JP2740262B2 - Particle size measurement smoke detector - Google Patents

Particle size measurement smoke detector

Info

Publication number
JP2740262B2
JP2740262B2 JP1122570A JP12257089A JP2740262B2 JP 2740262 B2 JP2740262 B2 JP 2740262B2 JP 1122570 A JP1122570 A JP 1122570A JP 12257089 A JP12257089 A JP 12257089A JP 2740262 B2 JP2740262 B2 JP 2740262B2
Authority
JP
Japan
Prior art keywords
light
smoke
particle size
particles
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1122570A
Other languages
Japanese (ja)
Other versions
JPH02300647A (en
Inventor
大祐 河関
晃由 佐藤
昭夫 竹元
善彦 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1122570A priority Critical patent/JP2740262B2/en
Publication of JPH02300647A publication Critical patent/JPH02300647A/en
Application granted granted Critical
Publication of JP2740262B2 publication Critical patent/JP2740262B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fire-Detection Mechanisms (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】[Industrial applications]

本発明は、煙粒子の粒径を計測することにより、建物
内で火災時等に発生する煙を検出する粒径計測型煙感知
器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle size measurement type smoke detector that detects smoke generated in a fire or the like in a building by measuring the particle size of smoke particles.

【従来の技術】[Prior art]

従来より煙粒子による光の散乱を利用した煙感知器が
提供されている(特開昭56-147294号公報、実開昭58-17
1591号公報、特開昭60-109189号公報、実開昭60-13449
号公報、実開昭62-20358号公報等参照)。 従来より提供されている煙感知器では、投光手段と受
光手段とを光軸が一致しないように配置し、投光手段か
ら投光された光の煙粒子による散乱光を受光手段で受光
することにより、煙粒子の存否による受光量の変化に基
づいて煙粒子を検出するようにしている。 ところで、煙以外に水蒸気やほこりによっても光は散
乱するから、上記構成の煙感知器では誤報が生じやすい
という問題がある。このような問題を解決するために、
受光量の変化が所定時間以上に亙って継続するときに初
めて発報するようにした蓄積型煙感知器が実用に供され
ている。
2. Description of the Related Art Conventionally, a smoke detector using light scattering by smoke particles has been provided (JP-A-56-147294, JP-A-58-17).
No. 1591, Japanese Unexamined Patent Publication No. 60-109189, Japanese Utility Model Application No. 60-13449
And Japanese Utility Model Application Laid-open No. Sho 62-20358). In a conventionally provided smoke detector, the light projecting means and the light receiving means are arranged so that their optical axes do not coincide with each other, and the light scattered by the smoke particles of the light projected from the light projecting means is received by the light receiving means. Thus, smoke particles are detected based on a change in the amount of received light due to the presence or absence of smoke particles. By the way, since light is scattered not only by smoke but also by water vapor or dust, there is a problem that a false alarm easily occurs in the smoke detector having the above configuration. To solve such a problem,
An accumulation-type smoke detector that emits an alarm only when the change in the amount of received light continues for a predetermined time or more has been put to practical use.

【発明が解決しようとする課題】[Problems to be solved by the invention]

上述のような蓄積型煙感知器では、煙が発生してから
発報されるまでの時間が長く、火災時などでは早期発見
に逆行するという問題がある。 本発明は上記問題点の解決を目的とするものであり、
散乱を生じる粒子の粒径を計測することにより、煙と水
蒸気やほこりとの識別を行うようにして誤報を防止する
とともに、火災時等の煙の発生を早期に検出できるよう
にした粒径計測型煙感知器を提供しようとするものであ
る。
The above-mentioned accumulation type smoke detector has a problem that it takes a long time from the generation of smoke to the generation of an alarm, and goes against early detection in a fire or the like. The present invention is aimed at solving the above problems,
By measuring the particle size of the particles that cause scattering, it distinguishes smoke from water vapor and dust to prevent false alarms, and to detect smoke generation at the time of fire etc. at an early stage. It is intended to provide a type smoke detector.

