JP2740278B2 - Continuous casting method of molten stainless steel - Google Patents

Continuous casting method of molten stainless steel

Info

Publication number
JP2740278B2
JP2740278B2 JP1188944A JP18894489A JP2740278B2 JP 2740278 B2 JP2740278 B2 JP 2740278B2 JP 1188944 A JP1188944 A JP 1188944A JP 18894489 A JP18894489 A JP 18894489A JP 2740278 B2 JP2740278 B2 JP 2740278B2
Authority
JP
Japan
Prior art keywords
mold
stainless steel
osm
solidified shell
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1188944A
Other languages
Japanese (ja)
Other versions
JPH0357536A (en
Inventor
英就 北岡
誓司 糸山
徹也 藤井
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP1188944A priority Critical patent/JP2740278B2/en
Publication of JPH0357536A publication Critical patent/JPH0357536A/en
Application granted granted Critical
Publication of JP2740278B2 publication Critical patent/JP2740278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、ステンレス溶鋼の連続鋳造鋳片のオーシレ
ーションマーク谷部に発生する偏析を軽減することによ
り無手入れ可能な鋳片を鋳造する連続鋳造用鋳型を用い
る連続鋳造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a continuous casting method for casting a castable slab by reducing segregation generated in an oscillation mark valley of a continuous cast slab of molten stainless steel. The present invention relates to a continuous casting method using a casting mold.

<従来の技術> 連続鋳片表面のオシレーションマーク(以下OSMと略
す)谷部の偏析は、普通鋼の場合OSMに沿う横割れ発生
の原因となるため鋳片の直送圧延(ホットチャージ)を
阻害する要因の1つに挙げられる。また、ステンレス鋼
特にオーステナイト系ステンレス鋼等はCr,Ni等の酸化
されにくい元素を含むために、圧延前の加熱炉内におい
て表面に生じる酸化スケールが普通鋼に比較して非常に
薄い。ここで、偏析を伴うOSMが残存した状態で圧延す
ると製品表面に模様(光沢むら)を生じさせる。また、
偏析が大きい場合は普通鋼と同様にOSMに沿う横割れが
発生する。したがって、鋳片表面を圧延前に手入れする
必要があり、製造能力が著しく低下する。
<Conventional technology> Segregation of oscillation marks (hereinafter abbreviated as OSM) valleys on the surface of a continuous slab causes direct cracking (hot charging) of the slab because ordinary steel causes lateral cracking along the OSM. One of the inhibiting factors is mentioned. Further, since stainless steel, particularly austenitic stainless steel, contains elements that are hardly oxidized such as Cr and Ni, the oxide scale generated on the surface in a heating furnace before rolling is much thinner than that of ordinary steel. Here, when rolling is performed in a state where OSM with segregation remains, a pattern (irregularity) is generated on the product surface. Also,
If the segregation is large, lateral cracks will occur along the OSM as in ordinary steel. Therefore, it is necessary to maintain the slab surface before rolling, and the production capacity is significantly reduced.

このOSM谷部の偏析軽減に関しては従来から数多くの
技術が提案されているが、鋳型の振動条件(振動数,ネ
ガティブストリップ率,振動波形)の最適化によりOSM
深さを浅くし、その結果偏析を軽減する技術が主流であ
る(例えば、特開昭61−159255号公報,特開昭57−1159
48号公報)。
Many techniques have been proposed to reduce the segregation of OSM valleys. However, optimization of the mold vibration conditions (frequency, negative strip rate, and vibration waveform) has resulted in OSM valleys.
Techniques for making the depth shallow and thereby reducing segregation are the mainstream (for example, JP-A-61-159255, JP-A-57-1159).
No. 48).

