JP2738328B2 - Infrared detecting element and method of manufacturing the same - Google Patents

Infrared detecting element and method of manufacturing the same

Info

Publication number
JP2738328B2
JP2738328B2 JP7021430A JP2143095A JP2738328B2 JP 2738328 B2 JP2738328 B2 JP 2738328B2 JP 7021430 A JP7021430 A JP 7021430A JP 2143095 A JP2143095 A JP 2143095A JP 2738328 B2 JP2738328 B2 JP 2738328B2
Authority
JP
Japan
Prior art keywords
infrared
oxide film
film
anodic oxide
receiving section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7021430A
Other languages
Japanese (ja)
Other versions
JPH08222748A (en
Inventor
雅彦 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7021430A priority Critical patent/JP2738328B2/en
Publication of JPH08222748A publication Critical patent/JPH08222748A/en
Application granted granted Critical
Publication of JP2738328B2 publication Critical patent/JP2738328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、赤外線検出素子の製造
方法に関し、特にHgCdTe結晶を用いた光伝導型赤
外線検出素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an infrared detecting element, and more particularly to a method for manufacturing a photoconductive infrared detecting element using HgCdTe crystal.

【0002】[0002]

【従来の技術】HgCdTe結晶を用いた光伝導型赤外
線検出素子は高感度で、応答が速いことに加え、Hgと
Cdの組成比を変化させることによって、検出する赤外
線の波長を任意に設定することができるため、幅広い用
途に応用されている。この赤外線検出素子は、入射赤外
線によってHgCdTe結晶内の少数キャリアが励起
し、これに応じてHgCdTe結晶の抵抗が変化して赤
外線を検出するものである。
2. Description of the Related Art A photoconductive infrared detecting element using a HgCdTe crystal has a high sensitivity and a high response, and furthermore, the wavelength of infrared light to be detected is arbitrarily set by changing the composition ratio of Hg and Cd. It can be used in a wide range of applications. In this infrared detecting element, minority carriers in the HgCdTe crystal are excited by the incident infrared light, and the resistance of the HgCdTe crystal changes in response to the excitation, thereby detecting infrared light.

【0003】光伝導型赤外線検出素子は、例えば図2
(e)に示す構造を有する素子で、絶縁性及び平坦性に
優れた基板3と、前記基板3上に固定した赤外線受光部
1と、バイアスを印加して出力電圧を測定するために前
記赤外線受光部1両端に設けられた電極5と、前記赤外
線受光部1上に形成した赤外線反射防止膜6より構成さ
れる。
[0003] A photoconductive infrared detector is shown in FIG.
(E) An element having a structure shown in (e), a substrate 3 having excellent insulating properties and flatness, an infrared light receiving section 1 fixed on the substrate 3, and the infrared light for measuring an output voltage by applying a bias. It comprises an electrode 5 provided at both ends of the light receiving section 1 and an infrared anti-reflection film 6 formed on the infrared light receiving section 1.

【0004】従来、この赤外線検出素子は、以下に述べ
る手順によって製造されていた。
Conventionally, this infrared detecting element has been manufactured by the following procedure.

【0005】赤外線受光部1となるn型Hg1-x Cdx
Te(0.2<x<0.3)結晶を、エポキシ系接着剤
2によって、サファイア基板3に接着する(図2
(a))。このときHgCdTe結晶裏面、すなわち接
着面には、あらかじめ陽極酸化皮膜4を形成してからサ
ファイア基板3に接着する。
[0005] n-type Hg 1-x Cd x serving as infrared light receiving section 1
A Te (0.2 <x <0.3) crystal is bonded to the sapphire substrate 3 with the epoxy adhesive 2 (FIG. 2).
(A)). At this time, the anodic oxide film 4 is formed on the back surface of the HgCdTe crystal, that is, the bonding surface, and then the sapphire substrate 3 is bonded.