【課題を解決するための手段】[Means for Solving the Problems]

本発明では、上記目的を達成するために、干渉性を有
する平行光線束よりなる光ビームを投光する投光手段
と、投光手段に対向して配置され光ビームの煙粒子によ
る散乱光を受光する受光手段と、受光手段による受光信
号に基づいて煙粒子の粒径を計測することにより煙粒子
の存在を検出する判別手段とを有する粒径計測型煙感知
器において、受光手段を、投光手段の光軸に直交する受
光面を有し受光面上での光の強度分布を検出するパター
ン検出装置と、前方微小角散乱による各次数の回折像を
上記パターン検出装置の受光面上に等間隔に結像するフ
ーリエ変換レンズとで構成し、判別手段では、パターン
検出装置で受光した光の強度分布に基づいて粒径を計測
するようにしているのである。
In the present invention, in order to achieve the above object, a light projecting means for projecting a light beam composed of a parallel light beam having coherence, and scattered light by smoke particles of the light beam arranged opposite to the light projecting means. In a particle diameter measuring type smoke sensor having light receiving means for receiving light and discriminating means for detecting the presence of smoke particles by measuring the particle diameter of the smoke particles based on a light receiving signal from the light receiving means, the light receiving means is projected. A pattern detecting device having a light receiving surface orthogonal to the optical axis of the optical means and detecting the intensity distribution of light on the light receiving surface; and a diffraction image of each order by forward minute angle scattering on the light receiving surface of the pattern detecting device. The Fourier transform lens forms images at equal intervals, and the discriminating means measures the particle diameter based on the intensity distribution of the light received by the pattern detection device.

【作用】[Action]

上記構成によれば、煙粒子の粒径に基づいて煙粒子の
存在を検出するから、水蒸気やほこりなどの煙とは粒径
の異なる他の粒子での散乱による誤報を防止できるので
ある。また、煙以外の粒子により誤報が防止できる結
果、煙粒子が所定時間以上に亙って検出されるときに発
報するというような蓄積型の構成とする必要がないか
ら、火災感知器として用いれば、火災の早期発見が行え
るようになるのである。 次に、本発明の原理を説明する。エアロゾル(煙を含
む)に含まれる微小粒子の粒径を計測する方法として
は、Mie散乱理論を基礎とする計測方法が知られてい
る。いま、エアロゾルに対する照射光を干渉性を有する
平行光線とし、散乱を生じる粒子の粒径(直径)をD、
照射光の波長をλとして、粒径パラメータαを次のよう
に定義する。 α=πD/λ 粒径パラメータαが大きくなると、散乱光は前方に集
中し、明確なフォワードローブが形成されることが知ら
れており、このフォワードローブ内の散乱を前方微小角
散乱と称している。この散乱はフラウンホーファ回折に
起因しているから、主として粒径により支配され、粒子
の光学的特性にはほとんど影響を受けない。したがっ
て、回折角がわかれば、粒径パラメータを知ることがで
き、粒子の粒径を知ることができるのである。ただし、
エアロゾルにはいろいろな粒径を有する粒子が含まれて
いるから、回折角は一意に決定されるものではなく、回
折像の光量分布によりエアロゾルに含まれる粒子の粒径
の範囲を知ることができるのである。また、フラウンホ
ーファ回折の成立条件は、α>1であり、対象とする粒
子の粒径の測定範囲は、照射光の波長に依存することに
なる。
According to the above configuration, since the presence of the smoke particles is detected based on the particle size of the smoke particles, it is possible to prevent false reports due to scattering of other particles having a different particle size from smoke such as water vapor and dust. In addition, since false alarms can be prevented by particles other than smoke, it is not necessary to use a storage-type configuration that emits an alarm when smoke particles are detected for a predetermined time or more. This would enable early detection of fires. Next, the principle of the present invention will be described. As a method for measuring the particle size of fine particles contained in an aerosol (including smoke), a measurement method based on Mie scattering theory is known. Now, the irradiation light to the aerosol is a parallel light beam having coherence, and the particle diameter (diameter) of the scattering particles is D,
The particle diameter parameter α is defined as follows, where λ is the wavelength of the irradiation light. α = πD / λ It is known that when the particle diameter parameter α increases, scattered light concentrates forward and a clear forward lobe is formed. Scattering within this forward lobe is called forward small angle scattering. I have. Since this scattering is due to Fraunhofer diffraction, it is mainly governed by the particle size and is hardly affected by the optical properties of the particles. Therefore, if the diffraction angle is known, the particle size parameter can be known, and the particle size of the particles can be known. However,
Since the aerosol contains particles with various particle sizes, the diffraction angle is not uniquely determined, and the particle size range of the particles contained in the aerosol can be known from the light quantity distribution of the diffraction image. It is. Further, the condition for establishing the Fraunhofer diffraction is α> 1, and the measurement range of the particle size of the target particle depends on the wavelength of the irradiation light.

