for controlling the center of rotation to move to the center of the light receiving surface of the light receiving element.
A light beam tracking reception system , comprising: a light spot rotation center control unit .
【請求項2】 入射する受信光の角度ずれを検出して追
尾信号を生じる光ビーム追尾受信方式において、 2次元の制御信号によって駆動されて前記入射する受信
光の出射方向を変えるミラーと、前記ミラーを通過した
受信光を集光して集光スポットとするレンズと、前記集
光スポットの直径とほぼ等しい直径の受光面を有する受
光素子によって前記集光スポットを受けるとともに前記
集光スポットとして受けた前記受信光の受信レベル信号
を出力する光受信機と、前記集光スポットを前記受光素
子の受光面の中心からほぼ等距離の円周上を円形に回転
させるとともに前記受信レベル信号および前記光ビー
ム追尾受信方式の姿勢信号に応答して前記集光スポット
の回転の中心を前記受光素子の受光面中心に移動するよ
う制御する前記制御信号を生じるミラー駆動回路とを有
することを特徴とする光ビーム追尾受信方式。
2. A light beam tracking reception system for detecting an angular deviation of incident reception light and generating a tracking signal, wherein the mirror is driven by a two-dimensional control signal to change an emission direction of the incident reception light; The lens receives the condensed spot and receives it as the condensed spot by a lens that condenses the received light passing through the mirror to form a condensed spot and a light receiving element having a light receiving surface having a diameter substantially equal to the diameter of the condensed spot. a light receiver for outputting a reception level signal of the received light is, along with rotating the focusing spot substantially equidistant circumferentially on the circular from the center of the light receiving surface of the light receiving element, the received level signal and the The control signal for controlling the center of rotation of the focused spot to move to the center of the light receiving surface of the light receiving element in response to a posture signal of a light beam tracking reception method. Light beam tracking receiver system characterized by having a resulting mirror driving circuit.
JP3279476A 1991-10-25 1991-10-25 Light beam tracking reception method Expired - Lifetime JP2743661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3279476A JP2743661B2 (en) 1991-10-25 1991-10-25 Light beam tracking reception method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3279476A JP2743661B2 (en) 1991-10-25 1991-10-25 Light beam tracking reception method

Publications (2)

Publication Number Publication Date
JPH05122155A JPH05122155A (en) 1993-05-18
JP2743661B2 true JP2743661B2 (en) 1998-04-22

Family

ID=17611585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3279476A Expired - Lifetime JP2743661B2 (en) 1991-10-25 1991-10-25 Light beam tracking reception method

Country Status (1)

Country Link
JP (1) JP2743661B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7379674B2 (en) 2003-03-27 2008-05-27 Canon Kabushiki Kaisha Optical transmission device
JP5322099B2 (en) * 2008-10-21 2013-10-23 国立大学法人東北大学 Angle sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522379B2 (en) * 1989-01-26 1996-08-07 日本電気株式会社 Space optical transmission device

Also Published As

Publication number Publication date
JPH05122155A (en) 1993-05-18

Similar Documents

Publication Publication Date Title
JP4426292B2 (en) Method and apparatus for detection and control of light beam alignment
US4497048A (en) Technique for controlling tracking in an optical disc apparatus
NO149794B (en) DEVICE FOR READING A RECORDING CARRIER ON WHICH STORAGE INFORMATION IS STORED, e.g. VIDEO AND / OR AUDIO INFORMATION
GB1590844A (en) Automatic focussing apparatus
JPH11136190A (en) Optical space communication equipment
NO149188B (en) DEVICE FOR READING A RECORDING BEAR WITH OPTICAL READABLE INFORMATION STRUCTURE
KR19980032733A (en) Laser body tracker
JP2872509B2 (en) Image blur prevention device
JP2743661B2 (en) Light beam tracking reception method
US5072890A (en) Optical system
US5127604A (en) Optical system
US3346738A (en) Radiation sensitive high resolution optical tracker
JP4432406B2 (en) Photodetection apparatus and method
JP4569424B2 (en) Photodetection device and photodetection method
JPH10239600A (en) Compensating optical device, optical space communication device using it, laser range finder, and laser finishing machine
EP0413594B1 (en) Seeker
US3139246A (en) Automatic optical guiding system
JPS5984353A (en) Information reading device
JP2005172704A (en) Photodetection device and optical system
US3240941A (en) Photosensitive horizon tracker using a reed scanner convertible to star tracking
JP2006337251A (en) Photodetection device
JP2006020092A (en) Photodetector
JPS6275308A (en) Displacement convertor
US4672205A (en) Method of processing the output signals of an optical earth-horizon sensor
JPS624777B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980106