【0006】接着剤2硬化後、研磨及びウェットエッチ
ングによって、HgCdTe結晶1を厚さ約10μm に
まで薄層化し、HgCdTe結晶表面に陽極酸化皮膜4
を形成する(図2(b))。HgCdTe結晶の陽極酸
化皮膜4は、電解液8として0.1M KOH−90%
エチレングリコール水溶液を用い、前記電解液8中でP
t等の陰極9に対してHgCdTe結晶を作用極10と
して接続し、直流電源11から定電圧を印加して形成さ
れる(図4)。
After the adhesive 2 is cured, the HgCdTe crystal 1 is thinned to a thickness of about 10 μm by polishing and wet etching, and an anodic oxide film 4 is formed on the HgCdTe crystal surface.
Is formed (FIG. 2B). The anodic oxide film 4 of the HgCdTe crystal is 0.1 M KOH-90%
Using an aqueous solution of ethylene glycol, P
The HgCdTe crystal is connected as the working electrode 10 to the cathode 9 such as t, and is formed by applying a constant voltage from the DC power supply 11 (FIG. 4).

【0007】陽極酸化皮膜4形成後、赤外線受光部1の
両端の陽極酸化皮膜4をイオンビームエッチングで除去
した後、電極皮膜5を真空蒸着法によって形成し(図2
(c))、さらに赤外線受光部1上に赤外線反射防止膜
6を形成する(図2(e))。前記電極材料としては、
Au/Cr、Al、In等が用いられ、前記反射防止膜
材料としてはZnSが一般的である。
After the anodic oxide film 4 is formed, the anodic oxide films 4 at both ends of the infrared light receiving section 1 are removed by ion beam etching, and then the electrode film 5 is formed by vacuum evaporation (FIG. 2).
(C)) Further, an infrared anti-reflection film 6 is formed on the infrared receiving section 1 (FIG. 2 (e)). As the electrode material,
Au / Cr, Al, In or the like is used, and ZnS is generally used as the antireflection film material.

【0008】[0008]

【発明が解決しようとする課題】HgCdTe結晶を用
いた光伝導型赤外線検出素子の赤外線受光部1には、陽
極酸化皮膜4が形成される。この陽極酸化皮膜4は正の
固定電荷となり、赤外線入射によって励起した少数キャ
リアを、赤外線受光部1の内部に閉じこめる働きをす
る。その結果、前記少数キャリアが赤外線受光部1表面
で再結合することを抑制するため、赤外線検出素子の感
度を増大することができる。したがって、赤外線検出素
子の特性は陽極酸化皮膜4の特性及び形成状態に依存す
るものである。
An anodized film 4 is formed on an infrared light receiving portion 1 of a photoconductive infrared detecting element using HgCdTe crystal. The anodic oxide film 4 has a positive fixed charge and functions to confine the minority carriers excited by the incidence of infrared rays in the infrared light receiving section 1. As a result, the recombination of the minority carriers on the surface of the infrared light receiving section 1 is suppressed, so that the sensitivity of the infrared detection element can be increased. Therefore, the characteristics of the infrared detecting element depend on the characteristics and the state of formation of the anodic oxide film 4.

【0009】上述した従来の製造方法によって陽極酸化
皮膜4を形成する場合、化成電圧14Vで得られた酸化
皮膜4aが、固定電荷として最も優れた特性を示す。し
かしこの陽極酸化皮膜4aは耐薬品性に劣るため、赤外
線検出素子を製造中、特に反射防止膜6形成のためのフ
ォトリソグラフィー工程において、強アルカリ性の現像
液に触れると直ちに溶解してしまう(図2(d))。そ
の結果、少数キャリアが赤外線受光部1の表面で再結合
する割合が増大して、赤外線検出素子の感度特性が著し
く劣化するという問題がある。
When the anodic oxide film 4 is formed by the above-described conventional manufacturing method, the oxide film 4a obtained at a formation voltage of 14V exhibits the best characteristics as fixed charges. However, since the anodic oxide film 4a is inferior in chemical resistance, the anodic oxide film 4a immediately dissolves during the production of the infrared detecting element, particularly in the photolithography step for forming the anti-reflection film 6, when it comes into contact with a strongly alkaline developer (see FIG. 2 (d)). As a result, there is a problem that the rate at which minority carriers recombine on the surface of the infrared light receiving section 1 increases, and the sensitivity characteristics of the infrared detection element deteriorate significantly.

