JP2740970B2 - Operating method of coal boiler - Google Patents
Operating method of coal boilerInfo
- Publication number
- JP2740970B2 JP2740970B2 JP1260880A JP26088089A JP2740970B2 JP 2740970 B2 JP2740970 B2 JP 2740970B2 JP 1260880 A JP1260880 A JP 1260880A JP 26088089 A JP26088089 A JP 26088089A JP 2740970 B2 JP2740970 B2 JP 2740970B2
- Authority
- JP
- Japan
- Prior art keywords
- coal
- boiler
- flue gas
- amount
- desulfurization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Treating Waste Gases (AREA)
- Regulation And Control Of Combustion (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃焼排ガスから硫黄酸化物(以下SO2と称
する)の濃度を低減するために設置される排煙脱硫装置
を有する石炭ボイラの運転方法に係り、特にボイラ負荷
変化に対応させて脱硫装置を制御する運転方法。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a coal boiler having a flue gas desulfurization unit installed to reduce the concentration of sulfur oxides (hereinafter referred to as SO 2 ) from flue gas. An operation method for controlling a desulfurization device in response to a change in boiler load, particularly to an operation method.
現在、石炭ボイラ特に発電用ボイラを対象にした脱硫
装置は、石灰石−石膏法と呼ばれている脱硫方式が主流
である。この石灰石−石膏法は水に石灰をスラリー状に
し、排ガスと接触させることにより、SO2を吸収し石膏
に固定すると同時に、排ガス中のSO2濃度を減少させる
脱硫法である。この脱硫反応は以下のような幾つかの素
反応により、SO2を安定な石膏に固定する。At present, desulfurization systems for coal boilers, particularly power generation boilers, mainly use a desulfurization method called a limestone-gypsum method. The limestone - gypsum method is a lime in water was slurried by contacting with the exhaust gas, and at the same time fixed to the gypsum absorbs SO 2, a desulfurization method for reducing the SO 2 concentration in the exhaust gas. The desulfurization reaction some elementary reaction as follows to secure the SO 2 in the stable plaster.
SO2+H2O→H++HSO3 - ……(1) H++HSO3 -+1/2O2→2H++SO4 2- ……(2) CaCO3+2H++SO4 2-→CaSO4+2H2O+CO2 ……(3) H++HSO3 -1/2O2→2H++SO4 2- ……(4) 2H++SO4 2-+CaCO3+H2O→CaSO4・2H2O+CO2……(5) これらの素反応を総括すると、石灰石スラリー中のCa
CO3はSO2と等モル反応し石膏(CaSO4)を生成する。 SO 2 + H 2 O → H + + HSO 3 - ...... (1) H + + HSO 3 - + 1 / 2O 2 → 2H + + SO 4 2- ...... (2) CaCO 3 + 2H + + SO 4 2- → CaSO 4 + 2H 2 O + CO 2 ...... (3) H + + HSO 3 - 1 / 2O 2 → 2H + + SO 4 2- ...... (4) 2H + + SO 4 2- + CaCO 3 + H 2 O → CaSO 4 · 2H 2 O + CO 2 ...... ( 5) Summarizing these elementary reactions, Ca in the limestone slurry
CO 3 reacts equimolarly with SO 2 to produce gypsum (CaSO 4 ).
CaCO3+SO2+1/2O2+2H2O→CaSO4・2H2O+CO2 ……(6) 最近の石灰石−石膏法脱硫装置は、設備合理化の面か
ら吸収塔内のスラリーに空気を吹き込んで同時に亜硫酸
塩を酸化し酸化塔を省略することが行われている。CaCO 3 + SO 2 + 1 / 2O 2 + 2H 2 O → CaSO 4 .2H 2 O + CO 2 … (6) Recent limestone-gypsum desulfurization equipment simultaneously blows air into the slurry in the absorption tower in order to streamline the equipment. It is common practice to oxidize sulfites and omit the oxidation tower.
このような石灰石−石膏法における石灰石スラリー
(以下、吸収剤と称する)供給量の制御法としては、従
来、脱硫装置入口の排ガス量,排ガス中のSO2濃度,吸
収塔タンク内のスラリーpH等の検出結果をもとに行い、
ボイラの負荷変化に対しては予め、吸収剤を過剰に先行
投入して対応している。Such limestone - limestone slurry in gypsum method as the control method (hereinafter, absorbent and referred) supply, conventionally, the amount of exhaust gas desulfurizer inlet, SO 2 concentration in the exhaust gas, the slurry pH, etc. of the absorption tower tank Based on the detection result of
To cope with a change in the load of the boiler, an excessive amount of absorbent is preliminarily charged in advance.
