JP2742430B2 - Intermediate buffer for communication cable - Google Patents

Intermediate buffer for communication cable

Info

Publication number
JP2742430B2
JP2742430B2 JP63238402A JP23840288A JP2742430B2 JP 2742430 B2 JP2742430 B2 JP 2742430B2 JP 63238402 A JP63238402 A JP 63238402A JP 23840288 A JP23840288 A JP 23840288A JP 2742430 B2 JP2742430 B2 JP 2742430B2
Authority
JP
Japan
Prior art keywords
water
yarn
cable
absorbent resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63238402A
Other languages
Japanese (ja)
Other versions
JPH0287419A (en
Inventor
邦道 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP63238402A priority Critical patent/JP2742430B2/en
Publication of JPH0287419A publication Critical patent/JPH0287419A/en
Application granted granted Critical
Publication of JP2742430B2 publication Critical patent/JP2742430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,通信ケーブル用介在緩衝物に関するもので
あり,その目的は,外皮が損傷を受けても絶縁層の部分
で走水が止まり,漏電や通信不能に陥ることを抑制でき
る通信ケーブル用介在緩衝物を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to an intervening buffer for a communication cable. The purpose of the present invention is to stop water running at an insulating layer portion even if the outer cover is damaged. An object of the present invention is to provide an intervening buffer for a communication cable that can suppress a leakage or a communication failure.

(従来の技術) 従来から通信ケーブル用介在緩衝物としては,紙紐や
合成樹脂紐,不織布或いはガラス繊維,アスベスト繊
維,綿糸等の糸条が用いられている。具体的には,ケー
ブル製造時に介在緩衝物を多芯ケーブルの間に充填し,
芯線と被覆材とを一体化させ,断面を丸く仕上げてこの
介在緩衝物にて走水を抑えるもので,介在緩衝物に要求
される性能としては柔軟で,かつ隣接する絶縁体を汚染
しないことである。
(Prior art) Conventionally, paper cords, synthetic resin cords, non-woven fabrics or glass fibers, asbestos fibers, cotton yarns and other yarns have been used as intervening buffers for communication cables. Specifically, filling the intervening buffer between the multi-core cables during cable manufacturing,
The core wire and the covering material are integrated and the cross section is rounded to suppress water running with this interposed buffer. The required performance of the interposed buffer is that it is flexible and does not contaminate the adjacent insulator. It is.

走水防止用電力ケーブルにおいて,ケーブルの外部保
護層の一部が破損を受けると水がケーブル内を走り,電
気絶縁体の全長に亘り電気特性が損なわれ,漏電や伝送
損失による通信不能或いは材料劣化によるケーブルの破
断等を引き起こす。通常の電線ケーブルばかりでなく,
光フアイバーケーブルにおいても水の侵入により光フア
イバーの破断を生じることとなる。これらトラブルを防
止するため防水型ケーブルについて種々提案されてい
る。
In a power cable for preventing water running, if a part of the outer protective layer of the cable is damaged, water runs in the cable, and the electrical characteristics are damaged over the entire length of the electrical insulator. The cable may be broken due to deterioration. Not only ordinary wire and cable,
Also in the optical fiber cable, breakage of the optical fiber is caused by the intrusion of water. In order to prevent these troubles, various waterproof cables have been proposed.

例えば,実開昭56−139109号公報にはペトロラタム系
やポリブテン系のジェリー状防水混和物中にポリアクリ
ル酸ソーダ等のアニオン系吸水性樹脂が添加された防水
混和物をケーブルの介在緩衝層内に充填した光ファイバ
ー海底ケーブルについて開示されている。また,特開昭
60−150506号公報には,ケーブル内の走水を防止する物
質として特定の高吸水性能を有する水膨潤性合成ポリマ
ーを不織布の少なくとも片面に塗布したテープ状物を介
在緩衝層に用いた走水防止型電力ケーブルについて開示
されている。
For example, Japanese Utility Model Application Laid-Open No. 56-139109 discloses a waterproof mixture in which an anionic water-absorbing resin such as sodium polyacrylate is added to a petrolatum-based or polybutene-based jelly-like waterproof mixture. An optical fiber submarine cable is disclosed. In addition,
Japanese Patent Application No. 60-150506 discloses that a water-swelling synthetic polymer having a specific high water-absorbing property is applied to at least one surface of a nonwoven fabric as a substance for preventing water running in a cable as an intervening buffer layer. A protective power cable is disclosed.