【0010】一方、化成電圧26V以上で陽極酸化処理
を行うと、二層構造の陽極酸化皮膜が得られる(図3
(b))。この場合、赤外線受光部1最表面には第一層
目の酸化皮膜4bが形成され、さらにその内部に、現像
液に難溶性の第二層目の酸化皮膜4cが形成される。し
たがってフォトリソグラフィー工程で赤外線受光部1表
面が現像液に触れた場合、第一層目の酸化皮膜4bは直
ちに溶解するものの、第二層目の酸化皮膜4cは現像液
にまったく侵されずに残留する(図3(d))。これ
は、第一層目の酸化皮膜4bが化成電圧14Vで形成し
た酸化皮膜4aとほぼ同様の組成を有し、Hg−Cd−
Te−O系化合物であるのに対し、第二層目の酸化皮膜
4cはHg含有量が極めて少ない、Cd−Te−O系化
合物となるためである。これら酸化皮膜の組成の違いが
耐薬品性の効果として現れるが、一方、赤外線受光部の
固定電荷としての特性は逆転し、第二層の酸化皮膜4c
を構成するCd−Te−O系化合物は、固定電荷として
の機能はほとんど持たない。したがって、赤外線受光部
1の陽極酸化皮膜を化成電圧26Vで形成した場合、第
一層目の酸化皮膜4bが溶解すると、第二層目の酸化皮
膜4cが残留していても赤外線検出素子の特性が劣化す
るという問題がある。
On the other hand, when anodizing treatment is performed at a formation voltage of 26 V or more, an anodized film having a two-layer structure is obtained (FIG. 3).
(B)). In this case, a first-layer oxide film 4b is formed on the outermost surface of the infrared receiving section 1, and a second-layer oxide film 4c that is hardly soluble in the developer is formed therein. Therefore, when the surface of the infrared ray receiving section 1 comes into contact with the developing solution in the photolithography process, the first oxide film 4b is immediately dissolved, but the second oxide film 4c remains without being affected by the developing solution at all. (FIG. 3D). This is because the first oxide film 4b has almost the same composition as the oxide film 4a formed at the formation voltage of 14V, and Hg-Cd-
This is because the second oxide film 4c, which is a Te-O-based compound, is a Cd-Te-O-based compound having an extremely low Hg content, whereas the second oxide film 4c is a Hd-containing compound. The difference in the composition of these oxide films appears as an effect of chemical resistance, but on the other hand, the characteristics of the infrared light receiving portion as fixed charges are reversed, and the oxide film 4c of the second layer is formed.
Has almost no function as a fixed charge. Therefore, when the anodic oxide film of the infrared light receiving section 1 is formed at a chemical conversion voltage of 26 V, the characteristics of the infrared detecting element can be improved even if the second oxide film 4c remains even if the first oxide film 4b is dissolved. Is deteriorated.

【0011】[0011]

【課題を解決するための手段】本発明の目的は、耐薬品
性に優れ、かつ固定電荷として十分な機能を有する陽極
酸化皮膜4を赤外線受光部1表面に形成した光伝導型赤
外線検出素子を提供することにある。そのために、陽極
酸化皮膜4を形成する際に、あらかじめHgCdTe結
晶1表面にCdTe膜7を形成した後、HgCdTe結
晶1及びCdTe膜7を同時に陽極酸化処理することを
特徴とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a photoconductive infrared detecting element in which an anodic oxide film 4 having excellent chemical resistance and having a sufficient function as a fixed charge is formed on the surface of an infrared receiving section 1. To provide. For this purpose, when the anodic oxide film 4 is formed, a CdTe film 7 is formed on the surface of the HgCdTe crystal 1 in advance, and then the HgCdTe crystal 1 and the CdTe film 7 are anodized simultaneously.

【0012】[0012]

【実施例】本発明の一実施例について、図1を用いて説
明する。
An embodiment of the present invention will be described with reference to FIG.

【0013】赤外線受光部1となるn型Hg1-x Cdx
Te(0.2<x<0.3)を、エポキシ系接着剤2に
よって、サファイア基板3に接着する(図1(a))。
このとき、赤外線受光部裏面にはあらかじめ陽極酸化皮
膜4を形成してから基板3に接着するが、この裏面の陽
極酸化皮膜4は、後の製造工程で薬品等に触れて溶解す
るということがないため、従来の陽極酸化皮膜形成方法
によって化成電圧14Vで形成する。
N-type Hg 1-x Cd x serving as infrared light receiving section 1
Te (0.2 <x <0.3) is bonded to the sapphire substrate 3 with the epoxy adhesive 2 (FIG. 1A).
At this time, an anodic oxide film 4 is formed in advance on the back surface of the infrared light receiving unit and then adhered to the substrate 3. However, the anodic oxide film 4 on the back surface may be dissolved by contact with a chemical or the like in a later manufacturing process. Therefore, it is formed at a formation voltage of 14 V by a conventional anodic oxide film forming method.