石炭火力発電ボイラでは、燃焼石炭性状、日間負荷変
化、石炭種に対応した安定な燃焼状態の調整等により排
ガス量及び排ガス中のSO2濃度が変化するので、これら
の負荷変化に対応した脱硫装置の運転が必要である。発
電ボイラの25%から100%のボイラ日間負荷変化に対し
て、脱硫装置の運転制御は排ガス量,排ガス中のSO2濃
度,吸収塔タンク内のスラリーpH等の検出信号により吸
収剤供給量の制御が行なわれている。この方法では、吸
収剤を供給する経路での滞留時間、吸収塔内での滞留時
間等が長く負荷変化に追従できなくなる問題が生じる。
特開昭63−315131号公報では、石炭中の硫黄含有率を自
動分析装置により分析した信号により、脱硫装置の吸収
剤供給量を先行制御することが提案されている。In coal-fired power boiler, burning coal properties, days load change, because the SO 2 concentration in the exhaust gas quantity and the exhaust gas changes due to adjustment of a stable combustion state corresponding to the coal type, the desulfurization device corresponding to these load changes Operation is required. When the boiler's daily load changes from 25% to 100% of the power generation boiler, the operation control of the desulfurization unit is based on the detection signal of the amount of exhaust gas, the concentration of SO 2 in the exhaust gas, and the pH of the slurry in the absorption tower tank. Control is being performed. In this method, there is a problem that the residence time in the path for supplying the absorbent, the residence time in the absorption tower, and the like are long and it is impossible to follow a load change.
Japanese Patent Application Laid-Open No. 63-315131 proposes to preliminarily control the supply amount of an absorbent to a desulfurization unit based on a signal obtained by analyzing the sulfur content in coal by an automatic analyzer.
従来法では、自動分析装置による石炭中の硫黄含有率
の分析信号により、脱硫装置への吸収剤供給量を先行制
御しているため、硫黄含有率の異なる燃料石炭の変動に
対しては有効であるが、しかしながらこの技術では、ボ
イラの負荷変動や燃焼装置の操作量変動等に対する点が
考慮されていない。In the conventional method, the supply amount of the absorbent to the desulfurization unit is controlled in advance by the analysis signal of the sulfur content in the coal by the automatic analyzer, so it is effective against fluctuations in fuel coal with different sulfur contents. However, this technique, however, does not take into account fluctuations in the load of the boiler, fluctuations in the operation amount of the combustion device, and the like.
たとえば、ボイラ燃焼部で発生するNOxの低減または
燃焼率向上のために、最適な燃焼空気の配分を設定する
ことは、ボイラ運転時に頻繁に行なわれ、またある設定
値に流量制御系統を設定しても、ある範囲内で流量は常
に変動するので、この変動を脱硫装置の吸収剤供給量の
制御器に速やかに伝達し、吸収剤供給量を調整すること
が重要となる。For example, setting the optimal distribution of combustion air to reduce NOx generated in the boiler combustion section or improve the combustion rate is frequently performed during boiler operation, and the flow control system is set to a certain set value. However, since the flow rate always fluctuates within a certain range, it is important to promptly transmit the fluctuation to the controller for the supply amount of the absorbent in the desulfurization apparatus to adjust the supply amount of the absorbent.
さらにボイラの低負荷時には、脱硫塔出口の排ガスを
加熱するガス−ガス熱交換器において空気の洩れ込み量
などにより、脱硫装置に導入される排ガス量,SO2濃度が
石炭中の硫黄含有率からの値と異なる問題を生じ、吸収
剤の過不足状態、即ち過剰供給や不足状態をまねくこと
になる。Further at low load of the boiler, gas heats the exhaust gas desulfurizer outlet - due amount with leakage of air in the gas heat exchanger, the amount of exhaust gas introduced into the desulfurization apparatus, SO 2 concentration from the sulfur content in coal Causes a problem that is different from the above-mentioned value, which leads to an excess / deficiency state of the absorbent, that is, an excessive supply or shortage state.
本発明の目的は、上記従来技術の問題点を解決するた
めになされたもので、脱硫装置の前流側の排ガスに関す
る多くの情報をキャッチし、それを脱硫装置に伝達する
ことによって負荷変化の応答性を高め、吸収剤供給量を
円滑に制御する石炭ボイラの運転方法を提供することに
ある。An object of the present invention is to solve the above-mentioned problems of the prior art, and captures a great deal of information on exhaust gas on the upstream side of a desulfurization device and transmits the information to the desulfurization device to reduce the load change. It is an object of the present invention to provide a method of operating a coal boiler that enhances responsiveness and smoothly controls the supply amount of an absorbent.