(発明が解決しようとする課題) ところが,前者の実開昭56−139109号公報に示されて
いる技術によれば,緩衝層内の空隙部全てに充填すれば
遮水効果が得られるが,ジェリー状のため充填が難し
い。すなわち,吸水性樹脂粉末を混入したジェリーを充
填する方法は,未充填部分を吸水性樹脂の吸水膨張によ
って埋めることで未充填部分をなくし走水を阻止するも
のであるが,吸水性樹脂粉末はペトロラタム系やポリブ
テン系の透水性の小さいジェリーに包まれているため浸
入した水が完全に吸水されずに走水が生じることにな
り,防水ケーブルとしての性能が劣ることになる。ま
た,この種のジェリーを用いると汚れを生じてケーブル
の端末接続加工が難しい問題もある。また,後者の特開
昭60−150506号公報に示されている技術は,合成樹脂紐
等に吸水性樹脂粉末を塗布してこれを介在緩衝層に用い
たものであるが,不織布テープのような比較的フラット
な形態のものに吸水性樹脂を付着させているため吸水性
樹脂の沈着場所が少なく,吸水性樹脂を多く付着させる
ことが難しい。このため,より多くの吸水性樹脂を付着
させようとすると吸水性樹脂同士で凝集或いは塊状に付
着することになり,侵入した水が吸水性樹脂塊に接した
時,吸水性樹脂塊の表面のみが膨潤することになる。こ
の表面だけが膨潤した吸水性樹脂塊は,逆に水のバリケ
ードを作り,未だ吸水していない状態の吸水性樹脂が吸
水するのを阻害するため,吸水性樹脂が十分な働きをす
ることができないものである。
(Problems to be Solved by the Invention) However, according to the former technique disclosed in Japanese Utility Model Application Laid-Open No. 56-139109, a water-blocking effect can be obtained by filling all the voids in the buffer layer. Filling is difficult due to the jelly shape. In other words, the method of filling jelly mixed with water-absorbent resin powder is to fill the unfilled part with the water-swelling expansion of the water-absorbent resin, thereby eliminating the unfilled part and preventing water running. Since it is wrapped in petrolatum-based or polybutene-based jelly with low water permeability, the infiltrated water is not completely absorbed, causing water to run, resulting in inferior performance as a waterproof cable. In addition, when using this kind of jelly, there is also a problem that it is difficult to process the connection of the cable terminal with dirt. In the latter technique disclosed in Japanese Patent Application Laid-Open No. 60-150506, a water-absorbing resin powder is applied to a synthetic resin string or the like and used as an intervening buffer layer. Since the water-absorbing resin is adhered to a relatively flat form, there are few places where the water-absorbing resin is deposited, and it is difficult to attach a large amount of the water-absorbing resin. For this reason, if more water-absorbent resins are to be attached, the water-absorbent resins will aggregate or adhere to each other, and when the intruded water comes into contact with the water-absorbent resin mass, only the surface of the water-absorbent resin mass will be applied. Will swell. On the contrary, the water-absorbent resin swelling only on the surface forms a water barricade, and prevents the water-absorbent resin that has not yet absorbed water from absorbing water. It cannot be done.

このように,上記発明は,いずれの場合も走水を十分
に抑えることができない問題がある。また,合成樹脂か
らなるスリットヤーン,スプリットヤーンの表面に吸水
性樹脂を付着させたケーブル用介在緩衝物も提案されて
いるが,先に述べた不織布テープの場合と同じ問題があ
り,さらに得られた介在緩衝物の風合も硬い欠点を有し
ている。なお,吸水性を有するセルローズ系繊維を介在
緩衝物として使用することも提案されているが,海水や
土壌中の汚水を吸水した際にこれらに含まれる微生物に
より材料劣化を引き起こし,ケーブルの強度低下につな
がり,実用化されていないのが現状である。
As described above, the above-described invention has a problem that water running cannot be sufficiently suppressed in any case. Also, interposed cushioning materials for cables in which a water-absorbing resin is attached to the surface of slit yarns and split yarns made of synthetic resin have been proposed, but they have the same problems as those of the non-woven tape described above. The texture of the interposed buffer also has a hard defect. It has been proposed to use water-absorbing cellulose fibers as an intervening buffer. However, when water from seawater or soil is absorbed, microorganisms contained in these materials cause deterioration of the material, resulting in a decrease in cable strength. Currently, it has not been put to practical use.