【0014】接着剤2硬化後、研磨及びウェットエッチ
ングによってHgCdTe結晶1を厚さ約10μm にま
で薄層化し、つづいて赤外線受光部1の表面に厚さ50
0AのCdTe膜7を形成する(図1(b))。今回は
MBE法によって行ったが、真空蒸着法やスパッタ法
等、いずれの方法を用いてもかまわない。
After the adhesive 2 is cured, the HgCdTe crystal 1 is thinned to a thickness of about 10 μm by polishing and wet etching.
A 0A CdTe film 7 is formed (FIG. 1B). This time, the MBE method was used, but any method such as a vacuum evaporation method and a sputtering method may be used.

【0015】次に、赤外線受光部1表面に陽極酸化皮膜
4を形成する(図1(c))。陽極酸化皮膜4の形成方
法は、図4に示す従来と同様の方法で、電解液8として
0.1M KOH−90%エチレングリコール水溶液を
用い、前記電解液8中で陰極9としてPtを、また作用
極10として表面にCdTe膜7を形成したHgCdT
e結晶1を接続して形成される。
Next, an anodic oxide film 4 is formed on the surface of the infrared light receiving section 1 (FIG. 1C). The method of forming the anodic oxide film 4 is the same as the conventional method shown in FIG. 4, using 0.1 M KOH-90% ethylene glycol aqueous solution as the electrolytic solution 8, Pt as the cathode 9 in the electrolytic solution 8, and HgCdT having a CdTe film 7 formed on the surface as a working electrode 10
It is formed by connecting the e-crystals 1.

【0016】陽極酸化皮膜4形成後、オーミックコンタ
クトを得るために、赤外線受光部両端の酸化皮膜をイオ
ンビームエッチングで除去してから、電極5を真空蒸着
法で形成し(図1(d))、赤外線受光部1表面に反射
防止膜6を形成する(図1(f))。前記電極材料とし
ては、Cr500オングストローム(以下、Aと略
す)、Au5000Aを順に積層し、反射防止膜材料と
してはZnSを用いた。
After the formation of the anodic oxide film 4, to obtain an ohmic contact, the oxide film on both ends of the infrared light receiving portion is removed by ion beam etching, and then the electrode 5 is formed by a vacuum deposition method (FIG. 1 (d)). Then, an antireflection film 6 is formed on the surface of the infrared light receiving section 1 (FIG. 1F). As the electrode material, Cr 500 angstroms (hereinafter abbreviated as A) and Au5000A were sequentially laminated, and ZnS was used as an antireflection film material.

【0017】前記陽極酸化皮膜4を形成する工程では、
作用極に電流密度5μA/mm2 、化成電圧20Vを印加
して行った。陽極酸化皮膜4の膜厚は化成電圧に依存す
ることが知られており、20Vに設定すると厚さ500
AのCdTe膜7は、すべて酸化皮膜4dとなる。Cd
Te膜7の陽極酸化完了後、引き続きHgCdTe結晶
1が陽極酸化され、HgCdTe表面に約450Aの酸
化皮膜4cが形成されて工程は完了する。
In the step of forming the anodic oxide film 4,
A current density of 5 μA / mm 2 and a formation voltage of 20 V were applied to the working electrode. It is known that the thickness of the anodic oxide film 4 depends on the formation voltage.
All the CdTe films 7 of A become oxide films 4d. Cd
After the anodization of the Te film 7 is completed, the HgCdTe crystal 1 is subsequently anodized, and an oxide film 4c of about 450 A is formed on the HgCdTe surface, and the process is completed.

