JP2738761B2 - X-ray counter - Google Patents

X-ray counter

Info

Publication number
JP2738761B2
JP2738761B2 JP1192190A JP1192190A JP2738761B2 JP 2738761 B2 JP2738761 B2 JP 2738761B2 JP 1192190 A JP1192190 A JP 1192190A JP 1192190 A JP1192190 A JP 1192190A JP 2738761 B2 JP2738761 B2 JP 2738761B2
Authority
JP
Japan
Prior art keywords
ray
gas
rays
counter
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1192190A
Other languages
Japanese (ja)
Other versions
JPH03216581A (en
Inventor
智 前山
朋晃 川村
正治 尾嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1192190A priority Critical patent/JP2738761B2/en
Publication of JPH03216581A publication Critical patent/JPH03216581A/en
Application granted granted Critical
Publication of JP2738761B2 publication Critical patent/JP2738761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蛍光X線を利用して軽元素の組成比あるい
は軽元素不純物濃度を分析する装置に必要な軟X線を対
象としたX線計数管に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to X-rays for soft X-rays necessary for an apparatus for analyzing the composition ratio of light elements or the concentration of light element impurities using fluorescent X-rays. It relates to a line counter.

〔従来の技術〕[Conventional technology]

Caよりも元素番号の小さいいわゆる軽元素では、重元
素に比べ蛍光X線の励起効率が低く、オージェ電子放出
の方が確率が高い。しかし、脱出深さが数ナノメータで
あるオージェ電子を用いると物質の極表面しか分析でき
ないので、バルク材料の分析では重元素だけでなく軽元
素においても蛍光X線分析が有用である。また、軽元素
の特性X線はエネルギが5keV以下の軸X線領域に属する
ため、大気中では空気による吸収が大きいので真空中で
測定することが必要となる。従って、軽元素の蛍光X線
の測定には、蛍光X線の励起効率の低さを補う高感度で
且つ真空中での使用に耐える検出器が必要不可欠であ
る。高感度な検出器とは、無指向性である蛍光X線を効
率的に補足できる大面積なX線採り入れ窓を持つ検出器
を意味する。
In a so-called light element having an element number smaller than that of Ca, the excitation efficiency of fluorescent X-rays is lower than that of a heavy element, and Auger electron emission has a higher probability. However, the use of Auger electrons whose escape depth is several nanometers makes it possible to analyze only the very surface of a substance. Therefore, in the analysis of bulk materials, X-ray fluorescence analysis is useful not only for heavy elements but also for light elements. Further, since the characteristic X-ray of the light element belongs to the axial X-ray region where the energy is 5 keV or less, the absorption by air in the atmosphere is large, so that it is necessary to measure in a vacuum. Therefore, for the measurement of fluorescent X-rays of light elements, a detector that is highly sensitive and compensates for the low excitation efficiency of fluorescent X-rays and that can withstand use in vacuum is indispensable. The high-sensitivity detector means a detector having a large-sized X-ray intake window capable of efficiently capturing omnidirectional fluorescent X-rays.

なお、この種の技術が記載されている文献として、M.
Funabashi,et.al.;“Compact fluorescence X−ray det
ector for surface EXAFS and X−ray standing wave m
easurements",Rev.Sci.Instrum.,Vol.60,p.2505−2508,
1989〔船橋他;“X線吸収端微細構造及びX線定在波測
定のための蛍光X線検出器”、レビュー・オブ・サイエ
ンティフィック・インスツルメント、第60巻、2505−25
08頁、1989年〕がある。
Incidentally, as a document describing this type of technology, M.
Funabashi, et.al .; “Compact fluorescence X-ray det
ector for surface EXAFS and X-ray standing wave m
easurements ", Rev. Sci. Instrum., Vol. 60, p. 2505- 2508,
1989 [Funabashi et al., "X-ray Fluorescence Detector for X-ray Absorption Edge Fine Structure and X-ray Standing Wave Measurement", Review of Scientific Instruments, Vol. 60, 2505-25
08, 1989].