以上述べたように,種々提案されている従来の技術で
はケーブル表面の破損部から侵入した水が走水するのを
完全に阻止することができず,また,雨水,海水等のバ
クテリア等の細菌により介在緩衝層の充填物が劣化損傷
を受け,ケーブル等の破断が起こりやすい欠点を有して
いた。このため光ケーブル等の通信ケーブルの介在緩衝
物として抗微生物分解性で,かつ走水を阻止できるもの
は得られていないのが実状である。本発明者らは,すで
に特願昭62−75006号(特開昭63−241806号)において
上記従来技術の改良を目的に介在緩衝物の担体として可
撓性を有する微生物分解を受けにくいもので,しかも繊
維表面の表面積の大きな合成繊維捲縮加工糸に微生物分
解を受けにくい吸水性樹脂を沈着させてなるものを提案
している。ところが,捲縮加工糸を使用した場合,吸水
樹脂加工時や通信ケーブルに充填する作業において加工
時の張力で捲縮加工糸が伸びきってしまい,そのため吸
水性樹脂を有効に繊維表面に充填することが不十分とな
り,走水性について従来より改善されているものの,走
水の阻止性能に関しては,未だ不十分なものであった。
As described above, the various techniques proposed in the related art cannot completely prevent water that has penetrated from a damaged portion on the surface of a cable from running, and also have a problem that bacteria such as bacteria such as rainwater and seawater are not allowed to run. As a result, the filler in the intervening buffer layer is damaged and deteriorated, and the cable and the like are apt to break. For this reason, as an intervening buffer for a communication cable such as an optical cable, a substance that is antimicrobial degradable and that can prevent water running has not been obtained. The present inventors have already disclosed in Japanese Patent Application No. 62-75006 (Japanese Patent Application Laid-Open No. 63-241806) the purpose of improving the above-mentioned prior art, as a carrier for an intervening buffer, which is less susceptible to flexible microbial degradation. In addition, there has been proposed a fiber obtained by depositing a water-absorbing resin which is hardly susceptible to microbial decomposition on a synthetic fiber crimped yarn having a large surface area of the fiber surface. However, when a crimped yarn is used, the crimped yarn is stretched due to the tension during processing during processing of a water-absorbent resin or filling a communication cable, and therefore the fiber surface is effectively filled with the water-absorbent resin. Although the water running performance has been improved from the past, the stopping performance of the water running was still insufficient.

(課題を解決するための手段) 本発明は,前述した従来技術の課題に鑑みてなされた
ものであり,介在緩衝物の担体として可撓性を有する微
生物分解を受けにくい合成繊維捲縮加工糸を使用し,し
かも該捲縮加工糸が外力により変形しにくい糸条とする
ことで,該繊維表面の表面積が大きく保つことができ,
かつ,その捲縮形態が吸水性樹脂の沈着に適しているこ
とを見出し,本発明に到達したものである。
(Means for Solving the Problems) The present invention has been made in view of the above-mentioned problems of the prior art, and is a synthetic fiber crimped yarn that is flexible and is not easily susceptible to microbial degradation as a carrier for an intervening buffer. And the crimped yarn is hardly deformed by external force, so that the surface area of the fiber surface can be kept large.
Further, they have found that the crimped form is suitable for depositing a water-absorbent resin, and have reached the present invention.

すなわち,本発明は,微生物分解を受けにくい合成繊
維から構成された捲縮加工糸と抗張力糸からなる複合糸
の表面に抗微生物分解性に優れた吸水性樹脂が沈着され
てなる通信ケーブル用介在緩衝物を要旨とするものであ
る。
That is, the present invention relates to an interposer for a communication cable in which a water-absorbent resin having excellent antimicrobial degradability is deposited on the surface of a composite yarn consisting of a crimped yarn composed of synthetic fiber which is not easily degraded by microorganisms and a tensile yarn. The subject matter is a buffer.

以下,本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

先ず,防水型ケーブルの1実施例として光ファイバー
通信ケーブルの断面図を第1図に示す。(1)は中心抗
張体,(2)は光ファイバー芯線,(3)は介在緩衝
層,(4)は押え捲テープ,(5)は外部半導電層,
(6)はシース部である。通常,防水型光ファイバー通
信ケーブルにおいては,光ファイバー芯線(2)と外部
半導電層(5)との間に遮水機能(走水阻止機能ともい
う。)が付与されているものである。
First, FIG. 1 shows a sectional view of an optical fiber communication cable as an embodiment of a waterproof cable. (1) is a central tensile member, (2) is an optical fiber core wire, (3) is an intervening buffer layer, (4) is a holding tape, (5) is an outer semiconductive layer,
(6) is a sheath part. Normally, in a waterproof type optical fiber communication cable, a water blocking function (also referred to as a water stopping function) is provided between the optical fiber core wire (2) and the external semiconductive layer (5).