しかしながら、上述した問題を解決するためには鋳型
の振動数を100〜500cpm、鋳型の振幅を2〜6mmと鋳型の
高振動数鋳造を実施する必要があり、この場合、鋳造中
に鋳型内に供給されるパウダーの鋳型と凝固シェル間へ
の流入量が減少し、潤滑性が著しく悪くなりブレークア
ウトが発生しやすくなる。
However, in order to solve the above-mentioned problem, it is necessary to carry out a high frequency casting of the mold with a frequency of the mold of 100 to 500 cpm and an amplitude of the mold of 2 to 6 mm. The amount of powder supplied to the space between the mold and the solidified shell is reduced, so that lubricity is significantly deteriorated and breakout is likely to occur.

<発明が解決しようとする課題> 本発明は、OSM深さを浅くし、OSM谷部に生じる偏析を
軽減でき、しかも鋳型と凝固シェルとの間へのパウダー
の流入量の減少を防止でき、これによって表面品質が優
れたステンレス鋼鋳片をブレークアウトを起こすことな
く製造することができるステンレス溶鋼の連続鋳造方法
を提供するためになされたものである。
<Problems to be Solved by the Invention> The present invention can reduce the OSM depth, reduce segregation generated in the OSM valley, and prevent a decrease in the amount of powder flowing into the space between the mold and the solidified shell. The present invention has been made to provide a continuous casting method of molten stainless steel capable of producing a stainless steel slab having excellent surface quality without causing breakout.

<課題を解決するための手段> 本発明は、鋳型を上下方向に振動させながらステンレ
ス溶鋼を連続鋳造するにあたり、鋳型長辺側のメニスカ
ス部より上部であって、少なくとも鋳造時にスラグリム
が形成される範囲を上広とする鋳型を用いて鋳造するス
テンレス溶鋼の連続鋳造方法である。
<Means for Solving the Problems> In the present invention, when continuously casting molten stainless steel while vibrating the mold in the vertical direction, the slag rim is formed at least above the meniscus portion on the long side of the mold, at least during casting. This is a continuous casting method for molten stainless steel that is cast using a mold having a wider range.

<本発明をなすに至った経過および作用> 先ず、ステンレス鋼鋳片に形成されるOSM谷部に偏析
が生じる理由について第4図を参照しながら以下に説明
する。第4図において、OSM8は鋳型1の振動速度(VM
が鋳片引抜き速度(VC)より速い時期すなわちネガティ
ブストリップ期に生成される。この際、鋳型のメニス
カス近傍の内面に形成されるスラグリム3により、凝固
シェル2の上端が内側に押し曲げられるとOSM8の形成は
さらに助長される。一方、偏析7は、鋳型の振動がネガ
ティブストリップ期から鋳型の振動速度が鋳片引抜き
速度より遅い時期すなわちボジティブストリップ期に
移行する際、内側に押し曲げられた凝固シェルは溶鋼静
圧により外側へ押し曲げられる。この際、凝固シェルの
溶鋼側は引張応力となり凝固シェル前面に存在する濃化
溶鋼が凝固シェル表面にしみ出し上述したOSM谷部に偏
析が生じる。これは凝固シェルの変形が大きいほど顕著
となる。したがって、ネガティブストリップ期において
凝固シェル上端を内側に押し曲げる原因となるスラグリ
ムと凝固シェル上端との接触を防止すれば前述した問題
を解決できるとの知見を得、本知見から本発明を完成さ
せた。
<Procedure and Function of Making the Present Invention> First, the reason why segregation occurs in an OSM valley formed in a stainless steel slab will be described below with reference to FIG. In FIG. 4, OSM8 is the vibration speed of the mold 1 (V M ).
Is generated at a time faster than the slab drawing speed (V C ), that is, during the negative strip period. At this time, when the upper end of the solidified shell 2 is pushed inward by the slag rim 3 formed on the inner surface near the meniscus of the mold, the formation of the OSM 8 is further promoted. On the other hand, when the vibration of the mold shifts from the negative strip period to the period at which the vibration speed of the mold is lower than the slab withdrawal speed, that is, the bodily strip period, the solidified shell pressed inwardly is bent outward by the molten steel static pressure. Pressed and bent. At this time, the molten steel side of the solidified shell becomes a tensile stress, and the concentrated molten steel existing on the front surface of the solidified shell exudes to the surface of the solidified shell and segregates in the OSM valley described above. This becomes more pronounced as the deformation of the solidified shell increases. Therefore, it has been found that preventing the contact between the slag rim and the upper end of the solidified shell, which causes the upper end of the solidified shell to bend inward during the negative strip period, can solve the above-described problem, and completed the present invention from this finding. .