【実施例】【Example】

第1図に示すように、投光手段としてレーザ光源1が
配設され、干渉性を有する平行光線束である光ビームを
投光する。受光手段はレーザ光源1に対向して配設さ
れ、レーザ光源1との間の空間が煙粒子aや煙以外の粒
子bの導入される監視空間になる。受光手段は、多数の
円形のホトセル2を同心円状に配列したパターン検出装
置3と、パターン検出装置3の前方に配設されたフーリ
エ変換レンズ4とを備えている。すなわち、上記監視空
間に導入された煙粒子によりレーザ光源1からの光ビー
ムが散乱され、前方微小角散乱による回折像がフーリエ
変換レンズ4を通して2次元フーリエ変換され、この変
換像がパターン検出装置3の受光面に結像されるのであ
る。フーリエ変換レンズ4は、光軸に対する光線の入射
角度θと、像の高さhと、焦点距離fとが、h=f・si
nθという関係に設定されたレンズであって、回折光が
フーリエ変換レンズ4を通過すると、各次数の回折像が
等間隔に結像されるようになっている。すなわち、パタ
ーン検出装置3の受光面での光軸からの距離が散乱角の
正弦関数になる。このフーリエ変換レンズ4を用いてい
ることにより、パターン検出装置3では、受光面にホト
セル2を等間隔で配列すればよく、設計が容易になるの
である。フーリエ変換レンズ4は、微調整装置5に保持
されており、パターン検出装置3の受光面に対するフー
リエ変換レンズ4の光軸の角度を調節したり、パターン
検出装置3との距離を調節することができるようになっ
ている。パターン検出装置3の出力は、判別手段を構成
するマイクロコンピュータ等の判別装置6に入力され
る。判別装置6では、回折光のパターン検出装置3によ
る受光強度の分布パターンに基づいて煙粒子の粒径を計
測し、粒径が煙粒子に相当すると判定されると発報する
のである。 判別装置6では次に示すような回折光の強度分布によ
り粒子の種類を識別する。すなわち、上記実施例と同じ
構成の投光手段と受光手段とを用いて、回折像における
光の強度分布を測定すると、第2図のような結果が得ら
れる。ここに、レーザ光源1として出力波長が633nmの
ヘリウム−ネオンレーザを用い、ホトセル2を32個設
け、フーリエ変換レンズ4の焦点距離を63mmとし、計測
できる粒子の最小径を約0.1μmとしている。また、第
2図(a)〜(h)において、外側のグラフ図の横軸は
粒径(単位はμm)、縦軸は粒子数密度(単位は%)、
内側のグラフ図の横軸はホトセル2の番号、縦軸は受光
強度を示す。ホトセル2は同心円状に配列されており、
内側から1,2,……,32と番号を付してある。したがっ
て、回折角が大きくなる粒径の小さな粒子に対しては、
大きな番号を付したホトセル2での受光強度が大きくな
り、粒径の大きな粒子では、回折角が小さくなるから、
小さな番号を付したホトセル2での受光強度が大きくな
る。第2図(a)〜(e)は、それぞれウレタン、灯
油、紙、木材、綿灯芯を500〜600℃の電気炉内に入れて
加熱し、燃焼煙の粒径を計測した結果であり、第2図
(f)〜(h)は、それぞれたばこの煙、湯気、ほこり
についての計測結果である。計測された粒径は、それぞ
れ次表のようになった。 以上の計測結果から、ほこり以外は、粒径がほぼ均一
であることがわかる。また、湯気は粒径が5.0〜6.4μm
であり、煙に比較して粒径が大きいから煙との識別がで
きるのである。すなわち、粒子の種類によりパターン検
出装置3での受光強度分布は、第2図(a)〜(h)の
ように変化するから、上記判別装置6においてこの強度
分布を識別すれば、水蒸気やほこりによる誤報を防止で
きるのである。 上記実施例では、パターン検出装置3として、多数の
ホトセル2を配列したものを用いているが、2次元イメ
ージセンサ等の撮像装置を用いてもよい。また、レーザ
光源1の波長を短くし、ホトセル2の数を増やせば分解
能を高めることができる。さらに、火災時に発生する黒
煙のように透過率が低い煙の場合には、パターン検出装
置3での受光量が小さくなり、受光強度の分布が不明瞭
になるから、火災感知器に用いる場合には、煙粒子の粒
径の検出とともに、レーザ光源1から監視空間を通さず
に光ファイバにより参照光を導出し、この参照光と散乱
光との強度比により煙粒子の存在を検出する方法を併用
するようにすれば、火災を確実に検出できるようにな
る。
As shown in FIG. 1, a laser light source 1 is provided as a light projecting means, and projects a light beam which is a parallel light beam having coherence. The light receiving means is disposed to face the laser light source 1, and a space between the light receiving means and the laser light source 1 is a monitoring space into which smoke particles a and particles b other than smoke are introduced. The light receiving means includes a pattern detection device 3 in which a large number of circular photocells 2 are arranged concentrically, and a Fourier transform lens 4 disposed in front of the pattern detection device 3. That is, the light beam from the laser light source 1 is scattered by the smoke particles introduced into the monitoring space, and a diffraction image by forward small angle scattering is two-dimensionally Fourier-transformed through the Fourier transform lens 4. Is formed on the light receiving surface of the light emitting element. In the Fourier transform lens 4, the incident angle θ of the light beam with respect to the optical axis, the height h of the image, and the focal length f are defined as h = f · si
When the diffracted light passes through the Fourier transform lens 4, diffraction images of each order are formed at equal intervals when the lens is set to have a relationship of nθ. That is, the distance from the optical axis on the light receiving surface of the pattern detection device 3 becomes a sine function of the scattering angle. By using the Fourier transform lens 4, in the pattern detection device 3, the photocells 2 may be arranged at equal intervals on the light receiving surface, and the design becomes easy. The Fourier transform lens 4 is held by the fine adjustment device 5, and can adjust the angle of the optical axis of the Fourier