次に,本発明に用いられる合成繊維は,ポリアミド,
ポリエステル,ポリオレフィン等からなるマルチフイラ
メント糸で,海水や土壌の汚水に含まれているバクテリ
ア等の細菌により微生物分解を受けにくく,材料劣化を
受けにくい性能(抗微生物分解性ともいう。)を有する
ものである。通常,合成繊維は,一般にセルローズ系繊
維や羊毛,絹等の動物繊維に比べて抗微生物分解性に優
れており,土中や海水中に長期間埋設しても材料の強度
低下を生じないことが知られている。ところが,最近で
は吸湿性,制電性等の繊維改質が盛んに行われており,
添加物,ポリマー改質剤,油剤等が合成繊維に含まれて
ていることが多いため,ベースポリマーのみでなく通信
ケーブル用介在緩衝物の状態での抗微生物分解性が必要
となる。一方,綿糸,ジユート,羊毛,絹,レーヨン等
の天然繊維や再生繊維はバクテリア等の細菌により繊維
材料中で加水分解を受けてケーブルの材料劣化を生じる
ため本発明の目的には適さない。
Next, the synthetic fibers used in the present invention are polyamide,
Multifilament yarns made of polyester, polyolefin, etc., that are resistant to microbial degradation by bacteria such as bacteria contained in seawater or soil sewage, and resistant to material degradation (also called antimicrobial degradability). It is. Generally, synthetic fibers have better antimicrobial degradability than animal fibers such as cellulosic fibers, wool, and silk, and do not cause a decrease in material strength even when buried in soil or seawater for a long time. It has been known. However, recently, fiber modification such as hygroscopicity and antistatic has been actively performed.
Since additives, polymer modifiers, oils, and the like are often contained in synthetic fibers, antimicrobial degradability is required not only for the base polymer but also for the intervening buffer for communication cables. On the other hand, natural fibers and regenerated fibers such as cotton yarn, jute, wool, silk and rayon are not suitable for the purpose of the present invention because they are hydrolyzed in the fiber material by bacteria such as bacteria to cause deterioration of the cable material.

捲縮加工糸の製造方法としては,一般に嵩高加工と呼
ばれている方法が採用でき,具体的には仮撚加工法や押
込法,擦過法,空気噴射法等のいずれの方法によっても
製造できる。捲縮加工糸の一実施例として第2図及び第
3図にクリンプ加工糸及びカール加工糸の形態図を示
す。クリンプ加工糸を得るには加熱捲縮加工,押込法が
好ましく,カール加工糸を得るには擦過法,仮撚加工法
が好ましい。
As a method for producing a crimped yarn, a method generally called bulking can be adopted, and specifically, it can be produced by any of the false twisting method, the indentation method, the rubbing method, the air injection method, and the like. . FIGS. 2 and 3 show a crimped yarn and a curled yarn as one embodiment of a crimped yarn. Heat crimping and indentation methods are preferred for obtaining crimped yarns, and rubbing and false twisting methods are preferred for obtaining curled yarns.

また,嵩高性をより大きくかつ,繊維表面積を大きく
するためフイラメントの断面形態をY型,X型等の異形に
することで吸水性樹脂の沈着場所が増加して好ましい結
果を与えるが,本発明は,これに限定されるものではな
い。
In addition, in order to increase the bulkiness and increase the fiber surface area, the cross-sectional shape of the filament is changed to a Y-shape, X-shape or the like, so that the place where the water-absorbing resin is deposited increases, and a favorable result is obtained. Is not limited to this.

抗張力糸とは,捲縮加工糸のように伸縮性を有するも
のでなく,糸条は捲縮のない直線状の糸条で,強度が高
く,外力に対し伸びにくい糸である。抗張力糸は捲縮加
工糸とともに引揃え,場合によっては撚を施して複合糸
にする。この抗張力糸の働きは,捲縮加工糸に吸水性樹
脂を沈着加工する際,或いは通信ケーブルへの充填作業
時に加工張力によって捲縮が伸び切ってしまわないよう
に張力を受け持つものである。
The tensile strength yarn is not a material having elasticity like a crimped yarn, and the yarn is a straight yarn having no crimp, a high strength, and a yarn that is hard to expand against external force. The tensile strength yarn is drawn together with the crimped yarn, and if necessary, twisted to form a composite yarn. The function of the tensile strength yarn is to prevent the crimp from being completely extended by the working tension when depositing the water-absorbent resin on the crimped yarn or filling the communication cable.

抗微生物分解性に優れた吸水性樹脂としては,ポリア
クリル酸系共重合体,酢酸ビニル−アクリル酸系共重合
体,イソブチレン無水マレイン酸系共重合体等が好まし
い。澱粉系やセルローズ系の吸水性樹脂においては海水
や土壌中の汚水に含まれているバクテリア等の細菌によ
って分解されるのでケーブルの材料劣化を生じるため好
ましくない。ここで,抗微生物分解性とは実際に土壌中
に埋設してバクテリア等の細菌による生物分解の有無を
調査することが望ましいが,評価に時間がかかるので本
発明では次の加速試験方法により評価した。
As the water-absorbing resin having excellent antimicrobial decomposability, a polyacrylic acid-based copolymer, a vinyl acetate-acrylic acid-based copolymer, an isobutylene-maleic anhydride-based copolymer, and the like are preferable. Starch-based or cellulose-based water-absorbing resins are not preferred because they are decomposed by bacteria such as bacteria contained in seawater or soil sewage, and cause deterioration of cable materials. Here, antimicrobial degradability is desirable to investigate whether biodegradation by bacteria such as bacteria is actually buried in soil, but it takes time for evaluation, so in the present invention, it is evaluated by the following accelerated test method. did.