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

現状ではX線半導体検出器とPRガス等を用いた比例計
数管が軽元素の蛍光X線の測定に使用されている。X線
半導体検出器は固体素子であるので、真空中での使用に
対しては問題はない。しかし、高感度化を計るために必
要な半導体素子の大面積化は容易でない。軟X線用の半
導体検出器としてはLiドープSi素子〔以下、Si(Li)素
子と記す〕が用いられるが、現在の技術で作製可能な最
大面積のSi(Li)素子は200mm2である。しかも200mm2
Si(Li)素子で測定できるのは約1KeV以上の軟X線であ
り、約1keV以下の酸素、窒素、炭素等のKαX線を測定
できるSi(Li)素子の最大面積は80mm2と更に制限され
る。素子面積が大きくなると素子結晶の面内均一性が確
保できないためノイズレベルが高くなり、低エネルギの
X線計測を妨害する。従って、軟X線計測用半導体検出
器では軽元素の低い蛍光X線の励起効率を補うに必要な
高感度化が難しいという問題点がある。一方、ガスを用
いる比例計数管では大面積の窓を持つ計数管の作製は容
易である。しかし、約1keV以上の軟X線測定用数管には
大気圧差に耐えうるBe膜を窓材として使用できるが、約
1keV以下の軟X線も測定可能とするためには窓材が気圧
差に対して脆弱な高分子薄膜に限定されるので、真空中
での使用に不安がある。また、軟X線領域では各軽元素
の特性X線のエネルギが接近しているが、比例計数管の
エネルギ分解能はX線半導体検出器に比べ約6倍悪い。
従って、比例計数管ではガスリークの可能性があるので
真空中での使用に問題があり、エネルギ分解能が悪いと
いう問題点がある。
At present, an X-ray semiconductor detector and a proportional counter using a PR gas or the like are used for measuring fluorescent X-rays of light elements. Since the X-ray semiconductor detector is a solid state device, there is no problem for use in a vacuum. However, it is not easy to increase the area of a semiconductor element required for achieving high sensitivity. As a semiconductor detector for soft X-rays, a Li-doped Si device (hereinafter, referred to as a Si (Li) device) is used, but the maximum area of a Si (Li) device that can be manufactured by current technology is 200 mm 2 . . And 200mm 2
Soft X-rays of about 1 KeV or more can be measured with the Si (Li) element, and the maximum area of the Si (Li) element that can measure Kα X-rays of about 1 keV or less such as oxygen, nitrogen, and carbon is further limited to 80 mm 2 Is done. When the element area is large, the in-plane uniformity of the element crystal cannot be ensured, so that the noise level becomes high, which hinders low energy X-ray measurement. Accordingly, there is a problem that it is difficult to increase the sensitivity required for compensating for the excitation efficiency of fluorescent X-rays with low light elements in the semiconductor detector for soft X-ray measurement. On the other hand, in a proportional counter using gas, it is easy to manufacture a counter having a large area window. However, for several tubes for measuring soft X-rays of about 1 keV or more, a Be film that can withstand the atmospheric pressure difference can be used as a window material.
In order to be able to measure even soft X-rays of 1 keV or less, the window material is limited to a polymer thin film that is vulnerable to a pressure difference. In the soft X-ray region, the energy of characteristic X-rays of each light element is close to each other, but the energy resolution of the proportional counter is about six times worse than that of the X-ray semiconductor detector.
Accordingly, the proportional counter has a problem in use in a vacuum since there is a possibility of gas leak, and there is a problem that the energy resolution is poor.

本発明の目的は、従来技術での上記した諸問題点を解
決し、高感度で分解能も良く、しかも超高真空中で使用
できる軟X線用計数管を提供することにある。
An object of the present invention is to solve the above-mentioned problems in the prior art, and to provide a counter for soft X-rays that can be used in ultra-high vacuum with high sensitivity and good resolution.