transform lens 4 with respect to the light receiving surface of the pattern detection device 3 or adjust the distance from the pattern detection device 3. I can do it. The output of the pattern detection device 3 is input to a discrimination device 6 such as a microcomputer constituting a discrimination means. The discriminating device 6 measures the particle size of the smoke particles based on the distribution pattern of the received light intensity by the diffracted light pattern detection device 3, and issues an alarm when it is determined that the particle size corresponds to the smoke particles. The discriminating device 6 discriminates the type of the particle based on the intensity distribution of the diffracted light as described below. That is, when the light intensity distribution in the diffracted image is measured using the light projecting means and the light receiving means having the same configuration as in the above embodiment, the result shown in FIG. 2 is obtained. Here, a helium-neon laser having an output wavelength of 633 nm is used as the laser light source 1, 32 photocells 2 are provided, the focal length of the Fourier transform lens 4 is 63 mm, and the minimum diameter of the measurable particles is about 0.1 μm. 2 (a) to 2 (h), the horizontal axis of the outer graph is the particle diameter (unit: μm), the vertical axis is the particle number density (unit:%),
The horizontal axis of the inner graph is the photocell 2 number, and the vertical axis is the received light intensity. The photocells 2 are arranged concentrically,
Numbered 1,2, ..., 32 from inside. Therefore, for small particles with a large diffraction angle,
Since the light receiving intensity in the photocell 2 with a large number increases, and the diffraction angle decreases in a particle having a large particle size,
The received light intensity at the photocell 2 assigned a small number increases. FIGS. 2 (a) to 2 (e) show the results of measuring the particle size of combustion smoke by heating urethane, kerosene, paper, wood, and cotton wick in an electric furnace at 500 to 600 ° C., respectively. 2 (f) to 2 (h) show the measurement results for smoke, steam and dust of tobacco, respectively. The measured particle sizes are as shown in the following table. From the above measurement results, it can be seen that the particle size is substantially uniform except for dust. The steam has a particle size of 5.0 to 6.4 μm
Since the particle size is larger than that of smoke, it can be distinguished from smoke. In other words, the received light intensity distribution in the pattern detection device 3 changes as shown in FIGS. 2A to 2H depending on the type of the particles. This can prevent false reports from being made. In the above embodiment, the pattern detection device 3 in which a large number of photocells 2 are arranged is used, but an imaging device such as a two-dimensional image sensor may be used. Also, the resolution can be increased by shortening the wavelength of the laser light source 1 and increasing the number of photocells 2. Further, in the case of smoke having a low transmittance such as black smoke generated at the time of a fire, the amount of light received by the pattern detection device 3 becomes small and the distribution of the received light intensity becomes unclear. A method of detecting the particle diameter of smoke particles, deriving reference light from an optical fiber from a laser light source 1 without passing through a monitoring space, and detecting the presence of smoke particles based on an intensity ratio between the reference light and scattered light. When used together, a fire can be reliably detected.