先ず,河川より泥水300ccを採取し,濾紙にて濾過し
た後,NH4H2PO40.6gを添加し,検体を4g投入して密閉し,
30℃の条件下で100日間放置して水素ガスの発生を認め
ないものを抗微生物分解性が高いと判定した。
First, 300 cc of muddy water was collected from a river, filtered with filter paper, and 0.6 g of NH 4 H 2 PO 4 was added.
Those that were left for 100 days at 30 ° C. and did not generate hydrogen gas were judged to have high antimicrobial degradability.

捲縮加工糸の表面に吸水性樹脂を沈着させるには,吸
水性樹脂を適当な有機溶剤等に溶解或いは分散させた樹
脂溶液に捲縮加工糸を含浸或いは被覆加工により沈着さ
せるものであり,吸水性樹脂の糸条への接着が乏しい場
合,アクリル樹脂,塩化ビニル樹脂,ウレタン樹脂等の
バインダーを吸水性を妨げない範囲で併用し,沈着させ
ることもできる。
In order to deposit the water-absorbent resin on the surface of the crimped yarn, the crimped yarn is deposited by impregnating or coating a resin solution in which the water-absorbent resin is dissolved or dispersed in an appropriate organic solvent or the like. If the water-absorbent resin has poor adhesion to the yarn, a binder such as an acrylic resin, a vinyl chloride resin, or a urethane resin may be used in combination as long as the water-absorbency is not impaired, and deposited.

次に,吸水性樹脂の沈着量としては,吸水性樹脂が塊
状にならない程度に均一にできるだけ多く沈着させるこ
とが望ましい。通常,繊維重量に対し10〜35重量%程度
付着させることが好ましい。なお,この沈着量は,捲縮
加工糸のフイラメント数,繊度,断面形状等により変化
するが,走水を阻止するためには,上記付着量が好まし
い。なお,均一に沈着させる目的で2回以上沈着加工を
行ってもよい。
Next, as for the amount of the water-absorbing resin deposited, it is desirable that the water-absorbing resin is deposited as much as possible uniformly so as not to form a lump. Normally, it is preferable to attach about 10 to 35% by weight to the fiber weight. The amount of deposition varies depending on the number of filaments, fineness, cross-sectional shape, etc. of the crimped yarn, but the above-mentioned amount of adhesion is preferable in order to prevent water running. The deposition may be performed twice or more for the purpose of uniform deposition.

(作用) 本発明によると,抗微生物分解性の合成繊維よりなる
捲縮加工糸に抗微生物分解性の高い吸水性樹脂を沈着さ
せることで走水阻止効果の高い介在緩衝物が得られる。
(Action) According to the present invention, an interposed buffer having a high water-running inhibiting effect can be obtained by depositing a water-absorbent resin having high antimicrobial degradability on a crimped yarn made of synthetic fibers having antimicrobial degradability.

この理由について,本発明者らは,次のように推察し
ている。
For this reason, the present inventors speculate as follows.

先ず,抗微生物分解性の合成繊維よりなる捲縮加工糸
を用いることで,捲縮加工糸の表面積が従来のテープや
不織布に比べて大きいので吸水性樹脂の沈着量が増える
ことになる。
First, by using a crimped yarn made of synthetic fibers having antimicrobial degradability, the surface area of the crimped yarn is larger than that of a conventional tape or nonwoven fabric, so that the amount of the water-absorbent resin deposited increases.

次に,本発明では複合糸を使用することで,テープや
不織布と異なり,平面的でなく三次元的に吸水性樹脂を
沈着させることが可能となり,その結果,水が侵入した
時,吸水能力が飛躍的に向上することになる。また,吸
水性樹脂の担体が可撓性のある合成繊維からなる捲縮加
工糸を含む複合糸であるため,吸水性樹脂を沈着させて
も柔軟で外力に対しても耐衝撃性もあり,切断に対する
抵抗が大きくなる。さらに,捲縮加工糸の捲縮性が抗張
力糸により伸びるのを阻止しているため吸水性樹脂の沈
着加工時及びケーブルへの捲縮加工糸の充填作業時にお
いて加工張力から守ることができるため走水阻止効果が
高くなる。捲縮加工糸及び吸水性樹脂が抗微生物分解性
が高いことからバクテリア等の細菌を含有した汚水が侵
入しても微生物分解を受けにくく,材料劣化が抑制され
ケーブル切断が阻止されることになる。
Next, in the present invention, by using a composite yarn, unlike a tape or a nonwoven fabric, it is possible to deposit a water-absorbent resin not three-dimensionally but three-dimensionally. Will be dramatically improved. In addition, since the water-absorbent resin carrier is a composite yarn containing a crimped yarn made of a flexible synthetic fiber, it is flexible even when the water-absorbent resin is deposited, and has impact resistance to external forces. Resistance to cutting increases. Furthermore, since the crimpability of the crimped yarn is prevented from being stretched by the tensile strength yarn, the crimped yarn can be protected from the processing tension when depositing the water-absorbent resin and filling the cable with the crimped yarn. Water running prevention effect becomes high. Since the crimped yarn and the water-absorbent resin have high antimicrobial decomposability, even if sewage containing bacteria such as bacteria invades, it is hardly susceptible to microbial degradation, thereby suppressing material degradation and preventing cable cutting. .