すなわち本発明は、メニスカス部より上方であって、
少なくとも鋳造時にスラグリムが形成される範囲の鋳型
を上広にすることによって、鋳型内面に形成されるスラ
グリムと凝固シェル上端との距離を長くし、従来技術の
問題点を解決する連続鋳造法である。
That is, the present invention is above the meniscus portion,
This is a continuous casting method in which the distance between the slag rim formed on the inner surface of the mold and the upper end of the solidified shell is increased by increasing the mold at least in the range where the slag rim is formed during casting, thereby solving the problems of the prior art. .

次に、本発明の作用を第1図を参照して説明する。ネ
ガティブストリップ期においてメニスカス部より上方
の鋳型が上広のため、スラグリムと凝固シェル上端との
接触が緩和され凝固シェル上端の内側への変形が小さく
なり、したがってボジティブストリップ期における凝
固シェルの外側への変形も少なくなり、従ってOSM深さ
が浅くなる。この場合凝固シェルの溶鋼側の引張応力も
小さく濃化溶鋼のしみ出しも防止でき、OSM谷部の偏析
は軽減される。
Next, the operation of the present invention will be described with reference to FIG. Since the mold above the meniscus part is wider in the negative strip period, the contact between the slag rim and the upper end of the solidified shell is relaxed, and the inward deformation of the upper end of the solidified shell is reduced. Deformation is also reduced, and thus the OSM depth is reduced. In this case, the tensile stress on the molten steel side of the solidified shell is also small, and the exudation of the concentrated molten steel can be prevented, and segregation of OSM valleys is reduced.

さらに、ネガティブストリップ期におけるスラグリム
と凝固シェル上端との距離が大きいため、パウダーの流
入路が確保され鋳型と鋳片との間の潤滑性が改善され、
従来技術の欠点であった鋳型の高振動数鋳造におけるブ
レークアウトを起こすことなく鋳造できる等の特徴を有
する。
Furthermore, since the distance between the slag rim and the solidified shell upper end in the negative strip period is large, the inflow path of the powder is secured and the lubricity between the mold and the slab is improved,
It has features such as casting without causing breakout in high frequency casting of a mold, which was a drawback of the prior art.

本発明において、鋳型の上広テーパー量は鋳型天端か
らメニスカス部まで2%/m程度が最適と考えられる。
In the present invention, it is considered that the upper wide taper amount of the mold is optimally about 2% / m from the top end of the mold to the meniscus portion.

テーパー量2%/mが最適な理由は以下の検討結果に基
づく。すなわち、メニスカスレベルの変動した距離に相
当する分の圧縮応力が凝固シェルに加わった際の凝固シ
ェルの鋳造方向に作用する引張応力を求め、鋳造する鋼
種の高温引張強度との対比により凝固シェルの破断が発
生しないテーパー量は2%/m以下であるとの知見が得ら
れた。一方、テーパー量が2%/mより著しく小さい場合
には、スラグリムと凝固シェル上端との距離が十分確保
できず本発明の効果が発揮できない。
The reason why the taper amount of 2% / m is optimal is based on the following examination results. That is, the tensile stress acting in the casting direction of the solidified shell when a compressive stress corresponding to the fluctuating distance of the meniscus level is applied to the solidified shell is determined, and the solidified shell is compared with the high-temperature tensile strength of the steel type to be cast. It was found that the amount of taper at which no breakage occurred was 2% / m or less. On the other hand, when the taper amount is significantly smaller than 2% / m, the distance between the slag rim and the upper end of the solidified shell cannot be sufficiently secured, and the effect of the present invention cannot be exhibited.