〔課題を解決するための手段〕[Means for solving the problem]

本発明においては、上記目的を達成するために、X線
の通過によってX線のエネルギに比例して気体中に発生
する光電子を、所定の電場で加速して気体に衝突させる
ことにより気体を励起させ、この励起により発生した蛍
光を光電子増倍管で電気信号に変換してX線を計測する
X線計数管において、上記励起用気体が導入される気体
セルと上記光電子増倍管とを気密構造の二重筒の内筒の
内部に配置し、この二重筒の外筒をX線発生源側の真空
チャンバの側壁に金属ベローズを介してX線発生源との
距離調節可能に取付け、内筒と外筒のX線を通過させる
窓に高分子薄膜を使用し、かつ、内筒と外筒に挾まれた
気密空間を真空に排気する構成とする。
In the present invention, in order to achieve the above object, the gas is excited by accelerating a photoelectron generated in the gas in proportion to the energy of the X-ray by passing the X-ray by a predetermined electric field and colliding with the gas. In the X-ray counter for measuring the X-rays by converting the fluorescence generated by the excitation into an electric signal with a photomultiplier tube, the gas cell into which the excitation gas is introduced and the photomultiplier tube are hermetically sealed. It is arranged inside the inner cylinder of the double cylinder having the structure, and the outer cylinder of the double cylinder is attached to the side wall of the vacuum chamber on the X-ray source side via a metal bellows so as to be adjustable in distance from the X-ray source, A polymer thin film is used for a window through which X-rays of the inner cylinder and the outer cylinder pass, and an airtight space sandwiched between the inner cylinder and the outer cylinder is evacuated to a vacuum.

〔作用〕[Action]