上記目的は、固体粒子と石炭ボイラの燃焼排ガスとを
接触させ、該固体粒子に該燃焼排ガス中の硫黄酸化物を
吸収あるいは吸着させて該硫黄酸化物濃度を低減させる
移動層排煙脱硫装置を具備した石炭ボイラの運転方法に
おいて、前記石炭ボイラの燃焼状態を制御する石炭量及
び空気供給量等の操作因子の設定値あるいは測定値と、
該石炭中の硫黄含有率の分析値とに基づく値によって、
前記移動層排煙脱硫装置における固体粒子供給速度を制
御し、前記移動層排煙脱硫装置入口の燃焼排ガス中の硫
黄酸化物濃度及び排ガス量の検出値により、前記石炭中
の硫黄含有率の分析値等に基づく値を必要な場合は修正
し、該修正値に基づく制御信号を、該移動層排煙脱硫装
置における固体粒子供給速度の設定信号とすることを特
徴とする石炭ボイラの運転方法によって達成される。The above object is to provide a moving bed flue gas desulfurization device for bringing solid particles into contact with flue gas of a coal boiler and absorbing or adsorbing sulfur oxides in the flue gas to the solid particles to reduce the sulfur oxide concentration. In the operating method of the provided coal boiler, a set value or a measured value of an operation factor such as a coal amount and an air supply amount for controlling a combustion state of the coal boiler,
By the value based on the analysis value of the sulfur content in the coal,
Controlling the solid particle supply rate in the moving bed flue gas desulfurization unit, and analyzing the sulfur content in the flue gas at the inlet of the moving bed flue gas desulfurization unit and the sulfur content in the coal based on the detected value of the amount of flue gas. If necessary, the value based on the value or the like is corrected, and the control signal based on the corrected value is used as a setting signal of the solid particle supply speed in the moving bed flue gas desulfurization apparatus, and the method for operating a coal boiler is characterized in that Achieved.
通常の石炭火力発電用ボイラでは日間の発電量を調整
するために、数時間単位に最大負荷量から1/4負荷量の
範囲内で運転操作が繰り返される。ボイラの負荷量の変
化は燃焼石炭供給量、空気供給量の調整により行なわれ
る。このボイラの負荷変化によって起こる排ガス量、SO
2濃度の変動に対して、脱硫装置では常に所定脱硫率を
維持し、系外にSO2を排出させないようにすることが重
要といえる。In a normal coal-fired boiler, the operation is repeated within several hours from the maximum load to a quarter of the load in order to adjust the daily power generation. The change in the boiler load is performed by adjusting the amount of supplied coal and the amount of supplied air. The amount of exhaust gas, SO
To variations in 2 concentrations, always in the desulfurization apparatus to maintain a predetermined desulfurization rate, it can be said that it is important so as not to discharge the SO 2 from the system.
このためには、負荷量に応じて脱硫装置の応答性を高
め、吸収剤供給量の制御が最も対応しやすい操作因子と
いえる。脱硫装置の応答性を高めるには、ボイラの負荷
変化量を速やかに察知し、その信号を脱硫装置の吸収剤
供給系に伝達し対応する必要がある。その手段として
は、ボイラ燃焼条件と燃焼石炭中の硫黄含有量を検知
し、その信号を吸収剤供給系に伝達することが脱硫装置
の時間的な遅れをなくし応答性を高める結果につなが
る。特に微粉石炭ボイラでは、バーナから火炉内に投入
する空気量と石炭供給量とから換算して排ガス量が決め
られる。通常、ボイラ負荷量は石炭供給量、空気供給量
を変え、毎分3%から8%で立ち上げが行われるが、そ
の石炭供給量、空気供給量の増加速度を検出することに
よって脱硫装置の先行制御ができる。For this purpose, it can be said that the responsiveness of the desulfurization device is increased in accordance with the load amount, and the control of the supply amount of the absorbent is the operation factor which can be most easily handled. In order to increase the responsiveness of the desulfurization unit, it is necessary to quickly detect the load change amount of the boiler and transmit the signal to the absorbent supply system of the desulfurization unit to respond. As the means, detecting the boiler combustion conditions and the sulfur content in the burnt coal and transmitting the signal to the absorbent supply system eliminates the time delay of the desulfurization device and leads to the improvement of the responsiveness. In particular, in a fine coal boiler, the amount of exhaust gas is determined by converting the amount of air supplied from a burner into the furnace and the amount of coal supplied. Normally, the boiler load is changed at a rate of 3% to 8% per minute by changing the coal supply and air supply, but by detecting the rate of increase of the coal supply and air supply, the desulfurization unit is started. Advance control is possible.