【0018】このように陽極酸化皮膜形成工程により、
赤外線受光部1表面には二層構造の陽極酸化皮膜が形成
されるが、これは、従来得られていたものとは異なる構
造の酸化皮膜である。すなわち、赤外線受光部1最表面
はCdTe膜の陽極酸化皮膜4dとして、耐薬品性に優
れたCd−Te−O系化合物が、またその内部にはHg
CdTe結晶の陽極酸化皮膜4eとしてHg−Cd−T
e−O系化合物が形成される。したがって、赤外線検出
素子の製造工程中に赤外線受光部1が現像液に接触した
としても、赤外線受光部表面は現像液に難溶なCd−T
e−O系化合物4dに覆われているため、固定電荷とし
て機能するHg−Cd−Te−O系化合物4eが破壊さ
れて赤外線検出素子の特性劣化を招くことはない。
As described above, by the anodic oxide film forming step,
An anodized film having a two-layer structure is formed on the surface of the infrared light receiving unit 1, and this is an oxide film having a structure different from that conventionally obtained. That is, the outermost surface of the infrared ray receiving section 1 is made of a CdTe film anodic oxide film 4d, and a Cd-Te-O-based compound having excellent chemical resistance is formed therein.
Hg-Cd-T as anodized film 4e of CdTe crystal
An e-O-based compound is formed. Therefore, even if the infrared receiving section 1 comes into contact with the developing solution during the manufacturing process of the infrared detecting element, the surface of the infrared receiving section is hardly soluble in Cd-T
Since the Hg-Cd-Te-O-based compound 4e, which functions as a fixed charge, is not broken due to being covered with the e-O-based compound 4d, the characteristics of the infrared detecting element are not degraded.

【0019】[0019]

【発明の効果】以上に述べたように、本発明の赤外線検
出素子の製造方法では、赤外線検出部表面に耐薬品性に
優れ、かつ固定電荷として十分な機能を有する陽極酸化
皮膜を形成することが可能となり、優れた特性の赤外線
検出素子を製造することが可能となる。
As described above, in the method for manufacturing an infrared detecting element of the present invention, an anodic oxide film having excellent chemical resistance and sufficient function as a fixed charge is formed on the surface of an infrared detecting section. And an infrared detecting element having excellent characteristics can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の赤外線検出素子の製造工程の断面図で
ある。
FIG. 1 is a cross-sectional view of a manufacturing process of an infrared detecting element of the present invention.

【図2】従来の赤外線検出素子の製造工程の断面図であ
る。
FIG. 2 is a cross-sectional view of a manufacturing process of a conventional infrared detecting element.

【図3】従来の赤外線検出素子の製造工程の断面図であ
る。
FIG. 3 is a cross-sectional view of a manufacturing process of a conventional infrared detecting element.

【図4】陽極酸化皮膜形成方法の概略図である。FIG. 4 is a schematic view of a method for forming an anodized film.

【符号の説明】[Explanation of symbols]

1 赤外線受光部(Hg1-x Cdx Te、0.2<x<
0.3) 2 エポキシ系接着剤 3 サファイア基板 4 陽極酸化皮膜 4a 化成電圧14Vで形成したHgCdTeの陽極酸
化皮膜 4b 化成電圧26Vで形成したHgCdTeの陽極酸
化皮膜の第一層 4c 化成電圧26Vで形成したHgCdTeの陽極酸
化皮膜の第二層 4d CdTeの陽極酸化皮膜 4e HgCdTeの陽極酸化皮膜 5 電極 6 反射防止膜 7 CdTe膜 8 陽極酸化皮膜形成の電解液(0.1M KOH−9
0%エチレングリコール水溶液) 9 陰極 10 作用極 11 直流電源
1 Infrared ray receiving section (Hg 1-x Cd x Te, 0.2 <x <
0.3) 2 Epoxy adhesive 3 Sapphire substrate 4 Anodized film 4a Anodized film of HgCdTe formed at formation voltage of 14V 4b First layer of anodized film of HgCdTe formed at formation voltage of 26V 4c Formed at formation voltage of 26V Second layer of anodic oxide film of HgCdTe 4d Anodized film of CdTe 4e Anodized film of HgCdTe 5 Electrode 6 Antireflection film 7 CdTe film 8 Electrolyte for forming anodized film (0.1 M KOH-9
0% ethylene glycol aqueous solution) 9 Cathode 10 Working electrode 11 DC power supply