従来の軟X線検出器である比例計数管や半導体検出器
が、気体中あるいは固体中において高電圧を印加するこ
とによりX線が通過した経路に沿って光電効果によって
生成するイオン対の数に比例した電気信号として取り出
すのに対し、本発明はX線の通過によってX線のエネル
ギに比例して気体中に発生する光電子を用いて気体を励
起し発生させた蛍光を可視光に変換して光電子増幅器で
電気信号として取り出すガス蛍光比例方式を計測原理に
採用しており、さらに軟X線測定に適応させるため高分
子薄膜を窓材とした大面積の計測窓により高感度化を計
り軽元素の蛍光X線の低励起効率を補うと共に計数管を
気密な二重筒構造として内筒と外筒に挾まれた気密空間
を真空に排気することにより計測窓からのガスの漏洩を
抑止して真空チャンバ内での使用を可能としている点を
主要な特徴とする。また、二重筒構造の外側の匡体の一
部を金属ベローズとすることにより、真空チャンバに接
続したとき真空を破ることなく計数管と蛍光X線を発す
る試料との距離を調整できるので、計数管を試料に近接
させれば大面積の計測窓とあいまって発生する蛍光X線
の大部分を捕捉することが可能となる。従って、従来の
比例計数管や半導体検出器とは計数原理が異なり、また
計数管の匡体構造も異なる。
Conventional soft X-ray detectors, such as proportional counters and semiconductor detectors, increase the number of ion pairs generated by the photoelectric effect along the path through which X-rays pass by applying a high voltage in a gas or solid. On the other hand, the present invention converts the fluorescence generated by exciting the gas using photoelectrons generated in the gas in proportion to the energy of the X-ray by passing the X-ray and converting the generated fluorescence into visible light. The principle of measurement is a gas fluorescence proportional method that takes out an electric signal with an optoelectronic amplifier, and the high sensitivity is measured by a large area measurement window using a polymer thin film as a window material in order to adapt to soft X-ray measurement. In addition to compensating for the low excitation efficiency of fluorescent X-rays, the airtight space between the inner and outer cylinders is evacuated to a vacuum by making the counter tube an airtight double tube structure, thereby suppressing gas leakage from the measurement window. Vacuum Chan The point that enables the use of the inner and main features. Also, by using a metal bellows for a part of the outer casing of the double cylinder structure, the distance between the counter tube and the sample that emits fluorescent X-rays can be adjusted without breaking vacuum when connected to a vacuum chamber. By bringing the counter tube close to the sample, it becomes possible to capture most of the fluorescent X-rays generated in combination with the large-area measurement window. Therefore, the counting principle is different from that of the conventional proportional counter or semiconductor detector, and the housing structure of the counter is also different.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第
1図は本発明X線計数管を、内部に試料を保持している
真空チャンバ(図示省略)に接続した状態における断面
図を示し、1は計数管の外筒、2は外径36ミリメート
ル、厚さ0.6マイクロメートルのマイラー膜より成る外
筒の窓、3は計数管の内筒、4は外筒の窓と同じ形状の
マイラー膜より成る内筒の窓、5はXeガスが約40mmHg充
填されるガスセル、6はガスセル5にXeガスを外部から
導入するための配管、7と9は電気配線8と10により外
部から電圧が印加される、内筒の窓4の直後と中央位置
に設けた金属メッシュ、11はXeガスが発した蛍光を可視
光に変換するための有機系波長変換剤、12は光電子増倍
管、13は前置アンプ、14は前置アンプ13からの電気信号
を外部に取り出すための電気配線、15は光電子増倍管12
に必要な高電圧を外部から供給するための電気配線、16
は計数管の内筒3と一体的な計数管の蓋、17は外筒1と
内筒3に挾まれた空間を真空排気するための排気口、18
は真空チャンバ側の接続用コンフラットフランジ、19は
フランジ18と接続するための計数管側のコンフラットフ
ランジ、20は外筒1に一体的に溶接された、蓋16との接
続用コンフラットフランジ、21は両端がフランジ19、20
に溶接された金属ベローズ、23、24はフランジ19、20の
外周に等間隔に4個所溶接された、金属ベローズ21の伸
縮量を調節するための棒状ボルト 22の支持台、25、26
は棒状ボルト22を支持台23、24に固定するナットであ
る。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view showing a state in which an X-ray counter tube of the present invention is connected to a vacuum chamber (not shown) holding a sample therein, wherein 1 is an outer tube of the counter tube, and 2 is an outer diameter of 36 mm. , A window of an outer cylinder made of a Mylar membrane having a thickness of 0.6 micrometers, 3 is an inner cylinder of a counter tube, 4 is an inner cylinder window of a Mylar membrane having the same shape as the window of the outer cylinder, 5 is about 40 mmHg of Xe gas. A gas cell to be filled, 6 is a pipe for externally introducing Xe gas into the gas cell 5, and 7 and 9 are voltages applied from the outside by electric wirings 8 and 10, immediately after the window 4 of the inner cylinder and at a central position. Metal mesh provided, 11 is an organic wavelength conversion agent for converting the fluorescence emitted by Xe gas into visible light, 12 is a photomultiplier tube, 13 is a preamplifier, 14 is an electric signal from a preamplifier 13 Electrical wiring to take out the light, 15 is the photomultiplier tube 12
Wiring for supplying the high voltage required for
Is a cover of the counter tube integral with the inner tube 3 of the counter tube, 17 is an exhaust port for evacuating the space between the outer tube 1 and the inner tube 3, 18
Is a conflat flange for connection on the vacuum chamber side, 19 is a conflat flange on the counter tube side for connection to the flange 18, and 20 is a conflat flange for connection with the lid 16 integrally welded to the outer cylinder 1. , 21 has flanges 19, 20 at both ends
The metal bellows 23, 24 are welded to the outer circumference of the flanges 19, 20 at equal intervals at four places, and the support base of the rod-shaped bolt 22 for adjusting the amount of expansion and contraction of the metal bellows 21, 25, 26
Is a nut for fixing the rod-shaped bolt 22 to the support bases 23, 24.