石炭の燃焼により発生する硫黄酸化物は、石炭に含ま
れる硫黄酸化物に起因する。石炭中の硫黄含有量は同一
石炭種でもかなりのバラツキがあるので、多くのサンプ
ル点について連続した分析により平均した値の硫黄濃度
を検出する必要がある。この分析技術は既に確立してい
ると言える。硫黄分析値信号と石炭供給量と空気供給量
から求められる排ガス量の信号をもとにSO2濃度を演算
し脱硫装置への吸収剤供給量の信号として使用する。特
に負荷変動時には、石炭供給量が変化し、これに伴い燃
焼空気量も変化させる必要があるので、排ガス量、SO2
濃度が変化してくる。Sulfur oxide generated by combustion of coal is caused by sulfur oxide contained in coal. Since the sulfur content in coal varies considerably even for the same coal type, it is necessary to detect the average value of sulfur concentration by continuous analysis for many sample points. It can be said that this analysis technique has already been established. Based on the exhaust gas amount of the signal obtained from the sulfur analysis signal and the coal supply quantity and air supply quantity calculating the SO 2 concentration for use as absorbent feed amount of the signal to the desulfurization unit. Particularly when the load varies, the coal supply amount is changed, so this with the combustion air amount needs to be changed, the amount of exhaust gas, SO 2
The concentration changes.
上記本発明の構成によれば、固体粒子の移動速度を直
接制御することにより、きわめて単純な構成の移動層排
煙脱硫装置を実現できる。しかも、予め排ガス中のSO2
濃度を規定し、これにより脱硫装置の固体粒子供給速度
を制御することによって、最も速く負荷変化に対応した
制御ができるばかりでなく、脱硫装置入口排ガス中のSO
2濃度及び排ガス量を検知して、燃焼状態から操作因子
と石炭中の硫黄含有率の信号をバックチェックすること
ができるという優れた作用効果があり、これにより脱硫
装置の誤動作を防止することができる。According to the configuration of the present invention, a moving bed flue gas desulfurization apparatus having a very simple configuration can be realized by directly controlling the moving speed of the solid particles. In addition, SO 2
By controlling the solid particle supply rate of the desulfurization unit by regulating the concentration, not only the control corresponding to the load change can be performed quickly, but also the SOx in the exhaust gas at the desulfurization unit inlet can be controlled.
(2) It has an excellent effect that the concentration and exhaust gas amount can be detected and the operating factor and the sulfur content in coal can be back-checked from the combustion state, thereby preventing malfunction of the desulfurization unit. it can.
以下、本発明の一実施例を図面を用いて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
第1図は、典型的な石炭ボイラ、微粉炭ボイラシステ
ムの各要素機器の系統図を示す。石炭火力発電ボイラシ
ステムの要素機器は、ボイラ2,脱硝装置4,電気集塵機6,
脱硫装置8により構成される。ボイラ2は空気供給設
備、燃料供給設備、ボイラ本体2Aにより構成される。FIG. 1 shows a system diagram of each component of a typical coal boiler and pulverized coal boiler system. The components of the coal-fired power generation boiler system are boiler 2, denitration equipment 4, electric precipitator 6,
It is constituted by a desulfurization device 8. The boiler 2 includes an air supply facility, a fuel supply facility, and a boiler body 2A.
燃焼用空気は、ファンにより供給され、空気予熱機器
(図示せず)において燃焼ガスとの熱交換により所定の
温度に加熱された後に、石炭の搬送用に使用される一次
空気と他の燃焼用空気とに分離される。一次空気は一次
空気ファンにより粉砕機(図示せず)へ導入し、石炭10
を微粉炭に粉砕しバーナ(図示せず)へ搬送し、バーナ
内の微粉炭ノズルより火炉(図示せず)内へ投入され
る。火炉内で発生した燃焼ガスは、火炉出口からボイラ
2の出口までの間に設置される熱交換器群において水ま
たは水蒸気との熱交換により、これらを加熱した後にボ
イラ2外へ排ガス12として排出される。The combustion air is supplied by a fan and heated to a predetermined temperature by heat exchange with combustion gas in an air preheating device (not shown), and then the primary air used for transporting coal and other combustion air are used. Separated with air. Primary air is introduced into a crusher (not shown) by a primary air fan,
Is pulverized into pulverized coal, transported to a burner (not shown), and charged into a furnace (not shown) from a pulverized coal nozzle in the burner. Combustion gas generated in the furnace is heated as heat exchange with water or steam in a group of heat exchangers installed between the furnace outlet and the outlet of the boiler 2, and then heated and discharged as an exhaust gas 12 outside the boiler 2. Is done.