上述したように,本発明の介在緩衝物を用いることで
初めてケーブルの破断部より侵入した走水を阻止するこ
とができる。また,介在緩衝物が柔軟であることから走
水阻止ケーブルの製造が容易となる。
As described above, by using the intervening buffer of the present invention, it is possible to prevent, for the first time, water running in from the break portion of the cable. In addition, since the intervening buffer is flexible, manufacture of the water stoppage cable becomes easy.

(実施例) 以下,本発明を実施例により具体的に説明する。(Examples) Hereinafter, the present invention will be described specifically with reference to examples.

先ず,実施例及び比較例にて評価する吸水量,走水性
の評価方法及び抗微生物分解性の評価方法を下記に示
す。
First, the methods for evaluating the water absorption, the water running property and the antimicrobial degradability evaluated in Examples and Comparative Examples are shown below.

(1)走水性の測定方法 第5図に示す測定装置を用い,内径5mmのガラス管(1
1)に測定すべき吸水性樹脂を沈着させた糸条(以下,
吸水糸条と呼称する。)よりなる試料を充填してポリテ
トラフルオロエチレン樹脂製テフロンチューブ(12)に
接続し,タンク(13)に水位1000mmの高さを保つように
蒸溜水にNaCl0.75g/とCacl20.5g/を溶解させた溶液
を流入させてガラス管(9)により走水した距離を測定
した。
(1) Measuring method of water migration Using a measuring device shown in Fig. 5, a glass tube with an inner diameter of 5 mm (1
1) The yarn on which the water-absorbent resin to be measured is deposited
It is called a water-absorbing thread. ), Connect it to a Teflon tube made of polytetrafluoroethylene resin (12), and add NaCl 0.75 g / Cacl 2 0.5 g / The solution in which was dissolved was introduced, and the distance traveled by the glass tube (9) was measured.

なお,充填率は下記式にて求めた。 The filling ratio was determined by the following equation.

(2)抗微生物分解性 先ず,宇治川で採取した泥水を濾紙(東洋濾紙(株)
製品,濾紙No.1)で濾過した泥水300mlにNH4H2PO4を0.6
g添加し,評価すべき吸水糸条を4g投入し,密閉後30℃1
00日間放置した後,水素ガスの発生が認められないもの
を抗微生物分解性が優れていると判定した。
(2) Antimicrobial degradability First, the muddy water collected in the Uji River was filtered using filter paper (Toyo Roshi Kaisha, Ltd.).
0.6 mL of NH 4 H 2 PO 4 in 300 ml of muddy water filtered with a product, filter paper No. 1)
g, add 4 g of water-absorbing yarn to be evaluated, and after sealing, 30 ° C 1
After being left for 00 days, those in which no generation of hydrogen gas was observed were judged to have excellent antimicrobial degradability.

実施例1,比較例1〜2 ナイロン6BCF嵩高加工糸3000デニール144フイラメン
ト(ユニチカ(株)製品,P−600)とナイロン6,210デニ
ール24フイラメント(ユニチカ(株)製品,P−820)を
S撚25T/Mにて合撚したものをポリアクリル酸塩系吸水
性樹脂溶液(凸版印刷(株)製品,商品各H−2,固形分
濃度38%,溶媒トルエン/メチルエチルケトンVoL比1:
1)に浸漬し,マングルにて絞り率65%で脱液し,繊維
重量当たり25%沈着させた。得られた吸水糸条を観察す
ると,フイラメント間に吸水性樹脂が沈着され,3次元的
に樹脂が沈着されたものであった。次に,得られた吸水
糸条の走水阻止能力及び抗微生物分解性を評価し,結果
を第1表に示す。
Example 1, Comparative Examples 1-2 Nylon 6BCF bulky processed yarn 3000 denier 144 filament (product of Unitika Ltd., P-600) and nylon 6,210 denier 24 filament (unitika product, P-820) of 25T twist. / M twisted with a polyacrylate-based water-absorbent resin solution (Toppan Printing Co., Ltd. product, each product H-2, solid content concentration 38%, solvent toluene / methyl ethyl ketone VoL ratio 1:
It was immersed in 1), drained with a mangle at a squeezing ratio of 65%, and deposited 25% per fiber weight. Observation of the obtained water-absorbing thread showed that the water-absorbing resin was deposited between the filaments and the resin was deposited three-dimensionally. Next, the water absorption inhibiting ability and antimicrobial degradability of the obtained water-absorbing yarn were evaluated, and the results are shown in Table 1.