以上の構成において、マイラー窓2、4を通過してXe
ガスセル5内に入射した軟X線領域の蛍光X線はXeに光
電吸収されて一次電子群を形成するが、金属メッシュ7
と9に各々170eVと5keV印加しておくと一次電子群は7
と9の間で加速され、9と有機系波長変換剤11の間の空
間でXe原子を励起発光させる。この励起光は波長が約17
0ナノメータの紫外光であり、全光子数は一次電子数
に、すなわち入射した軟X線のエネルギに比例する。Xe
励起光は有機系波長変換剤11によって可視光に変換され
た後、光電子増倍管12に入射して電気信号に変換され、
前置アンプ13によって増幅された電気信号が電気配線14
から取りだせるので、適当な計数回路に接続すれば軟X
線のエネルギと光子数を測定できる。従来のガスを用い
た比例計数管では電子なだれによる気体増幅作用を利用
しているのに対し、本計数管ではXeの蛍光を光電子増幅
管で計数しているので、エネルギ分解能が比例計数管よ
りも約2倍良くなる。排気口17にターボ分子ポンプ等を
接続して内筒と外筒の間の密閉された空間を真空に排気
すれば、Xeガスセル5からXeガスの漏洩が生じても真空
チャンバ内の真空度に殆ど影響を与えないので超高真空
チャンバに接続して使用できる。またナット25、26によ
って支持台23と24の間の棒状ボルト22の長さを調整すれ
ば、計数管の窓を真空チャンバ内の試料に近接でき、約
1000平方ミリメートルの大面積で吸収の少ない高分子窓
の効果とあいまって、試料から発生する微弱な軽元素の
蛍光X線も測定できる。
In the above configuration, Xe
The fluorescent X-rays in the soft X-ray region incident on the gas cell 5 are photoelectrically absorbed by Xe to form a primary electron group.
When 170 eV and 5 keV are respectively applied to and 9, the primary electron group becomes 7
And Xe atoms are excited and emitted in the space between 9 and the organic wavelength conversion agent 11. This excitation light has a wavelength of about 17
It is ultraviolet light of 0 nanometer, and the total number of photons is proportional to the number of primary electrons, that is, the energy of the incident soft X-ray. Xe
After the excitation light is converted into visible light by the organic wavelength converter 11, the light enters the photomultiplier tube 12 and is converted into an electric signal.
The electric signal amplified by the preamplifier 13 is connected to the electric wiring 14.
Can be extracted from the soft X
The energy and photon number of the line can be measured. In contrast to the conventional gas-based proportional counter, which uses the gas amplifying effect of an avalanche, this counter uses the photoelectron amplifier to count the Xe fluorescence, so the energy resolution is lower than that of the proportional counter. Is about twice as good. If a sealed space between the inner cylinder and the outer cylinder is evacuated to vacuum by connecting a turbo molecular pump or the like to the exhaust port 17, even if leakage of Xe gas from the Xe gas cell 5 occurs, the degree of vacuum in the vacuum chamber is reduced. Since it has almost no effect, it can be used by connecting to an ultra-high vacuum chamber. Also, by adjusting the length of the rod-shaped bolt 22 between the support bases 23 and 24 with the nuts 25 and 26, the window of the counter tube can be brought close to the sample in the vacuum chamber.
Combined with the effect of a polymer window with a large area of 1000 square millimeters and low absorption, it is possible to measure fluorescent X-rays of weak light elements generated from the sample.