ボイラ本体2Aの出口には、脱硝装置4,電気集塵機6,脱
硫装置8の要素機器が設置され、燃焼ガスは、これに含
まれるNOx,ばいじん,SO2の濃度が低減された後にライン
14より煙突に導き系外へ排出される。The outlet of the boiler body 2A, denitration unit 4, an electrostatic precipitator 6, elements equipment desulfurizer 8 is installed, the combustion gas line after the NOx contained therein, dust, the concentration of SO 2 is reduced
It is led to the chimney from 14 and discharged out of the system.
燃焼ガス中のNOx,SO2,O2,CO等の濃度は、脱硝装置4
及び脱硫装置8入口において燃焼ガスを採取してそれぞ
れの分析計により濃度が計測される各要素機器の制御因
子として一部が用いられる。また、これらの排煙処理設
備の排ガス流れ後流においても燃焼ガスを採取し、計測
される。The concentration of NOx, SO 2 , O 2 , CO, etc. in the combustion gas depends on the denitration device 4
A part is used as a control factor of each component device in which the combustion gas is sampled at the inlet of the desulfurization device 8 and the concentration is measured by each analyzer. Combustion gas is also sampled and measured downstream of the exhaust gas flow from these flue gas treatment facilities.
石炭10は粉砕されボイラ2に供給される。本実施例で
は石炭の粉砕機の出口からバーナへの導入直後の石炭を
採取し分析計16で硫黄含有率をもとめる。この硫黄分析
信号18、及びボイラ本体2Aの石炭供給量、空気供給量等
の操作信号20、及び脱硫装置8の入口排ガス22中のSO2
濃度等の排ガス性状信号24を演算器26に取り込み、演算
器26からの制御信号28を制御器30に送り脱硫装置8の吸
収剤供給量を調整する。The coal 10 is pulverized and supplied to the boiler 2. In this embodiment, the coal immediately after being introduced into the burner from the outlet of the coal crusher is sampled, and the sulfur content is determined by the analyzer 16. This sulfur analysis signal 18, the operation signal 20 such as the coal supply amount and the air supply amount of the boiler body 2 </ b > A, and SO 2 in the exhaust gas 22 of the desulfurization unit 8.
An exhaust gas property signal 24 such as concentration is taken into a calculator 26, and a control signal 28 from the calculator 26 is sent to a controller 30 to adjust the supply amount of the absorbent to the desulfurization device 8.
第2図は石炭中の硫黄含有率(恒湿ベース)とそれを
ある空気比で燃焼した時の排ガス中のSO2濃度との関係
を示したものであるが、このSO2濃度は石炭種の発熱量
により空気比が若干異なるので演算機でその補正を行な
ったSO2濃度を用いる。ボイラで燃焼する石炭中の硫黄
含有率,石炭供給量,空気供給量の設定値信号を演算器
に送り、この第2図に示す関係を用いることによって、
脱硫装置入口の排ガス量,SO2濃度演算され、脱硫装置の
吸収剤供給量の制御信号として伝達される。Although Figure 2 shows the relationship between the SO 2 concentration in the exhaust gas when burned in air ratio in the same sulfur content in coal (humidity-based), the SO 2 concentration coal species Since the air ratio is slightly different depending on the heat generation amount, the SO 2 concentration corrected by the computer is used. By sending the set value signals of the sulfur content in the coal burned in the boiler, the amount of coal supplied, and the amount of air supplied to the arithmetic unit, and using the relationship shown in FIG.
The amount of exhaust gas at the inlet of the desulfurization unit and the concentration of SO 2 are calculated and transmitted as a control signal for the supply amount of the absorbent to the desulfurization unit.
本実施例はこのようにしてボイラの燃焼状態を制御す
る石炭供給量,空気供給量の操作因子と、石炭中の硫黄
含有率の分析結果の信号をもとに脱硫装置の吸収剤供給
量を先行制御することができる。In this embodiment, the operation of the coal supply and the air supply for controlling the combustion state of the boiler and the signal of the analysis result of the sulfur content in the coal are used to control the amount of the absorbent supplied to the desulfurization unit. It can be controlled in advance.
第3図は、第4図に示す石灰石−石膏法の脱硫装置を
組み込んだ石炭ボイラの排ガス処理を本発明法で実施し
た際の、ボイラ負荷量,排ガス処理量,石灰石スラリー
供給量,スラリーのpH,脱硫率を一括して示したもので
ある。本図によれば、ボイラ負荷量が変化し、それに伴
い排ガス量が変化しているが、石灰石スラリー供給量も
ボイラ負荷量に追従しており、脱硫装置の脱硫率への影
響を最小限に抑えられており良好に負荷追従していると
いえる。FIG. 3 shows a boiler load, an exhaust gas treatment amount, a limestone slurry supply amount, and a slurry amount when a flue gas treatment of a coal boiler incorporating the limestone-gypsum method desulfurization apparatus shown in FIG. pH and desulfurization rate are shown together. According to this figure, although the boiler load changes and the exhaust gas amount changes accordingly, the limestone slurry supply also follows the boiler load, minimizing the effect on the desulfurization rate of the desulfurization unit. It can be said that the load is suppressed and the load is tracked well.
尚、第4図は、吸収剤である石灰石スラリー32を制御
信号28に基づいて制御器30で供給量を調整し、この石灰
石スラリー32によって排ガス22を脱硫してライン14へ排
出する石灰石−石膏法の脱硫装置8である。FIG. 4 shows a limestone-gypsum which adjusts a supply amount of a limestone slurry 32 as an absorbent by a controller 30 based on a control signal 28, desulfurizes the exhaust gas 22 with the limestone slurry 32, and discharges it to the line 14. It is a desulfurization unit 8 of the method.
また、前記の燃焼状態の操作因子、石炭中の硫黄含有
率の分析値信号により、脱硫装置の吸収塔内スラリーに
吹き込む空気量を制御することも可能である。石灰石−
石膏法脱硫装置では、亜硫酸塩の酸化を目的とした酸化
塔が省略され、タンク内スラリーに空気を吹き込む方式
が主流である。スラリー中の亜硫酸イオンはボイラの負
荷量が増大してくると、増加する傾向がある。スラリー
中の亜硫酸イオン濃度が増えてくると脱硫性能が低下し
てくるので、減少させるために酸化して硫酸イオンにす
る必要があり、吹き込む空気量を前記の燃焼状態の操作
因子、石炭中の硫黄含有率の分析値信号により制御する
ことができる。Further, it is also possible to control the amount of air blown into the slurry in the absorption tower of the desulfurization device by using the operation factor of the combustion state and the analysis value signal of the sulfur content in the coal. Limestone-
In the gypsum method desulfurization apparatus, an oxidation tower for the purpose of oxidizing a sulfite is omitted, and a method of blowing air into slurry in a tank is mainly used. Sulfite ions in the slurry tend to increase as the boiler load increases. As the sulfite ion concentration in the slurry increases, the desulfurization performance decreases, so it is necessary to oxidize it to reduce it to sulfate ions. It can be controlled by the analysis signal of the sulfur content.
第6図は、固体粒子(吸収剤)34を充填した移動層脱
硫装置36を組み込んだ際の本実施例の適用例を示したも
のであり、第5図はこの例について、ボイラの日間負荷
変化量が35%から100%に変化する条件での本実施例の
先行制御による脱硫率の挙動を示したものである。脱硫
装置36に導入される排ガス22中のSO2濃度は616ppmから8
05ppmに変化し、その時の移動層脱硫装置36の固体粒子3
4の移動速度は、0.07から0.119m/hに制御された。脱硫
率は良好に負荷追従していることがわかる。FIG. 6 shows an application example of the present embodiment when a moving bed desulfurization device 36 filled with solid particles (absorbent) 34 is incorporated. FIG. 5 shows the daily load of the boiler for this example. FIG. 9 shows the behavior of the desulfurization rate by the advance control of the present example under the condition where the change amount changes from 35% to 100%. SO 2 concentration in the exhaust gas 22 introduced into the desulfurization apparatus 36 from 616Ppm 8
The solid particles 3 in the moving bed desulfurization unit 36
The moving speed of 4 was controlled from 0.07 to 0.119 m / h. It can be seen that the desulfurization rate favorably follows the load.
このように本実施例における脱硫装置の制御により、
ボイラ負荷変化に対して、排ガス中のSO2濃度を所定濃
度以下に低減できることが明らかにされた。更に、本実
施例による脱硫装置の制御と併合し、脱硫装置に導入さ
れる排ガス中の排ガス量,SO2濃度等の検出信号により、
脱硫装置の吸収剤供給量を制御することにより、ボイラ
石炭中の硫黄分析の異常値に対しても誤動作を防止でき
る。As described above, by controlling the desulfurization device in the present embodiment,
It has been clarified that the SO 2 concentration in the exhaust gas can be reduced to a predetermined concentration or less in response to a change in boiler load. Furthermore, merged with the control of the desulfurization apparatus according to the present embodiment, the amount of exhaust gas in the exhaust gas introduced into the desulfurization apparatus, the detection signal, such as SO 2 concentration,
By controlling the amount of the absorbent supplied to the desulfurization device, malfunctions can be prevented even for abnormal values of sulfur analysis in boiler coal.
上述の通り本発明によれば、石炭ボイラ、特に発電用
ボイラの排煙処理システムの脱硫装置の円滑な制御とし
て、石炭火力を対象にしたボイラ燃料の石炭中の硫黄含
有率を明確にし、ボイラの操作因子である空気供給量、
石炭供給量の設定値を脱硫装置の固体粒子供給速度の調
整信号とするものであるから、ボイラの負荷変化,石炭
種変化に対して脱硫装置の先行制御ができ、排ガス中の
硫黄濃度低減ができる。As described above, according to the present invention, as a smooth control of a desulfurization device of a flue gas treatment system of a coal boiler, particularly a power generation boiler, the sulfur content in coal of a boiler fuel for coal-fired power is clarified, and the boiler Air supply, which is the operating factor of
Since the set value of the coal supply is used as an adjustment signal for the solid particle supply speed of the desulfurization unit, the desulfurization unit can be controlled in advance of changes in boiler load and changes in coal type, reducing the sulfur concentration in the exhaust gas. it can.
【図面の簡単な説明】 第1図は本発明の一実施例におけるボイラシステムの概
略を示す系統図、第2図は石炭中の硫黄含有率と排ガス
中のSO2濃度の関係を示すグラフ、第3図は石灰石−石
膏法脱硫装置に本実施例を適用した場合の各因子の追従
関係を示すグラフ、第4図は石灰石−石膏法脱硫装置の
概略図、第5図は固体粒子を用いる移動層脱硫装置に本
実施例を適用した場合の負荷変化にともなう脱硫率の変
化を示すグラフ、第6図は移動層脱硫装置の概略図であ
る。 2……ボイラ、4……脱硝装置、 8,36……脱硫装置、10……石炭、 12,22……排ガス、16……硫黄分析計、 18……硫黄分析値信号、 20……ボイラ操作因子信号、 24……排ガス性状信号、26……演算器、 28……制御信号、30……制御器。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system diagram showing an outline of a boiler system in one embodiment of the present invention, FIG. 2 is a graph showing a relationship between a sulfur content in coal and an SO 2 concentration in exhaust gas, FIG. 3 is a graph showing the following relationship of each factor when this embodiment is applied to a limestone-gypsum method desulfurization apparatus, FIG. 4 is a schematic diagram of a limestone-gypsum method desulfurization apparatus, and FIG. 5 uses solid particles. FIG. 6 is a graph showing a change in desulfurization rate with a change in load when this embodiment is applied to a moving bed desulfurization apparatus. FIG. 6 is a schematic diagram of the moving bed desulfurization apparatus. 2 boiler, 4 denitrifier, 8,36 desulfurizer, 10 coal, 12,22 exhaust gas, 16 sulfur analyzer, 18 sulfur analysis value signal, 20 boiler Operating factor signal, 24: exhaust gas property signal, 26: arithmetic unit, 28: control signal, 30: controller.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 一一 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 嵐 紀夫 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 野沢 滋 広島県呉市宝町6番9号 バブコック日 立株式会社呉工場内 (56)参考文献 特開 昭63−315131(JP,A) 特開 昭63−224719(JP,A) 特開 昭64−47426(JP,A) ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Ichiichi Saito 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Inside the laboratory (72) Inventor Shigeru Nozawa 6-9 Takara-cho, Kure City, Hiroshima Prefecture Inside the Kure Factory of Babcock Hitachi Ltd. (56) References JP-A-63-315131 (JP, A) JP-A-63-224719 (JP) , A) JP-A-64-47426 (JP, A)
Claims (1)
触させ、該固体粒子に該燃焼排ガス中の硫黄酸化物を吸
収あるいは吸着させて該硫黄酸化物濃度を低減させる移
動層排煙脱硫装置を具備した石炭ボイラの運転方法にお
いて、 前記石炭ボイラの燃焼状態を制御する石炭量及び空気供
給量等の操作因子の設定値あるいは測定値と、該石炭中
の硫黄含有率の分析値とに基づく値によって、前記移動
層排煙脱硫装置における固体粒子供給速度を制御し、前
記移動層排煙脱硫装置入口の燃焼排ガス中の硫黄酸化物
濃度及び排ガス量の検出値により、前記石炭中の硫黄含
有率の分析値等に基づく値を必要な場合は修正し、該修
正値に基づく制御信号を、該移動層排煙脱硫装置におけ
る固体粒子供給速度の設定信号とすることを特徴とする
石炭ボイラの運転方法。A moving bed flue gas desulfurization apparatus for bringing solid particles into contact with flue gas from a coal boiler, and absorbing or adsorbing sulfur oxides in the flue gas to the solid particles to reduce the sulfur oxide concentration. In a method for operating a coal boiler comprising: based on set values or measured values of operation factors such as a coal amount and an air supply amount for controlling a combustion state of the coal boiler, and an analysis value of a sulfur content rate in the coal Controlling the solid particle feed rate in the moving bed flue gas desulfurization unit according to the value, and detecting the sulfur oxide concentration in the flue gas at the entrance of the moving bed flue gas desulphurization unit and the detected value of the amount of sulfur contained in the coal. A coal boiler wherein a value based on an analysis value of the rate is corrected, if necessary, and a control signal based on the corrected value is used as a setting signal of a solid particle supply speed in the moving bed flue gas desulfurization apparatus. Driving method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1260880A JP2740970B2 (en) | 1989-10-05 | 1989-10-05 | Operating method of coal boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1260880A JP2740970B2 (en) | 1989-10-05 | 1989-10-05 | Operating method of coal boiler |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03123623A JPH03123623A (en) | 1991-05-27 |
JP2740970B2 true JP2740970B2 (en) | 1998-04-15 |
Family
ID=17354036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1260880A Expired - Lifetime JP2740970B2 (en) | 1989-10-05 | 1989-10-05 | Operating method of coal boiler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2740970B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5877542B2 (en) * | 2012-04-16 | 2016-03-08 | 一般財団法人電力中央研究所 | Generation method, estimation method and estimation system of sulfur release amount |
JP6254012B2 (en) * | 2014-02-24 | 2017-12-27 | 三菱日立パワーシステムズ株式会社 | Exhaust gas treatment system and exhaust gas treatment method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0771617B2 (en) * | 1987-03-12 | 1995-08-02 | 石川島播磨重工業株式会社 | Control method of flue gas desulfurization equipment |
JPS63315131A (en) * | 1987-06-15 | 1988-12-22 | Mitsubishi Heavy Ind Ltd | Control of sulfur oxide concentration in flue gas |
JP2583902B2 (en) * | 1987-08-18 | 1997-02-19 | バブコツク日立株式会社 | Control device for wet flue gas desulfurization unit |
-
1989
- 1989-10-05 JP JP1260880A patent/JP2740970B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03123623A (en) | 1991-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4681746A (en) | Method of regulating the amount of reducing agent added during catalytic reduction of NOx contained in flue gases | |
EP0676587A1 (en) | Method for optimizing the operating efficiency of a fossil fuel-fired power generation system | |
KR20050057282A (en) | Exhaust smoke-processing system | |
CN105080315B (en) | For the flue gas denitrification system of dry-process cement rotary kiln | |
CA2091027A1 (en) | Fog conditioned flue gas recirculation for burner-containing apparatus | |
CN108105761B (en) | Ultra-low emission cooperative control method and system integration device for circulating fluidized bed boiler | |
DK2151272T3 (en) | A method and installation for purification of forbrændingsrøggasser containing the nitrogen oxides | |
US4310498A (en) | Temperature control for dry SO2 scrubbing system | |
US20120125240A1 (en) | System and method of managing energy utilized in a flue gas processing system | |
JP2740970B2 (en) | Operating method of coal boiler | |
JPS63171622A (en) | Exhaust gas treating device | |
JPH0352097Y2 (en) | ||
JPH0263524A (en) | Method for controlling amount of nh3 to be injected into exhaust gas denitrification device | |
CN207702455U (en) | Circulating fluidized bed boiler minimum discharge system integration device | |
JPS6071025A (en) | Desulfurization of waste gas from fluidized bed boiler | |
CN109794149A (en) | A kind of CFB boiler denitrating flue gas autocontrol method and system | |
CN113251411B (en) | Multi-pollutant cooperative control system and method for coal-fired industrial boiler | |
JP3229546B2 (en) | Temperature control method and temperature control device for electric dust collector | |
JP2933664B2 (en) | Absorbent PH control unit for wet flue gas desulfurization unit | |
JP2583902B2 (en) | Control device for wet flue gas desulfurization unit | |
RU2796494C1 (en) | Method and installation for joint flue gas cleaning with several pollutants | |
JP3913236B2 (en) | Circulating fluidized furnace and operation method thereof | |
JPH09323024A (en) | Flue gas treating plant and its operation | |
JPH0521006B2 (en) | ||
JPH09202448A (en) | Method and equipment for controlling ash-carriage of electric dust collector |