なお,本発明と比較するため,下記に示す比較試験を
行った。比較例1では実施例1のナイロン6BCF嵩高加工
糸3000デニール144フイラメント単独で使用する以外,
他は全て実施例1と同一条件で実施例1に準じて吸水糸
条の製造を行った。次に,得られた吸水糸条の性能評価
を行い,結果を第1表に示す。
For comparison with the present invention, the following comparative test was performed. In Comparative Example 1, the nylon 6BCF bulky textured yarn of Example 1 was used with 3000 denier 144 filament alone.
A water-absorbing thread was produced in the same manner as in Example 1 except for the above. Next, the performance of the obtained water-absorbing yarn was evaluated, and the results are shown in Table 1.

比較例2では吸水性樹脂を実施例1で使用した ポリアクリル酸塩系樹脂のかわりにカルボキシメチルセ
ルローズ(重合度400,エーテル化度0.6,第1表ではCMC
と記載した。)に塩素化エチレン−酢酸ビニル共重合体
を吸水性樹脂乾燥重量に対して8%添加したトルエン分
散溶液(固形分38%)に変更する以外,実施例1に準じ
て吸水糸条の製造を行った。得られた吸水糸条の吸水性
能結果を第1表に示す。表より明らかなように,介在緩
衝物への充填率はいずれも同じ程度であるが,比較例に
比べて走水阻止能力が高く,かつ抗微生物分解性も高い
ことからバクテリア等の細菌による材料劣化も阻止する
ことができる。
In Comparative Example 2, a water absorbent resin was used in Example 1. Instead of polyacrylate resin, use carboxymethyl cellulose (degree of polymerization 400, degree of etherification 0.6, CMC in Table 1)
It was described. Production of a water-absorbing thread was carried out in the same manner as in Example 1 except that the chlorinated ethylene-vinyl acetate copolymer was changed to a toluene dispersion solution (solid content: 38%) in which 8% was added to the dry weight of the water-absorbent resin. went. Table 1 shows the results of water absorption performance of the obtained water-absorbing yarns. As is clear from the table, the filling rate of the intervening buffer is almost the same, but the material has a higher water-stopping ability and a higher antimicrobial degradability than the comparative example. Deterioration can also be prevented.

(発明の効果) 以上詳述したように本発明によれば抗微生物分解性の
吸水性樹脂の担体として微生物分解を受けにくい嵩高性
合成繊維捲縮加工糸と抗張力糸の複合糸を使用すること
で,嵩高性を加工張力により失うことがなく,三次元的
に吸水性樹脂を沈着させることが可能となり,吸水性樹
脂の均一分散化が図られ,ケーブル表面の破損部分から
侵入した水を走水の短い範囲で走水を阻止することがで
きるものである。さらに,バクテリア等の細菌による材
料劣化も認められないことから海中又は土壌中に埋設さ
れる分野においても適用できるものである。
(Effects of the Invention) As described in detail above, according to the present invention, a composite yarn of a bulky synthetic fiber crimp-processed yarn and a tensile yarn, which is hardly susceptible to microbial degradation, is used as a carrier of an antimicrobial degradable water-absorbent resin. This makes it possible to deposit water-absorbent resin three-dimensionally without losing bulkiness due to processing tension, to achieve uniform dispersion of water-absorbent resin, and to run water that has penetrated from damaged parts on the cable surface. Water can be stopped in a short range of water. Further, since the material is not deteriorated by bacteria such as bacteria, it can be applied to the field buried in the sea or soil.