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Hg 1-x Cd x Te(0.2<x<0.
3)を用いた赤外線受光部の両端に電極を備え、かつ前
記赤外線受光部表面に陽極酸化皮膜を有する赤外線検出
素子において、前記陽極酸化被膜が、前記赤外線受光部
に接するHg 1-x Cd x Te陽極酸化膜と、CdTe陽
極酸化膜との積層構造よりなることを特徴とする赤外線
検出素子。
1. Hg 1-x Cd x Te (0.2 <x <0.
3) An infrared detecting element having electrodes on both ends of an infrared ray receiving section and having an anodic oxide film on the surface of the infrared ray receiving section, wherein the anodic oxide film is formed of the infrared ray receiving section.
A Hg 1-x Cd x Te anodic oxide film in contact with
Infrared radiation characterized by having a laminated structure with an extreme oxide film
Detection element.
【請求項2】Hg 1-x Cd x Te(0.2<x<0.
3)を用いた赤外線受光部の両端に電極を備え、かつ前
記赤外線受光部表面に陽極酸化皮膜を形成した赤外線検
出素子の製造方法において、前記赤外線受光部表面をC
dTe膜で被覆してから、前記CdTe膜と、前記Hg
1-x Cd x Teの表面の一部とを陽極酸化することによ
って陽極酸化皮膜を形成することを特徴とする赤外線検
出素子の製造方法。
2. Hg 1-x Cd x Te (0.2 <x <0.
Electrodes are provided at both ends of the infrared light receiving unit using 3)
An infrared detector with an anodized film formed on the surface of the infrared receiver
In the method for manufacturing a light emitting element,
After coating with a dTe film, the CdTe film and the Hg
By anodizing a part of the surface of 1-x Cd x Te
To form an anodized film
Production method of output element.
JP7021430A 1995-02-09 1995-02-09 Infrared detecting element and method of manufacturing the same Expired - Lifetime JP2738328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7021430A JP2738328B2 (en) 1995-02-09 1995-02-09 Infrared detecting element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7021430A JP2738328B2 (en) 1995-02-09 1995-02-09 Infrared detecting element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08222748A JPH08222748A (en) 1996-08-30
JP2738328B2 true JP2738328B2 (en) 1998-04-08

Family

ID=12054780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7021430A Expired - Lifetime JP2738328B2 (en) 1995-02-09 1995-02-09 Infrared detecting element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2738328B2 (en)

Also Published As

Publication number Publication date
JPH08222748A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
US4032954A (en) Silicon single crystal charge storage diode
WO1993021662A1 (en) Multispectral photovoltaic component with stacked cells and process for its production
JP2007123176A (en) Photoelectric negative electrode
AU2015236207B2 (en) Conversion of metal seed layer for buffer material
JP2002111031A (en) Solid hetero junction and solid sensitization (photosensitive) photovoltaic cell
CN115692537A (en) Potential barrier type short-medium wave bicolor infrared detector based on InAs/InAsSb II type superlattice material
CA2070708C (en) Visible and infrared indium antimonide (insb) photodetector with non-flashing light receiving surface
JP2738328B2 (en) Infrared detecting element and method of manufacturing the same
US3480818A (en) Electrical monograin layers having a radiation permeable electrode
JP2860028B2 (en) Ultraviolet detector and method of manufacturing the same
JPH05235387A (en) Manufacture of solar cell
JP2002057314A (en) Image sensing device and its operation method
JPS6094764A (en) Infrared ray image forming device
JPH06310699A (en) Multilayer solid-state image pickup device
JPS5928388A (en) Photoelectric conversion element
GB1593898A (en) Photovoltaic device
JP4280342B2 (en) Electrical element
EP0870335B1 (en) Ultra-thin ionising radiation detector and methods for making same
EP0070682B1 (en) Method of producing a semiconductor layer of amorphous silicon and a device including such a layer
US4933255A (en) Method of fabricating an electrophotographic photosensor
JP2705589B2 (en) Manufacturing method of photoconductive infrared detecting element
JP7034016B2 (en) Photodetector
JPH11340481A (en) Photodetector and fabrication
JPS60217671A (en) Manufacture of semiconductor radiation detector
JPH05226684A (en) Photodiode array and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971216