【発明の効果】【The invention's effect】

本発明は上述のように、干渉性を有する平行光線束よ
りなる光ビームを投光する投光手段と、投光手段に対向
して配置され光ビームの煙粒子による散乱光を受光する
受光手段と、受光手段による受光信号に基づいて煙粒子
の粒径を計測することにより煙粒子の存在を検出する判
別手段とを有する粒径計測型煙感知器において、受光手
段を、投光手段の光軸に直交する受光面を有し受光面上
での光の強度分布を検出するパターン検出装置と、前方
微小角散乱による各次数の回折像を上記パターン検出装
置の受光面上に等間隔に結像するフーリエ変換レンズと
で構成し、判別手段ではパターン検出装置で受光した光
の強度分布に基づいて粒径を計測するようにしているも
のであり、煙粒子の粒径に基づいて煙粒子の存在を検出
するから、水蒸気やほこりなどの煙とは粒径の異なる他
の粒子での散乱による誤報を防止できるという利点があ
る。また、煙以外の粒子による誤報が防止できる結果、
煙粒子が所定時間以上に亙って検出されるときに発報す
るというような蓄積型の構成とする必要がないから、火
災感知器として用いれば、火災の早期発見が行えるよう
になるのである。
As described above, the present invention provides a light projecting means for projecting a light beam composed of a coherent parallel light beam, and a light receiving means arranged opposite to the light projecting means for receiving light scattered by smoke particles of the light beam. And a discriminating means for detecting the presence of smoke particles by measuring the particle diameter of the smoke particles based on a light receiving signal from the light receiving means. A pattern detector that has a light-receiving surface perpendicular to the axis and detects the intensity distribution of light on the light-receiving surface; and forms diffraction images of each order by forward small-angle scattering at equal intervals on the light-receiving surface of the pattern detector. And a Fourier transform lens for imaging.The discriminating means measures the particle size based on the intensity distribution of the light received by the pattern detection device. Because it detects the presence, There is an advantage that the smoke, such as stiffness can be prevented false alarms due to scattering at different other particles particle sizes. In addition, as a result of preventing false reports due to particles other than smoke,
Since there is no need to use a storage-type configuration that emits an alarm when smoke particles are detected for more than a predetermined time, an early detection of a fire can be performed if used as a fire detector. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を示す概略構成図、第2図は同
上における各粒子に対応する受光強度の分布状態を示す
原理説明図である。 1……レーザ光源、2……ホトセル、3……パターン検
出装置、4……フーリエ変換レンズ、5……微調整装
置、6……判別装置。
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention, and FIG. 2 is a principle explanatory diagram showing a distribution state of received light intensity corresponding to each particle in the embodiment. DESCRIPTION OF SYMBOLS 1 ... Laser light source, 2 ... Photocell, 3 ... Pattern detection device, 4 ... Fourier transform lens, 5 ... Fine adjustment device, 6 ... Determination device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹元 昭夫 東京都三鷹市中原3―14 自治省消防庁 消防研究所内 (72)発明者 奥田 善彦 大阪府門真市大字門真1048番地 松下電 工株式会社内 (56)参考文献 特開 昭51−15487(JP,A) 特開 昭63−157035(JP,A) 特開 昭59−70944(JP,A) 林田和弘、他2名、”島津レーザ回折 式粒度分布測定装置SALD−1000とそ の測定例”、島津評論、昭和63年、第45 巻、第1、2号 p77−84 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Akio Takemoto 3-14 Nakahara, Mitaka City, Tokyo Inside the Fire Research Institute of the Fire and Disaster Management Agency of the Ministry of Home Affairs (72) Inventor Yoshihiko Okuda 1048 Kazuma Kazuma, Kadoma City, Osaka Matsushita Electric Works, Ltd. (56) References JP-A-51-15487 (JP, A) JP-A-63-157035 (JP, A) JP-A-59-70944 (JP, A) Kazuhiro Hayashida and two others, “Shimadzu laser diffraction Type particle size distribution analyzer SALD-1000 and its measurement example ", Shimadzu Review, 1988, Vol. 45, Nos. 1, 2 pp. 77-84

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】干渉性を有する平行光線束よりなる光ビー
ムを投光する投光手段と、投光手段に対向して配置され
光ビームの煙粒子による散乱光を受光する受光手段と、
受光手段による受光信号に基づいて煙粒子の粒径を計測
することにより煙粒子の存在を検出する判別手段とを有
する粒径計測型煙感知器において、受光手段は、投光手
段の光軸に直交する受光面を有し受光面上での光の強度
分布を検出するパターン検出装置と、前方微小角散乱に
よる各次数の回折像を上記パターン検出装置の受光面上
に等間隔に結像するフーリエ変換レンズとを備え、判別
手段はパターン検出装置で受光した光の強度分布に基づ
いて粒径を計測することを特徴とする粒径計測型煙感知
器。
1. A light projecting means for projecting a light beam composed of a parallel light beam having coherence, a light receiving means arranged opposite to the light projecting means for receiving light scattered by smoke particles of the light beam;
A particle diameter measurement type smoke detector having a determination means for detecting the presence of the smoke particles by measuring the particle diameter of the smoke particles based on a light reception signal by the light reception means, wherein the light reception means is located on the optical axis of the light projection means. A pattern detecting device having an orthogonal light receiving surface and detecting the intensity distribution of light on the light receiving surface; and forming a diffraction image of each order by forward small angle scattering at equal intervals on the light receiving surface of the pattern detecting device. A particle size measurement type smoke sensor, comprising: a Fourier transform lens; and a determination unit measuring a particle size based on an intensity distribution of light received by the pattern detection device.
JP1122570A 1989-05-16 1989-05-16 Particle size measurement smoke detector Expired - Lifetime JP2740262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1122570A JP2740262B2 (en) 1989-05-16 1989-05-16 Particle size measurement smoke detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1122570A JP2740262B2 (en) 1989-05-16 1989-05-16 Particle size measurement smoke detector