【図面の簡単な説明】[Brief description of the drawings]

第1図は光ファイバー通信ケーブルの一態様を示す断面
図,第2図は押込み加工により捲縮加工を行った嵩高加
工糸の1態様を示すクリンプヤーンの説明図,第3図は
仮撚加工により捲縮加工を行った嵩高加工糸の一態様を
示すカールヤーンの説明図,第4図は,嵩高加工糸と抗
張力糸との複合糸の一態様を示す説明図,第5図は通信
ケーブル用介在緩衝物の走水阻止能力を評価する走水試
験の説明図である。 1……中心抗張体、2……光ファイバー芯線 3……介在緩衝層、4……押え捲テープ 5……外部半導電層、6……シース部 7……クリンプ加工糸、8……カール加工糸 9……嵩高性加工糸、10……抗張力糸 11……ガラス管 12……ポリテトラフルオロエチレン製チューブ 13……タンク
FIG. 1 is a cross-sectional view showing one embodiment of an optical fiber communication cable, FIG. 2 is an explanatory view of a crimp yarn showing one embodiment of a bulky yarn subjected to crimping by indentation, and FIG. FIG. 4 is an explanatory view of a curled yarn showing one embodiment of a bulky processed yarn that has been crimped, FIG. 4 is an explanatory view showing one embodiment of a composite yarn of a bulky processed yarn and a tensile strength yarn, and FIG. It is explanatory drawing of the water running test which evaluates the water running inhibiting ability of the intervention buffer. DESCRIPTION OF SYMBOLS 1 ... Center tensile body 2 ... Optical fiber core wire 3 ... Intermediate buffer layer 4 ... Holding tape 5 ... External semiconductive layer 6 ... Sheath part 7 ... Crimped thread, 8 ... Curl Processed yarn 9: Bulk processed yarn, 10: Tensile yarn 11: Glass tube 12: Polytetrafluoroethylene tube 13: Tank

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】微生物分解を受けにくい合成繊維から構成
された捲縮加工糸と抗張力糸からなる複合糸の表面に抗
微生物分解性に優れた吸水性樹脂が沈着されてなる通信
ケーブル用介在緩衝物。
An intermediary buffer for a communication cable comprising a composite yarn comprising a crimped yarn and a tensile yarn made of a synthetic fiber which is hardly susceptible to microbial degradation, and a water-absorbent resin having excellent antimicrobial degradability deposited on the surface of a composite yarn. Stuff.
JP63238402A 1988-09-22 1988-09-22 Intermediate buffer for communication cable Expired - Lifetime JP2742430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63238402A JP2742430B2 (en) 1988-09-22 1988-09-22 Intermediate buffer for communication cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63238402A JP2742430B2 (en) 1988-09-22 1988-09-22 Intermediate buffer for communication cable

Publications (2)

Publication Number Publication Date
JPH0287419A JPH0287419A (en) 1990-03-28
JP2742430B2 true JP2742430B2 (en) 1998-04-22

Family

ID=17029669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63238402A Expired - Lifetime JP2742430B2 (en) 1988-09-22 1988-09-22 Intermediate buffer for communication cable

Country Status (1)

Country Link
JP (1) JP2742430B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287886A (en) * 1990-03-30 1991-12-18 Nagano Pref Gov Noukiyou Chiiki Kaihatsu Kiko Multi-functional fiber rope
US6469251B1 (en) * 2000-05-15 2002-10-22 Tyco Electronics Corporation Vapor proof high speed communications cable and method of manufacturing the same
JP2006164813A (en) * 2004-12-09 2006-06-22 Fujikura Ltd Cable

Also Published As

Publication number Publication date
JPH0287419A (en) 1990-03-28

Similar Documents

Publication Publication Date Title
CA1144998A (en) Waterproofing of insulated electric cables
US6380298B2 (en) Superabsorbent water-resistant coatings for fiber-reinforced articles
EP0314371B1 (en) Water resistant communications cable
TW199936B (en)
US5998312A (en) Substrate with super-absorbent material, method for manufacture thereof and use
JP4934259B2 (en) Super absorbent water resistant coating
BRPI0920776B1 (en) FISHING LINE
JP2742430B2 (en) Intermediate buffer for communication cable
WO2002022929A1 (en) Water-blocked telecommunications cables, and water-blocking yarns usefully employed in same
JPH10172358A (en) Water cut-off tape for power cable, and rubber plastic insulating power cable using the same
JPH0748326B2 (en) Intervening buffer for communication cable
CN211367878U (en) Yarn with waterproof antistatic function
JP2005539152A (en) How to reduce static electricity in a spunbond process
JPS62222214A (en) Water proof optical fiber cable
JPS62188109A (en) Water penetration protector
JP3168269B2 (en) Water-absorbing intervening cord for cable
JP2933231B2 (en) Water-swellable twisted yarn
JPS6297208A (en) Filling material for cable
JPH0631607Y2 (en) Intervening cord for running water prevention type cable
JP2698381B2 (en) Fiber optic cable
CN209388750U (en) A kind of cable moisture-proof with resistance to compression
CN113539563B (en) Enhanced polyvinyl chloride power cable and preparation method thereof
JPH02239214A (en) Water absorptive material for water shielding in optical fiber cable
JPH04177304A (en) Water-permeation-proof optical cable
JPS6319712A (en) Loading material for cable