第2図は本発明を用いて測定して結果であり、10-8To
rrオーダの高真空チャンバ内に保持したGaAs基板上に作
製したZnSe試料に約400eVの単色軟X線を照射した時の
蛍光X線スペクトルである。スペクトルが密集している
A部はエネルギが277eVの炭素Kα蛍光X線のピークで
あり、従来の比例計数管や半導体検出器では測定されて
いないZnSe表面に存在する微量な炭素汚染層からの蛍光
X線が検出できている。また炭素Kα蛍光X線ピークの
半値幅は約100eVであり、エネルギ分解能は36パーセン
トと良好である。この測定結果から明らかなように、本
発明は従来の比例計数管に比べ耐真空性と軟X線に対す
る感度とエネルギ分解能が改善されている。
FIG. 2 shows the results obtained by measurement using the present invention, and 10 -8 To
FIG. 4 is a fluorescent X-ray spectrum when a ZnSe sample formed on a GaAs substrate held in a high vacuum chamber of the order of rr is irradiated with about 400 eV monochromatic soft X-ray. Part A where the spectrum is dense is the peak of carbon Kα fluorescent X-ray with energy of 277 eV, and the fluorescence from the trace carbon contaminated layer on the ZnSe surface which is not measured by the conventional proportional counter or semiconductor detector. X-ray has been detected. The half width of the carbon Kα fluorescent X-ray peak is about 100 eV, and the energy resolution is as good as 36%. As is apparent from the measurement results, the present invention has improved vacuum resistance, sensitivity to soft X-rays, and energy resolution as compared with the conventional proportional counter.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明を用いれば真空チャンバ
内において励起効率の低い軽元素の蛍光X線を高分解能
で且つ高感度に測定できるので、半導体基板表面に形成
された極薄い酸化膜や窒化膜からの蛍光X線あるいは半
導体等の中に微量添加された軽元素からの蛍光X線を高
感度且つ高精度に測定できる利点がある。
As described above, when the present invention is used, fluorescent X-rays of light elements having low excitation efficiency can be measured with high resolution and high sensitivity in a vacuum chamber, so that an extremely thin oxide film or nitride film formed on the surface of a semiconductor substrate can be measured. There is an advantage that X-ray fluorescence from a film or X-ray fluorescence from a light element added in a trace amount in a semiconductor or the like can be measured with high sensitivity and high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の断面図、第2図は本発明を
用いて測定した軟X線領域のX線スペクトルであり、横
軸は蛍光X線のエネルギ、縦軸は蛍光X線の強度(カウ
ント数)である。 〔符号の説明〕 1……計数管の外筒、2……外筒の窓 3……計数管の内筒、4……内筒の窓 5……ガスセル、6……ガス導入用の配管 7、9……金属メッシュ 8、10、14、15……金属配線 11……有機系波長変換剤 12……光電子増倍管、13……前置アンプ 16……計数管の蓋、17……排気口 18、19、20……コンフラットフランジ 21……金属ベローズ、22……棒状ボルト 23、24……ボルトの支持台 25、26……ナット
FIG. 1 is a cross-sectional view of one embodiment of the present invention, and FIG. 2 is an X-ray spectrum in a soft X-ray region measured by using the present invention. The intensity of the line (count). [Description of Signs] 1 ... Outer tube of counter tube, 2 ... Window of outer tube 3 ... Inner tube of counter tube, 4 ... Window of inner tube 5 ... Gas cell, 6 ... Piping for gas introduction 7, 9 Metal mesh 8, 10, 14, 15 Metal wiring 11 Organic wavelength conversion agent 12 Photomultiplier tube 13 Preamplifier 16 Counter tube lid 17 … Exhaust port 18, 19, 20… Conflat flange 21… Metal bellows, 22… Bolt bolt 23, 24… Bolt support 25, 26 …… Nut