Publications (2)

Publication Number Publication Date
JPH02300647A JPH02300647A (en) 1990-12-12
JP2740262B2 true JP2740262B2 (en) 1998-04-15

Family

ID=14839172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1122570A Expired - Lifetime JP2740262B2 (en) 1989-05-16 1989-05-16 Particle size measurement smoke detector

Country Status (1)

Country Link
JP (1) JP2740262B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5392114A (en) * 1988-03-30 1995-02-21 Cole; Martin T. Fluid pollution monitor
JP2859052B2 (en) * 1992-09-21 1999-02-17 ニッタン株式会社 Environmental condition monitoring device
AUPQ553800A0 (en) * 2000-02-10 2000-03-02 Cole, Martin Terence Improvements relating to smoke detectors particularily duct monitored smoke detectors
CN103364346A (en) * 2012-03-26 2013-10-23 中国科学院城市环境研究所 Fast-Fourier-transform-based open-circuit measurement method for smoke plume opacity
JP6547427B2 (en) * 2015-06-05 2019-07-24 富士通株式会社 Fire detection device, fire detection system, fire detection method, and fire detection program
JP7132714B2 (en) * 2017-12-28 2022-09-07 ホーチキ株式会社 Fire alarm equipment
CN110070691A (en) * 2018-01-24 2019-07-30 上海云杉信息科技有限公司 A kind of smog alarm method and system, storage medium and terminal
CN110102168A (en) * 2019-05-17 2019-08-09 重庆三峰环境集团股份有限公司 A kind of garbage-incineration smoke purifying device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115487A (en) * 1974-07-29 1976-02-06 Matsushita Electric Works Ltd HIKARISANRANSHIKIKEMURIKANCHIKI
JPS57175595A (en) * 1981-04-24 1982-10-28 Nippon Light Metal Co Method and device for extracting drink from vessel
JPH0313031Y2 (en) * 1986-06-10 1991-03-26
JPS63157035A (en) * 1986-12-19 1988-06-30 Dan Kagaku:Kk Smoke sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林田和弘、他2名、"島津レーザ回折式粒度分布測定装置SALD−1000とその測定例"、島津評論、昭和63年、第45巻、第1、2号 p77−84

Also Published As

Publication number Publication date
JPH02300647A (en) 1990-12-12

Similar Documents

Publication Publication Date Title
US3335285A (en) Photoelectric system for detecting objects in a zone including vibrating light source
US7724367B2 (en) Particle monitors and method(s) therefor
US4972091A (en) Method and apparatus for detecting the presence of flaws in a moving sheet of material
KR101451983B1 (en) Smoke sensor
JP2930710B2 (en) Particle size analysis using differential polarization intensity scattering
GB1560450A (en) Suspended particle detector
JP2019148585A (en) Analysis device for determining particulate matter
US20070097372A1 (en) Particle detection apparatus and particle detection method used therefor
JP2740262B2 (en) Particle size measurement smoke detector
US3231748A (en) Smoke detector
JP3251763B2 (en) Fire alarm device and fire detection method
US5315115A (en) Optical apparatus and method for sensing particulates
US3723746A (en) Fire detecting apparatus sensitive to refraction
JPH0462455A (en) Particle size distribution measuring instrument
JPH0444204B2 (en)
JPH05215664A (en) Method and device for detecting submicron particle
RU160748U1 (en) SMOK ALARM
JP2811236B2 (en) Particle size distribution measuring device
JPS6117016A (en) Averaged diffraction moire position detector
US3435241A (en) Structure inspection equipment
US3435242A (en) Formation inspecting arrangement
JPS59221640A (en) Smoke sensor
RU138993U1 (en) SMOK ALARM
JPS6046433A (en) Apparatus for detecting flame
JPH04124798A (en) Photoelectric smoke sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12