なお、スラグリムの発生が起こりにくいパウダー組成
あるいはスラグリムの鋳型壁に付着する強度が小さい物
質を用いれば、本発明方法を用いなくとも目的は達成で
きるが、これらの技術思想は本発明から容易に類推でき
る。
The purpose can be achieved without using the method of the present invention by using a powder composition that does not easily generate slag rim or a substance that has low strength attached to the mold wall of the slag rim, but these technical ideas are easily analogized from the present invention. it can.

<実施例> オーステナイト系ステンレス溶鋼を対象に本発明に係
る第1図の鋳型と従来の第4図の鋳型を用いて同一鋳造
条件下で200×1040mm断面の連続鋳造鋳片を鋳造後、鋳
片表面のOSM深さの測定およびOSM谷部の偏析発生頻度
(偏析が発生した数/調査したOSM総数×100)を調査し
た。
<Example> Using a mold of FIG. 1 according to the present invention and a conventional mold of FIG. 4, a continuous cast slab having a cross section of 200 × 1040 mm was cast from austenitic stainless steel molten steel under the same casting conditions. The OSM depth of one surface was measured and the segregation frequency of OSM valleys (number of occurrences of segregation / total number of OSMs investigated x 100) was investigated.

その結果を第2図,第3図に示す。OSM深さは、いず
れの鋳造条件下でも本発明例が比較例より浅くなり、そ
の結果OSM谷部の偏析発生頻度が著しく減少した。この
ような鋳片を表面無手入れのまま、冷延コイルまで圧延
し、表面の光沢むら発生率{(光沢むら発生コイル数/
冷延コイル全数)×100}を調査した結果、従来の鋳型
では86%と高いのに対し、本発明の鋳型を用いた場合は
5%と減少し、顕著な効果が認められた。
The results are shown in FIGS. 2 and 3. The OSM depth was shallower in the examples of the present invention than in the comparative examples under any casting conditions, and as a result, the frequency of segregation at OSM valleys was significantly reduced. Such a slab is rolled to a cold-rolled coil while keeping the surface untreated, and the uneven glossiness on the surface {(the number of uneven glossy coils /
As a result of examining (the total number of cold-rolled coils) × 100 °, the conventional mold was as high as 86%, while the mold of the present invention was reduced to 5%, indicating a remarkable effect.

<発明の効果> 本発明によれば、従来の欠点であったステンレス鋼鋳
片のOSM谷部の偏析の発生を減少することができ、偏析
に起因した欠陥の減少防止による鋳片表面手入れ率の減
少や表面無手入れ圧延が可能となり、製品歩留りが向上
する。
<Effects of the Invention> According to the present invention, it is possible to reduce the occurrence of segregation in OSM valleys of a stainless steel slab, which was a drawback of the prior art, and to reduce the slab surface maintenance rate by preventing the reduction of defects caused by segregation. And the surface can be rolled without care, thereby improving the product yield.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の実施態様の鋳型の振動波形と凝固シ
ェルの形成状態、スラグリムとの関連を模式的に示した
説明図、第2図は、OSM深さと振動数の関係を本発明法
と従来法とを比較した特性図、第3図は、OSM谷部の偏
析発生頻度を本発明法と従来法とを比較して示した特性
図、第4図は、比較例の第1図と同様な現象を示した説
明図である。 1……鋳型、2……凝固シェル、 3……スラグリム、4……濃化溶鋼、 5……溶融パウダー、6……溶鋼、 7……偏析、 8……オシレーションマーク(OSM)、 ……ネガティブストリップ期、 ……ボジティブストリップ期、 ……ボジティブストリップ期。
FIG. 1 is an explanatory view schematically showing the relationship between the vibration waveform of the mold of the embodiment of the present invention, the solidified shell formation state, and the slag rim, and FIG. 2 shows the relationship between the OSM depth and the frequency. FIG. 3 is a characteristic diagram showing the segregation frequency of the OSM valley in comparison with the method of the present invention and the conventional method, and FIG. 4 is a first graph of the comparative example. It is explanatory drawing which showed the phenomenon similar to a figure. 1 ... mold, 2 ... solidified shell, 3 ... slag rim, 4 ... concentrated molten steel, 5 ... molten powder, 6 ... molten steel, 7 ... segregation, 8 ... oscillation mark (OSM), ... … Negative strip period,… Bositive strip period, …… Bossive strip period.

フロントページの続き (56)参考文献 特開 昭60−158955(JP,A) 特開 昭64−83349(JP,A) 実開 昭62−56253(JP,U)Continuation of the front page (56) References JP-A-60-158955 (JP, A) JP-A-64-83349 (JP, A) Jpn.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鋳型を上下方向に振動させるステンレス溶
鋼の連続鋳造にあたり、鋳型長辺側のメニスカス部より
上部であって、少なくとも鋳造時にスラグリムが形成さ
れる範囲を上広とする鋳型を用いて鋳造することを特徴
とするステンレス溶鋼の連続鋳造方法。
In a continuous casting of molten stainless steel in which a mold is vibrated in a vertical direction, a mold is used which is above a meniscus portion on a long side of the mold and at least widens a range where a slag rim is formed at the time of casting. A continuous casting method of molten stainless steel, characterized by casting.
JP1188944A 1989-07-24 1989-07-24 Continuous casting method of molten stainless steel Expired - Lifetime JP2740278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1188944A JP2740278B2 (en) 1989-07-24 1989-07-24 Continuous casting method of molten stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1188944A JP2740278B2 (en) 1989-07-24 1989-07-24 Continuous casting method of molten stainless steel

Publications (2)

Publication Number Publication Date
JPH0357536A JPH0357536A (en) 1991-03-12
JP2740278B2 true JP2740278B2 (en) 1998-04-15

Family

ID=16232647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1188944A Expired - Lifetime JP2740278B2 (en) 1989-07-24 1989-07-24 Continuous casting method of molten stainless steel

Country Status (1)

Country Link
JP (1) JP2740278B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3400220A1 (en) * 1984-01-05 1985-07-18 SMS Schloemann-Siemag AG, 4000 Düsseldorf CHOCOLATE FOR CONTINUOUSLY STEEL STRIP
JPS6256253U (en) * 1985-09-26 1987-04-07
JP2574328B2 (en) * 1987-09-25 1997-01-22 新日本製鐵株式会社 Continuous casting of thin cast slab

Also Published As

Publication number Publication date
JPH0357536A (en) 1991-03-12

Similar Documents

Publication Publication Date Title
CA1320333C (en) Cooling drum for continuous-casting machines for manufacturing thin metallic strip
JP3058185B2 (en) Austenitic stainless steel continuous cast slab
JPS5939225B2 (en) Continuous steel casting method
JP2740278B2 (en) Continuous casting method of molten stainless steel
JP4337565B2 (en) Steel slab continuous casting method
JPH08238550A (en) Method for continuously casting steel
JPH03238107A (en) Production of roll for coiler of hot rolling equipment
CA2255279C (en) Funnel geometry of a mold for the continuous casting of metal
JPH0356824B2 (en)
JP2964888B2 (en) Continuous casting method
JPH0465742B2 (en)
JPH08150454A (en) Method for oscillating mold at the time of continuously casting austenitic stainless steel
JP3342774B2 (en) Mold powder for continuous casting
JP7230597B2 (en) Pouring nozzle, twin roll type continuous casting apparatus, and method for producing thin cast slab
JPH11170022A (en) Method for cooling cast slab in continuous casting
JP4164925B2 (en) Manufacturing method of continuous cast slab
JP3908902B2 (en) Cooling drum for continuous casting of thin-walled slab and continuous casting method of thin-walled slab
JPH02141561A (en) Continuously cast billet of steel
JPS635859A (en) Continuous casting method for high silicon steel
JPS61159255A (en) Continuous casting method of stainless steel
JPS583755A (en) Preventing method for cracking of side surface of continuously cast slab
JP3180702B2 (en) Continuous casting method
JP3158899B2 (en) Electromagnetic casting method
JPH08290251A (en) Apparatus for continuously casting steel and method therefor
JP3228242B2 (en) Continuous casting equipment