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】X線の通過によってX線のエネルギに比例
して気体中に発生する光電子を、所定の電場で加速して
気体に衝突させることにより気体を励起させ、この励起
により発生した蛍光を光電子増倍管で電気信号に変換し
てX線を計測するX線計数管において、上記励起用気体
が導入される気体セルと上記光電子増倍管とを気密構造
の二重筒の内筒の内部に配置し、この二重筒の外筒をX
線発生源側の真空チャンバの側壁に金属ベローズを介し
てX線発生源との距離調節可能に取付け、内筒と外筒の
X線を通過させる窓に高分子薄膜を使用し、かつ、内筒
と外筒に挾まれた気密空間を真空に排気する構成とした
ことを特徴とするX線計数管。
1. A method in which a photoelectron generated in a gas in proportion to the energy of the X-ray due to passage of the X-ray is accelerated by a predetermined electric field and collides with the gas to excite the gas, and the fluorescence generated by the excitation is excited. X-ray counter for converting X-rays into electric signals with a photomultiplier tube and measuring X-rays, wherein the gas cell into which the excitation gas is introduced and the photomultiplier tube are formed in an airtight double cylinder inner cylinder. And the outer cylinder of this double cylinder is X
The distance between the X-ray source and the X-ray source is adjustable on the side wall of the vacuum chamber on the side of the X-ray source via metal bellows. An X-ray counter characterized in that an airtight space sandwiched between a cylinder and an outer cylinder is evacuated to a vacuum.
JP1192190A 1990-01-23 1990-01-23 X-ray counter Expired - Fee Related JP2738761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1192190A JP2738761B2 (en) 1990-01-23 1990-01-23 X-ray counter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1192190A JP2738761B2 (en) 1990-01-23 1990-01-23 X-ray counter

Publications (2)

Publication Number Publication Date
JPH03216581A JPH03216581A (en) 1991-09-24
JP2738761B2 true JP2738761B2 (en) 1998-04-08

Family

ID=11791156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192190A Expired - Fee Related JP2738761B2 (en) 1990-01-23 1990-01-23 X-ray counter

Country Status (1)

Country Link
JP (1) JP2738761B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678924B2 (en) * 2000-09-11 2011-04-27 株式会社東芝 Radiation detector and X-ray diagnostic apparatus using the same
DE102009008063A1 (en) 2009-02-09 2010-08-19 Carl Zeiss Nts Gmbh particle beam
DE102009024928B4 (en) * 2009-04-06 2012-07-12 Bruker Nano Gmbh Detector, device and method for the simultaneous, energy-dispersive recording of backscattered electrons and X-ray quanta
DE102009036701A1 (en) 2009-08-07 2011-03-03 Carl Zeiss Nts Gmbh Particle beam system and investigation method for this purpose

Also Published As

Publication number Publication date
JPH03216581A (en) 1991-09-24

Similar Documents

Publication Publication Date Title
EP0275306B1 (en) Multipurpose gaseous detector device for electron microscopes
Daly Scintillation type mass spectrometer ion detector
US10473795B2 (en) Large-area X-ray gas detector
US6627897B1 (en) Detection of ionizing radiation
US3538328A (en) Scintillation-type ion detector employing a secondary emitter target surrounding the ion path
JP2738761B2 (en) X-ray counter
Oed Detectors for thermal neutrons
JP2637871B2 (en) X-ray counter
JPS63259952A (en) Position detector
Veloso et al. A microstrip gas chamber as a VUV photosensor for a xenon gas proportional scintillation counter
Yang et al. Soft X-ray spectroscopy with a scintillation detector
Nagashima et al. Double cylindrical open counter of pocket size
Sauvage et al. A systematic study of the emission of light from electron avalanches in low-pressure TEA and TMAE gas mixtures
Maeyama et al. A compact gas scintillation proportional counter for ultrasoft x rays
Giakos et al. Feasibility study of a gas microstrip detector for medical applications
JP2991253B2 (en) X-ray fluorescence spectroscopy method and apparatus
RU2826523C2 (en) Continuous x-ray radiation detector for scanning electron microscope
US20020113551A1 (en) Light conversion and detection of visible light
Yang et al. Scintillation counter for soft X-ray spectroscopy
Ignatov et al. Scintillator-photodiode linear arrays for X-ray inspection system
JPH0589820A (en) Electrom multiplier tube
WO2004047140A2 (en) Two dimensional soft x-ray imaging device
Lopes et al. A xenon gas proportional scintillation counter with a UV-sensitive large-area avalanche photodiode
Guttmann Examinations Of Detector Systems For High Photon Rates In The Ultrasoft X-Ray Region
Maeyama et al. An ultrasoft x‐ray fluorescence detector for EXAFS measurements on low‐Z elements

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees