JP2736538B2 - Method and apparatus for firing and activating porous infusibilized pitch granules or carbon granules - Google Patents

Method and apparatus for firing and activating porous infusibilized pitch granules or carbon granules

Info

Publication number
JP2736538B2
JP2736538B2 JP63319358A JP31935888A JP2736538B2 JP 2736538 B2 JP2736538 B2 JP 2736538B2 JP 63319358 A JP63319358 A JP 63319358A JP 31935888 A JP31935888 A JP 31935888A JP 2736538 B2 JP2736538 B2 JP 2736538B2
Authority
JP
Japan
Prior art keywords
heating gas
porous
moving
moving layer
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63319358A
Other languages
Japanese (ja)
Other versions
JPH02164710A (en
Inventor
邦男 渡辺
泰雄 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP63319358A priority Critical patent/JP2736538B2/en
Publication of JPH02164710A publication Critical patent/JPH02164710A/en
Application granted granted Critical
Publication of JP2736538B2 publication Critical patent/JP2736538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多孔質不融化ピッチ粒体または多孔質炭素
粒体を焼成・賦活する方法および装置に関し、さらに詳
しくは、該粒体を移動層とし、伝熱および加熱ガスで加
熱することにより焼成または賦活する方法および装置に
関する。
Description: FIELD OF THE INVENTION The present invention relates to a method and an apparatus for firing and activating porous infusibilized pitch granules or porous carbon granules. The present invention relates to a method and an apparatus for firing or activating by forming a layer and heating with a heat transfer gas and a heating gas.

〔従来の技術〕[Conventional technology]

多孔質不融化ピッチ粒体を焼成・賦活すること、およ
び多孔質炭素粒体を賦活することは公知である。
It is known to fire and activate porous infusibilized pitch granules and to activate porous carbon granules.

多孔質不融化ピッチ粒体は、例えば、特公昭50-18879
号公報、特公昭51-76号公報、特公昭59-10930号公報に
開示されているように、石油系ピッチまたは石炭系ピッ
チにナフタレンなどの粘度調節剤を混合し、粒状体に溶
融形成し、次いで粘度調節剤を抽出除去し、酸化して不
融化することにより得ることができる。
The porous infusibilized pitch granules are, for example, Japanese Patent Publication No. 50-18879
JP, JP-B-51-76, and JP-B-59-10930, a viscosity modifier such as naphthalene is mixed with a petroleum pitch or a coal pitch and melt-formed into granules. Then, the viscosity modifier can be obtained by extraction and removal, and oxidization to make it infusible.

この多孔質不融化ピッチ粒体は、通常、球状であっ
て、焼成・賦活することにより多孔質炭素粒体(活性
炭)とすることができる。焼成して得た多孔質炭素粒体
または活性を失った多孔質炭素粒体は、例えば、水蒸気
法により800〜1200℃に昇温して賦活することができ
る。
The porous infusibilized pitch particles are usually spherical and can be made into porous carbon particles (activated carbon) by firing and activating. The porous carbon particles obtained by firing or the porous carbon particles having lost the activity can be activated, for example, by raising the temperature to 800 to 1200 ° C. by a steam method.

この多孔質不融化ピッチ粒体を焼成・賦活すると、そ
の約6割〜7割がガス化する。また、多孔質不融化ピッ
チ粒体を焼成して得た多孔質炭素粒体を単に賦活するだ
けでも約4割〜5割がガス化する。そのため、従来、移
動層ではその発生ガスにより層が乱れるので採用され
ず、ロータリーキルンによる方法や流動層による焼成・
賦活方法等が一般的であった。
When the porous infusibilized pitch particles are fired and activated, about 60 to 70% of the particles are gasified. Further, about 40% to 50% of the porous carbon particles obtained by firing the porous infusibilized pitch particles are gasified by simply activating the porous carbon particles. Therefore, conventionally, the moving bed is not adopted because the generated gas is disturbed by the generated gas.
Activation methods and the like were common.

しかし、ロータリーキルンによる方法および流動層に
よる方法は、ともに炉容積効率が悪く、しかも大型の装
置が必要である。
However, both the method using a rotary kiln and the method using a fluidized bed are inferior in furnace volume efficiency and require a large-sized apparatus.

〔発明が解決しようとする課題〕 本発明の目的は、多孔質不融化ピッチ粒体を焼成また
は焼成し賦活するための、あるいは多孔質炭素粒体を賦
活するための、生産性が高い方法および装置を提供する
ことにある。
[Problems to be Solved by the Invention] An object of the present invention is to fire or inactivate porous infusibilized pitch granules, or to activate porous carbon granules, and a method with high productivity. It is to provide a device.

本発明者らは、前記従来技術の問題点を解決すべく鋭
意研究した結果、多孔質不融化ピッチ粒体または多孔質
炭素粒体により移動層を形成し、該移動層を外部より加
熱すると共に、該移動層中にその流下方向とは略直交方
向に加熱ガスを通過させることにより、比較的小型の装
置で効率よく焼成または賦活することができることを見
出し、その知見に基づいて本発明を完成するに至った。
The present inventors have conducted intensive studies to solve the problems of the prior art, and as a result, formed a moving layer by using porous infusibilized pitch particles or porous carbon particles, and heating the moving layer from the outside. It has been found that by passing a heating gas through the moving bed in a direction substantially perpendicular to the flowing direction, the baking or activation can be efficiently performed with a relatively small apparatus, and the present invention is completed based on the findings. I came to.

〔課題を解決するための手段〕[Means for solving the problem]

すなわち、本発明の要旨は次の通りである。 That is, the gist of the present invention is as follows.

(1) 多孔質不融化ピッチ粒体または多孔質炭素粒体
により上方から下方へ流下する移動層を形成し、該移動
層を外部より加熱すると共に、該移動層中にその流下方
向とは略直交方向に加熱ガスを通過させることを特徴と
する多孔質不融化ピッチ粒体または多孔質炭素粒体を焼
または賦活する方法。
(1) A moving layer that flows downward from above is formed by the porous infusibilized pitch particles or the porous carbon particles, and the moving layer is heated from the outside and the flowing direction in the moving layer is substantially the same as the flowing direction. A method for burning or activating porous infusibilized pitch granules or porous carbon granules, characterized by passing a heating gas in an orthogonal direction.

(2) 多孔質不融化ピッチ粒体または多孔質炭素粒体
により上方から下方へ流下する移動層を形成し、該移動
層を外部より加熱すると共に、移動層の流下を止めた状
態で、該移動層中にその流下方向とは略直交方向に加熱
ガスを通過させる工程と、加熱ガスを通過させない状態
で移動層を流下させる工程とを交互に繰り返すことを特
徴とする多孔質不融化ピッチ粒体または多孔質炭素粒体
を焼成または賦活する方法。
(2) A moving layer that flows downward from above is formed by the porous infusibilized pitch granules or the porous carbon particles, and the moving layer is heated from the outside and the moving layer is stopped flowing down. A porous infusible pitch particle characterized by alternately repeating a step of passing a heating gas through a moving bed in a direction substantially perpendicular to a flowing direction of the moving bed and a step of flowing down the moving bed without passing the heating gas. A method of firing or activating a powder or a porous carbon particle.

(3) 多孔質不融化ピッチ粒体または多孔質炭素粒体
の導入口(2)を上部に、抜き出し口(6)を下部に有
し、その間に該粒体が上方から下方に流下する移動層形
成空間(3)を設けてなる縦型の移動層加熱炉(1)で
あって、該移動層形成空間(3)を区画形成する壁面を
通して移動層を加熱する手段と、移動層中にその流下方
向とは略直交方向に加熱ガスを通過させる加熱ガス導入
口および加熱ガス排出口を該壁面を貫通して設けて成る
ことを特徴とする多孔質不融化ピッチ粒体または多孔質
炭素粒体の焼成または賦活装置。
(3) A movement in which the inlet (2) for the porous infusibilized pitch granules or the porous carbon granules is provided at the upper part and the extraction port (6) is provided at the lower part, during which the particles flow downward from above. A vertical moving bed heating furnace (1) provided with a layer forming space (3), means for heating the moving bed through a wall surface defining and forming the moving layer forming space (3); A porous infusibilized pitch particle or a porous carbon particle, characterized in that a heating gas inlet and a heating gas outlet for passing a heating gas in a direction substantially perpendicular to the flowing direction are provided through the wall surface. Body firing or activation device.

以下、本発明について詳述する。 Hereinafter, the present invention will be described in detail.

本発明は、多孔質不融化ピッチ粒体または多孔質炭素
粒体(以下、単に「粒体」 と略記)が形成する移動層
の移動方向と略直交方向に加熱ガスを流すことにより本
発明の課題が解決されることを見出したことに基づく。
The present invention provides the present invention by flowing a heating gas in a direction substantially perpendicular to a moving direction of a moving layer formed by porous infusibilized pitch particles or porous carbon particles (hereinafter simply referred to as “particles”). Based on finding that the problem is solved.

本発明の方法および装置について、図面を参照しなが
ら説明する。
The method and apparatus of the present invention will be described with reference to the drawings.

第1図は、本発明における装置の一実施態様を示す断
面略図であり、第2図は、第1図のA−A横断面略図で
ある。
FIG. 1 is a schematic cross-sectional view showing an embodiment of the device according to the present invention, and FIG. 2 is a schematic cross-sectional view taken along the line AA of FIG.

第1図の縦型の移動層加熱炉(1)において、例えば
バルブよりなる粒体の導入口(2)を炉(1)の上部
に、また、例えばバルブよりなる粒体の抜き出し口
(6)を炉(1)の下部に有し、その間に上方から下方
へ流下する粒体からなる移動層を形成するための移動層
形成空間(3)が設けられている。
In the vertical moving bed heating furnace (1) shown in FIG. 1, for example, an inlet (2) for granules composed of a valve is provided above the furnace (1), and a discharge port (6) for granules composed of a valve, for example. ) Is provided in the lower part of the furnace (1), and a moving bed forming space (3) for forming a moving bed made of granules flowing downward from above is provided therebetween.

移動層形成空間(3)は、例えば、外筒(4)と内筒
(5)の間、あるいは平板状の壁などにより区画形成さ
れ、また、移動層の厚さが長さに比し狭い縦長の構造が
採用される。
The moving layer formation space (3) is formed, for example, between the outer cylinder (4) and the inner cylinder (5), or by a flat wall, and the thickness of the moving layer is narrower than the length. A vertically long structure is adopted.

移動層形成空間(3)の壁面を通して移動層を形成す
る粒体を加熱する熱源(7a、7b)が、移動層を挟んで設
けられている。熱源(7a、7b)としては、電気ヒータ
ー、燃焼ガス等が例示される。燃焼ガスを熱源とする場
合には、加熱する手段は、移動層形成空間(3)の壁面
を介し移動層を挟んで設けられ燃焼ガスの通路により形
成される。
Heat sources (7a, 7b) for heating the particles forming the moving layer through the wall surface of the moving layer forming space (3) are provided with the moving layer interposed therebetween. Examples of the heat source (7a, 7b) include an electric heater and a combustion gas. When the combustion gas is used as the heat source, the heating means is provided through the wall of the moving layer forming space (3) with the moving layer interposed therebetween and formed by a passage of the combustion gas.

また、移動層形成空間(3)の壁面を通して移動層の
粒体を冷却する冷却手段(12)が、抜き出し口(6)近
傍に設けられている。この冷却手段は、移動層を挟んで
設けられている。
A cooling means (12) for cooling the particles of the moving layer through the wall surface of the moving layer forming space (3) is provided near the extraction port (6). This cooling means is provided with the moving bed in between.

第2図に示すように、加熱ガス導入ライン(8A)は、
移動層形成空間(3)を区画形成する壁面(4、5)を
貫通する複数の加熱ガス導入口(8Aa、8Ab、8Ac、−−
−)に接続され、加熱ガス排出ライン(9A)は、加熱ガ
ス導入口と同数の加熱ガス排出口(9Aa、9Ab、9Ac、−
−−)に接続されており、これら複数対の加熱ガス導入
口と加熱ガス排出口が実質的に同一の高さに設けられ、
かつ、ある加熱ガス導入口(8Aa)の近傍には加熱ガス
排出口(9Aa、9Ac)を設け、それら加熱ガス排出口(9A
a、9Ac)より近くには別の加熱ガス導入口(8Ab、8Ac、
−−−)を設けないように、すなわち各加熱ガス導入口
(8Aa、8Ab、8Ac、−−−)と加熱ガス排出口(9Aa、9A
b、9Ac、−−−)とは交互に配置されている。そして、
これら加熱ガス導入口と加熱ガス排出口の複数対よりな
る群が複数個、移動層形成空間(3)に対し相互に異な
った高さに設けられ、前記したとおりそれぞれ加熱ガス
導入ラインおよび加熱ガス排出ラインに接続されてい
る。
As shown in FIG. 2, the heating gas introduction line (8A)
A plurality of heating gas inlets (8Aa, 8Ab, 8Ac, ---) penetrating the wall surfaces (4, 5) which define the moving layer formation space (3).
-) And the heated gas discharge line (9A) has the same number of heated gas outlets (9Aa, 9Ab, 9Ac,-
−−), the plurality of pairs of the heated gas inlet and the heated gas outlet are provided at substantially the same height,
In addition, heating gas outlets (9Aa, 9Ac) are provided near a certain heating gas inlet (8Aa), and these heating gas outlets (9Aa
a, 9Ac) and another heated gas inlet (8Ab, 8Ac,
−−−), that is, each heating gas inlet (8Aa, 8Ab, 8Ac, −−−) and a heating gas outlet (9Aa, 9A)
b, 9Ac, ---) are alternately arranged. And
A plurality of pairs of the heating gas inlet and the heating gas outlet are provided at different heights with respect to the moving layer formation space (3). Connected to the discharge line.

加熱ガス導入口と加熱ガス排出口とは、通常、同数設
ける。また、移動層形成空間(3)を区画形成する壁面
(4,5)を貫通し、移動層形成空間内に位置する加熱ガ
ス導入口部と加熱ガス排出口部は、金網などの加熱ガス
を貫通するが、多孔質不融化ピッチ粒体または多孔質炭
素粒体を実質的に貫通し得ない貫通孔を有する多孔体か
ら成る隔壁(11a、11b、11c−−−)により形成されて
いる。
Usually, the same number of heating gas inlets and heating gas outlets are provided. In addition, the heating gas inlet and the heating gas outlet located in the moving layer forming space penetrate the wall surfaces (4, 5) that define the moving layer forming space (3), and the heating gas such as a wire mesh is supplied therethrough. It is formed by partition walls (11a, 11b, 11c) having a through-hole which penetrates but does not substantially penetrate the porous infusibilized pitch particles or the porous carbon particles.

このように、加熱ガス導入口と加熱ガス排出口とを同
数設けることにより、移動層の安定性を損なわないよう
にし、また、移動層内における加熱ガス導入口部と加熱
ガス排出口部を多孔体より成る隔壁とすることにより、
加熱ガスの分散性を良くし、粒体が移動層形成空間
(3)より外部へ流出しないようにする。
By providing the same number of heating gas inlets and heating gas outlets in this way, the stability of the moving bed is not impaired, and the heating gas inlet and heating gas outlet in the moving bed are made porous. By making it a partition consisting of a body,
The dispersibility of the heating gas is improved so that the particles do not flow out of the moving layer formation space (3).

移動層加熱炉(1)の構造は、焼成炉と賦活炉を切り
離して二塔形式としてもよいし、また、一塔形式として
焼成と賦活を連続的に行なうようにしてもよい。二塔形
式とする場合には焼成炉と賦活炉の間にシール機構を設
け、本発明の装置はそれぞれ焼成炉および賦活炉として
用いられる。
The structure of the moving bed heating furnace (1) may be a two-tower type in which the firing furnace and the activation furnace are separated, or a single-tower type may be used to continuously perform firing and activation. In the case of the double tower type, a sealing mechanism is provided between the firing furnace and the activation furnace, and the apparatus of the present invention is used as a firing furnace and an activation furnace, respectively.

次に、この移動層加熱炉(1)を用いて、粒体を焼成
または賦活する方法について説明する。
Next, a method of firing or activating the granules using the moving bed heating furnace (1) will be described.

粒体は、粒体の導入口(2)の上部に設けたホッパー
(10)に蓄えられており、粒体の導入口(2)を開くこ
とによって加熱炉(1)の上方から移動層形成空間
(3)内に流下し、移動層を形成する。移動層(3)で
は、壁面を通して加熱すると共に、略直交方向から加熱
ガスが導入されるが、層内の粒子の上下間の混合や層内
への加熱ガスの分散の不均一が生ずることなく安定な移
動層を形成するために、導入する加熱ガスの流速(空塔
速度)を規制する。
The granules are stored in a hopper (10) provided above the granule inlet (2), and a moving bed is formed from above the heating furnace (1) by opening the granule inlet (2). It flows down into the space (3) to form a moving layer. In the moving layer (3), heating is performed through the wall surface and a heating gas is introduced from a direction substantially perpendicular to the moving layer. However, mixing between the upper and lower particles in the layer and uneven distribution of the heating gas in the layer do not occur. In order to form a stable moving bed, the flow velocity (superficial velocity) of the introduced heating gas is regulated.

本発明においては、移動層を連続的に流下させながら
焼成または賦活することができる。
In the present invention, firing or activation can be performed while continuously moving the moving layer down.

ただし、ある程度加熱ガスの空塔速度が大きく、層内
の圧力上昇により粒子の上下方向の偏流が起こり、移動
層を連続的に安定に形成し得ない場合でも、加熱ガスを
導入する時と粒体の移動層を流下する時を別々にする、
すなわち移動層を流下する時には粒体の流れが乱されな
いように加熱ガスを流さず、一方、加熱ガスを移動層中
に通過させる時は移動層の流下を止めてから加熱ガスを
流すということを交互に繰り返して処理することで実質
上連続移動層として処理することが可能である。この繰
り返しを頻繁に行なう程、完全な連続処理に近づき安定
した品質を有する焼成・賦活粒体を得ることができる。
移動層の流下を一時止めるには、粒体導入口(2)と抜
き出し口(6)にバルブ等の開閉手段を設け、移動層形
成空間(3)を密閉状態にすればよい。
However, even when the superficial velocity of the heating gas is high to some extent and the pressure in the bed rises, the particles may drift vertically and the moving bed cannot be formed continuously and stably. Separate the time to flow down the moving bed of the body,
That is, when flowing down the moving bed, the heating gas is not flowed so as not to disturb the flow of the granules.On the other hand, when the heating gas is allowed to pass through the moving bed, the flow of the heating gas is stopped after the moving down of the moving bed is stopped. By processing alternately and repeatedly, it is possible to process as a substantially continuous moving layer. The more frequently this repetition is performed, the closer to a complete continuous process, the more the calcined / activated granules having stable quality can be obtained.
In order to temporarily stop the flow of the moving bed, an opening / closing means such as a valve may be provided at the granular material introduction port (2) and the extraction port (6), and the moving bed forming space (3) may be closed.

移動層形成空間(3)の壁面を通して移動層を形成す
る粒体を加熱する熱源(7a、7b)の温度は、通常、800
〜1200℃、好ましくは900〜1100℃に制御する。
The temperature of the heat sources (7a, 7b) for heating the particles forming the moving layer through the wall surface of the moving layer forming space (3) is usually 800
~ 1200 ° C, preferably 900 ~ 1100 ° C.

加熱ガスの温度は、900〜1200℃、好ましくは1000〜1
100℃である。
The temperature of the heating gas is 900-1200 ° C, preferably 1000-1
100 ° C.

加熱ガスの移動層内の空塔速度は、加熱炉の規模にも
よるが、通常、40cm/秒以下、好ましくは30cm/秒以下と
するのが望ましい。
The superficial velocity of the heating gas in the moving bed depends on the scale of the heating furnace, but is usually preferably 40 cm / sec or less, more preferably 30 cm / sec or less.

移動層の厚みがある程度以上になると程度差の発生に
起因して移動層内における反応性に差が生じ、製品品質
の変動の原因となるので、移動層形成空間(3)の厚み
は一般には狭くすることが望ましく、通常、50mm以下と
することが好ましい。
When the thickness of the moving layer becomes a certain level or more, a difference in reactivity occurs in the moving layer due to the occurrence of the degree difference, which causes a variation in product quality. It is desirable to make it narrow, and usually it is preferable to make it 50 mm or less.

粒体の移動層に対し、加熱ガスは、加熱ガス導入ライ
ンを通じて、多孔体から成る多数の加熱ガス導入口部よ
り導入され、粒体を焼成または賦活し、第2図の矢印で
示す如く各加熱ガス導入口と実質的に同一高さにあり、
最も近い位置にある各加熱ガス排出口に向かって、移動
層の流下方向とは略直交する方向に通過し、焼成または
賦活により発生するガスとともに排出することができ
る。その際、加熱ガスおよび発生ガスは移動層の流下す
る方向には実質的に力を及ぼさないので、移動層内の上
下間の粒子混合を起こさず、安定な移動層を形成しなが
ら焼成または賦活することができる。
A heating gas is introduced into the moving bed of the granules through a heating gas introduction line from a number of heating gas inlets formed of a porous body, and sinters or activates the granules. As shown by arrows in FIG. At substantially the same height as the heated gas inlet,
The gas passes through the moving bed in a direction substantially perpendicular to the flowing direction toward the nearest heated gas outlet, and can be discharged together with the gas generated by firing or activation. At that time, the heating gas and the generated gas do not substantially exert a force in the flowing direction of the moving bed, so that the particles do not mix between the upper and lower parts of the moving bed, and are fired or activated while forming a stable moving bed. can do.

加熱ガス導入口からそれと同一の高さにあり、最も近
い位置にある加熱ガス排出口までの、平均的長さを、
「単位長さ」と定義する。例えば、第2図での単位長さ
は、移動空間(3)の外壁と内壁それぞれの加熱ガス導
入口部(11b、11d、11f)から加熱ガス排出口部(11a、
11c、11e)までの円弧の長さの相加平均である。また、
移動層中に略直交方向に各加熱ガスが通過する単位長さ
は、小さすぎると装置の施工が熕雑になり、逆に大きす
ぎると移動層内の圧力上昇を起こし、移動層の安定な移
動(流下)を損なうことになるので、移動層中における
加熱ガスの導入口と排出口の設置箇所を調節して、通
常、100〜400mmの単位長さとすることが好ましい。
The average length from the heated gas inlet to the nearest heated gas outlet at the same height as that,
Defined as "unit length". For example, the unit length in FIG. 2 is such that the heating gas inlets (11b, 11d, 11f) on the outer wall and the inner wall of the moving space (3) respectively extend from the heating gas outlets (11a, 11f).
It is the arithmetic mean of the arc lengths up to 11c, 11e). Also,
If the unit length through which each heating gas passes in the moving bed in a substantially orthogonal direction is too small, the installation of the apparatus becomes complicated, and if it is too large, the pressure inside the moving bed rises, and the moving bed becomes stable. Since the movement (downflow) is impaired, it is preferable that the installation length of the inlet and the outlet of the heating gas in the moving bed is adjusted to a unit length of usually 100 to 400 mm.

焼成または賦活された粒体は、移動層形成空間の下
部、抜き出し口(6)の上部近傍に設けた冷却手段(1
2)により、壁面からの伝熱により冷却され、抜き出し
口(6)を通じて回収される。冷却手段としては、例え
ば、多管式熱交換器などがある。また、二塔形式とする
場合には、一方の加熱炉には必ずしも冷却手段を設ける
必要はない。
The fired or activated granules are supplied to a cooling means (1) provided in the lower part of the moving layer forming space and in the vicinity of the upper part of the extraction port (6).
According to 2), it is cooled by the heat transfer from the wall surface and collected through the outlet (6). As the cooling means, for example, there is a multi-tube heat exchanger. In the case of a two-tower type, it is not always necessary to provide cooling means in one of the heating furnaces.

なお、当業者には明らかなように、加熱炉の規模、移
動層形成空間の形状、加熱手段の種類、加熱ガス導入口
および加熱ガス排出口の設置数や形状、冷却手段の種類
と設置箇所などについて、本発明の目的を損なわない範
囲で適宜設計変更することができる。
As will be apparent to those skilled in the art, the size of the heating furnace, the shape of the moving bed formation space, the type of heating means, the number and shape of the heating gas inlet and the heating gas outlet, the type and location of the cooling means For example, the design can be appropriately changed within a range that does not impair the object of the present invention.

〔実施例〕〔Example〕

以下、実施例および比較例を挙げて本発明を具体的に
説明するが、本発明はこれら実施例のみに限定されるも
のではない。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to only these Examples.

[実施例1] ナフサ熱分解により生成した軟化点182℃、キノリン
不溶分10重量%、水素/炭素原子比0.53のピッチ100重
量部と、粘度調節剤のナフタレン33重量部を加熱溶融混
合し、80〜90℃に冷却して押し出し紡糸法で紐状ピッチ
とした。これを破砕して棒状ピッチとし、90℃に加熱し
た0.4%ポリビニルアルコール水溶液中で溶融し、撹拌
分散し、冷却して球状ピッチのスラリーを形成した。
[Example 1] A softening point of 182 ° C generated by naphtha pyrolysis, 100% by weight of a pitch having a quinoline insoluble content of 10% by weight, a hydrogen / carbon atom ratio of 0.53, and 33 parts by weight of naphthalene as a viscosity modifier were heated and melt-mixed. After cooling to 80 to 90 ° C, a string pitch was formed by an extrusion spinning method. This was crushed into a rod-shaped pitch, melted in a 0.4% polyvinyl alcohol aqueous solution heated to 90 ° C., stirred and dispersed, and cooled to form a spherical pitch slurry.

この球状ピッチ成形体の粒径を210μm〜1,000μmの
範囲内に篩別した後、粘度調節剤として使用したナフタ
レンをn−ヘキサンで抽出した。次に、流動層において
空気を用いて300℃まで昇温して酸化し不融化を行なっ
た。
After sieving the particle size of this spherical pitch molded product within the range of 210 μm to 1,000 μm, naphthalene used as a viscosity modifier was extracted with n-hexane. Next, the fluidized bed was heated to 300 ° C. using air to oxidize and infusibilize the fluidized bed.

このようにして得た多孔質不融化ピッチ粒体を、第1
図に示すような外径400mm、内径315mm(移動層の厚さ4
2.5mm)、高さ6mの移動層加熱炉(焼成・賦活炉)で焼
成と賦活を行なった。伝熱による加熱は内側熱源(7
b)、外側熱源(7a)共に電気ヒーターで行ない、加熱
温度は各ヒーター面で1,000℃に制御した。焼成・賦活
用ガスは、系外で1,000℃に加熱したスチームを使用
し、加熱ガスの空塔速度は0.20〜0.25cm/秒の範囲内に
調整した。
The porous infusibilized pitch granules obtained in this way are
Outer diameter 400mm, inner diameter 315mm (moving layer thickness 4
Firing and activation were performed in a moving bed heating furnace (firing / activation furnace) with a height of 2.5 mm and a height of 6 m. Heating by heat transfer is performed by the inner heat source (
b), both of the outer heat sources (7a) were controlled by electric heaters, and the heating temperature was controlled at 1,000 ° C on each heater surface. The baking / utilizing gas used was steam heated to 1,000 ° C. outside the system, and the superficial velocity of the heated gas was adjusted within the range of 0.20 to 0.25 cm / sec.

加熱ガス導入口部および加熱ガス排出口部には、150
メッシュの金網を隔壁として使用した。加熱炉は、移動
層形成空間を縦方向に等間隔で上、中、下と3分割し、
また、円周方向に移動層形成空間を6分割し、それぞれ
に3方向から加熱ガスを導入し、3方向から排出した。
移動層中に略直交方向に各加熱ガスが通過する単位長さ
は、約170mmである。
The heated gas inlet and heated gas outlet
A mesh wire mesh was used as a partition. The heating furnace divides the moving bed formation space into three sections at equal intervals in the vertical direction: upper, middle, and lower.
The space for forming the moving layer was divided into six parts in the circumferential direction, and heated gas was introduced into each part from three directions and discharged from three directions.
The unit length through which each heating gas passes in the moving bed in a substantially orthogonal direction is about 170 mm.

加熱ガスを導入する時は、多孔質不融化ピッチ粒体の
導入口であるバルブ(2)と抜き出し口であるバルブ
(6)を閉めて焼成・賦活し、焼成・賦活品を抜き出す
時は加熱ガスを通過させない状態で前記両バルブ(2、
6)を開き、抜き出すと同時に移動層を流下させた。焼
成・賦活工程を反応時間18分、加熱ガスを通過させない
状態で移動層を流下させる工程を抜き出し時間2分の間
隔とし、各工程を繰り返して運転を行なった。
When the heating gas is introduced, the valve (2), which is the inlet for the porous infusibilized pitch particles, and the valve (6), which is the outlet, are closed and fired and activated. When the fired and activated product is extracted, heating is performed. The two valves (2,
6) was opened, and the moving bed was allowed to flow down at the same time as extraction. The calcination / activation step was performed for 18 minutes in the reaction time, and the step of letting the moving bed flow down without passing the heating gas was performed at intervals of 2 minutes.

このとき、多孔質不融化ピッチ粒体からなる移動層が
流下して、脱気、除湿され、昇温させながら移動層形成
空間で焼成加熱部に到達するまでの時間は約10分で、こ
こからさらに流下しながら加熱されて950℃に到達する
までの時間は約10分であった。950℃に到達後、焼成・
賦活する温度を保持しながら加熱部末端(賦活部末端)
まで到達する時間は約60分であった。
At this time, the time required for the moving bed composed of the porous infusibilized pitch particles to flow down, to be degassed and dehumidified, and to reach the sintering heating section in the moving bed forming space while raising the temperature is about 10 minutes. It took about 10 minutes until the temperature reached 950 ° C. while further flowing down from the container. After reaching 950 ℃, bake
While maintaining the activation temperature, the end of the heating section (the end of the activation section)
The time to reach was about 60 minutes.

このとき得られた球状活性炭の単位時間当たりの生産
量は62.5kg/hrであり、炉容積当たりの処理量は83kg/h
r.m3であった。得られた活性炭は平均径600μm、賦活
収率42%であり、見かけ比重が0.59g/cc、沃素吸着量が
1,200mg/g,カラメル脱色率が88%で、融着がなく、変形
亀裂もなく表面状態も良好であった。
At this time, the production amount of the obtained spherical activated carbon per unit time is 62.5 kg / hr, and the throughput per furnace volume is 83 kg / h.
rm 3 . The obtained activated carbon had an average diameter of 600 μm, an activation yield of 42%, an apparent specific gravity of 0.59 g / cc, and an iodine adsorption amount of
The caramel decoloration rate was 1,200 mg / g, and the caramel decoloration rate was 88%. There was no fusion, no deformation cracks, and the surface condition was good.

[実施例2] 実施例1と同じ多孔質不融化ピッチ粒体と装置を用い
て、加熱ガス空塔速度を3〜4cm/秒として連続的に抜き
出して運転を行なった。賦活温度は950℃とし、賦活用
の加熱ガスには1000℃のスチームを使用した。このとき
得られた球状活性炭の生産量は10kg/hrであり、炉容積
当たりの処理量は約35kg/hr.m3であった。
[Example 2] Using the same porous infusibilized pitch granules and apparatus as in Example 1, the operation was carried out by continuously extracting with a heating gas superficial velocity of 3 to 4 cm / sec. The activation temperature was 950 ° C, and steam at 1000 ° C was used as the heating gas for activation. The production amount of the obtained spherical activated carbon was 10 kg / hr, and the throughput per furnace volume was about 35 kg / hr.m 3 .

得られた活性炭は平均径600μm、賦活収率41%であ
り、見かけ比重が0.58g/cc、沃素吸着量が1,220mg/g,カ
ラメル脱色率が88%であった。
The obtained activated carbon had an average diameter of 600 μm, an activation yield of 41%, an apparent specific gravity of 0.58 g / cc, an iodine adsorption amount of 1,220 mg / g, and a caramel decolorization rate of 88%.

[比較例1] 実施例1と同じ多孔質不融化ピッチ粒体を用い、塔径
3,450mm、全高約5mの一段回分流動層でスチーム/窒素
=7/3の組成の賦活ガスを用いて300℃から810℃で15時
間保持して賦活処理を行ない球状活性炭を得た。単位時
間当たりの生産量は80kg/hrであり、炉容積当たりの処
理量は3.4kg/hr.m3であった。得られた活性炭は平均径6
00μm、見かけ比重が0.58、沃素吸着量が1,200mg/g,カ
ラメル脱色率が88%であった。
Comparative Example 1 The same porous infusible pitch granules as in Example 1 were used,
In a single-stage fluidized bed at 3,450 mm and a total height of about 5 m, an activation gas was maintained at 300 ° C. to 810 ° C. for 15 hours using an activation gas having a composition of steam / nitrogen = 7/3 to obtain spherical activated carbon. The output per unit time was 80 kg / hr, and the throughput per furnace volume was 3.4 kg / hr.m 3 . The obtained activated carbon has an average diameter of 6
The powder had an apparent specific gravity of 0.58, an iodine adsorption amount of 1,200 mg / g, and a caramel decolorization rate of 88%.

[比較例2] 実施例1と同じ多孔質不融化ピッチ粒体を用い、塔径
2,200mm、全高長7,500mmの2段回分流動層でスチーム/
窒素=1/1の組成の賦活ガスを用いて300℃から870℃ま
で昇温し、その後、3℃/hrの昇温速度で4時間賦活処
理して活性炭を得た。単位時間当たりの生産量は140kg/
hrであり、炉容積当たりの処理量は7.4kg/hr.m3であっ
た。得られた活性炭は賦活収率40%であり、見かけ比重
0.58、沃素吸着量1,200mg/g,カラメル脱色率88%であっ
た。
Comparative Example 2 The same porous infusible pitch granules as in Example 1 were used,
Steam / two-stage batch fluidized bed of 2,200mm, total height 7,500mm
The temperature was raised from 300 ° C. to 870 ° C. using an activation gas having a composition of nitrogen = 1/1, and then activated at a temperature rising rate of 3 ° C./hr for 4 hours to obtain activated carbon. Production volume per unit time is 140kg /
hr, and the throughput per furnace volume was 7.4 kg / hr.m 3 . The activated carbon obtained has an activation yield of 40% and apparent specific gravity.
It had an iodine adsorption of 1,200 mg / g and a caramel decolorization rate of 88%.

[発明の効果] 本発明によれば、多孔質不融化ピッチ粒体を焼成また
は焼成し賦活するための、あるいは多孔質炭素粒体を賦
活するための、生産性が高い方法および装置を提供する
ことができる。本発明の装置は、従来より小型で、か
つ、炉容積効率が顕著に優れており、しかも従来の方法
と同品質の焼成・賦活品を得ることができる。
[Effects of the Invention] According to the present invention, there is provided a highly productive method and apparatus for firing or firing porous infusibilized pitch granules or for activating porous carbon granules. be able to. The apparatus of the present invention is smaller than the conventional apparatus, and has remarkably excellent furnace volume efficiency, and can obtain a fired / activated product having the same quality as the conventional method.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の装置の一実施態様を示す断面略図で
あり、第2図は、第1図のA−A断面略図である。 1:縦型移動層加熱炉、2:粒体導入口(バルブ)、3:移動
層形成空間、4:移動層空間形成用外筒、5:移動層空間形
成用内筒、6:粒体抜き出し口、7a、7b:伝熱加熱用熱
源、8A〜8E:加熱ガス導入ライン、8Aa〜8Ac:加熱ガス導
入口、9A〜9E:加熱ガス排出ライン、9Aa〜9Ac:加熱ガス
排出口、10:ホッパー、11b、11d、11f:移動層形成空間
内での加熱ガス導入口部、11a、11c、11e:移動層形成空
間内での加熱ガス排出口部、12:冷却手段
FIG. 1 is a schematic sectional view showing an embodiment of the apparatus of the present invention, and FIG. 2 is a schematic sectional view taken along line AA of FIG. 1: Vertical moving bed heating furnace, 2: Granule inlet (valve), 3: Moving bed forming space, 4: Outer cylinder for forming moving bed space, 5: Inner cylinder for forming moving bed space, 6: Granules Extraction ports, 7a, 7b: heat source for heat transfer heating, 8A-8E: heating gas introduction line, 8Aa-8Ac: heating gas introduction port, 9A-9E: heating gas discharge line, 9Aa-9Ac: heating gas discharge port, 10 : Hopper, 11b, 11d, 11f: heated gas inlet in the moving layer forming space, 11a, 11c, 11e: heated gas outlet in the moving layer forming space, 12: cooling means

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多孔質不融化ピッチ粒体または多孔質炭素
粒体により上方から下方へ流下する移動層を形成し、該
移動層を外部より加熱すると共に、該移動層中にその流
下方向とは略直交方向に加熱ガスを通過させることを特
徴とする多孔質不融化ピッチ粒体または多孔質炭素粒体
を焼成または賦活する方法。
1. A moving layer that flows downward from above is formed by porous infusibilized pitch particles or porous carbon particles, and the moving layer is heated from the outside, and the moving layer is placed in the moving layer in the flowing direction. Is a method for firing or activating porous infusibilized pitch particles or porous carbon particles, characterized by passing a heating gas in a substantially orthogonal direction.
【請求項2】加熱ガスの通過を前記移動層の安定性を損
なわない程度の流速で行なう請求項1記載の方法。
2. The method according to claim 1, wherein the passage of the heating gas is performed at a flow rate that does not impair the stability of the moving bed.
【請求項3】多孔質不融化ピッチ粒体または多孔質炭素
粒体により上方から下方へ流下する移動層を形成し、該
移動層を外部より加熱すると共に、移動層の流下を止め
た状態で、該移動層中にその流下方向とは略直交方向に
加熱ガスを通過させる工程と、加熱ガスを通過させない
状態で移動層を流下させる工程とを交互に繰り返すこと
を特徴とする多孔質不融化ピッチ粒体または多孔質炭素
粒体を焼成または賦活する方法。
3. A moving layer that flows downward from above is formed by the porous infusibilized pitch particles or the porous carbon particles, and the moving layer is heated from the outside and the moving layer stops flowing down. Characterized in that the step of passing a heating gas through the moving bed in a direction substantially perpendicular to the flowing direction thereof and the step of causing the moving bed to flow down without passing the heating gas are alternately repeated. A method of firing or activating pitch particles or porous carbon particles.
【請求項4】多孔質不融化ピッチ粒体または多孔質炭素
粒体の導入口(2)を上部に、抜き出し口(6)を下部
に有し、その間に該粒体が上方から下方に流下する移動
層形成空間(3)を設けてなる縦型の移動層加熱炉
(1)であって、該移動層形成空間(3)を区画形成す
る壁面を通して移動層を加熱する手段と、移動層中にそ
の流下方向とは略直交方向に加熱ガスを通過させる加熱
ガス導入口および加熱ガス排出口を該壁面を貫通して設
けて成ることを特徴とする多孔質不融化ピッチ粒体また
は多孔質炭素粒体の焼成または賦活装置。
4. An inlet (2) for porous infusibilized pitch granules or porous carbon granules at an upper portion and an outlet (6) at a lower portion, during which the granules flow downward from above. A vertical moving bed heating furnace (1) provided with a moving bed forming space (3), wherein the moving bed is heated through a wall surface defining and forming the moving bed forming space (3); Characterized in that a heating gas inlet and a heating gas outlet for allowing a heating gas to pass therethrough in a direction substantially perpendicular to the flowing direction thereof are provided through the wall surface, and the porous infusible pitch particles or the porous An apparatus for firing or activating carbon particles.
【請求項5】移動層形成空間(3)の壁を通して該粒体
を加熱する手段(7a、7b)が、移動層形成空間(3)の
壁面を介し移動層を挟んで設けられている請求項4記載
の装置。
5. A means (7a, 7b) for heating the particles through the wall of the moving layer forming space (3) is provided with the moving layer interposed therebetween through the wall surface of the moving layer forming space (3). Item 5. The apparatus according to Item 4.
【請求項6】各同数の加熱ガス導入口(8Aa、8Ab、8Ac
−−−)と加熱ガス排出口(9Aa、9Ab、9Ac−−−)が
移動層形成空間(3)に対し実質的に同一高さに複数対
交互に設けられ、かつ、これら加熱ガス導入口と加熱ガ
ス排出口の複数対よりなる群が複数個、移動層形成空間
(3)に対し相互に異なった高さに設けられている請求
項4記載の装置。
6. The same number of heating gas inlets (8Aa, 8Ab, 8Ac
−−−) and heated gas outlets (9Aa, 9Ab, 9Ac −−−) are provided alternately in a plurality of pairs at substantially the same height with respect to the moving layer formation space (3), and these heated gas inlets are provided. 5. The apparatus according to claim 4, wherein a plurality of pairs of the heating gas outlets and the plurality of heating gas outlets are provided at different heights with respect to the moving layer forming space (3).
【請求項7】移動層形成空間(3)を区画形成する壁面
を貫通し、移動層形成空間内に位置する加熱ガス導入口
部と加熱ガス排出口部が、加熱ガスを貫通するが、多孔
質不融化ピッチ粒体または多孔質炭素粒体を実質的に貫
通し得ない貫通孔を有する多孔体から成る隔壁(11)に
より形成されている請求項4記載の装置。
7. A heating gas inlet port and a heating gas outlet port penetrating a wall defining the moving layer forming space (3) and located in the moving layer forming space penetrate the heating gas. 5. The apparatus according to claim 4, wherein the partition wall is formed by a partition wall made of a porous body having a through-hole that cannot substantially penetrate the infusibilized pitch granules or the porous carbon granules.
【請求項8】移動層形成空間(3)を区画形成する壁面
を通して移動層を冷却する手段(12)が、抜き出し口
(6)近傍に設けられている請求項4記載の装置。
8. The apparatus according to claim 4, wherein a means (12) for cooling the moving bed through a wall defining the moving bed forming space (3) is provided near the outlet (6).
JP63319358A 1988-12-20 1988-12-20 Method and apparatus for firing and activating porous infusibilized pitch granules or carbon granules Expired - Fee Related JP2736538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63319358A JP2736538B2 (en) 1988-12-20 1988-12-20 Method and apparatus for firing and activating porous infusibilized pitch granules or carbon granules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63319358A JP2736538B2 (en) 1988-12-20 1988-12-20 Method and apparatus for firing and activating porous infusibilized pitch granules or carbon granules

Publications (2)

Publication Number Publication Date
JPH02164710A JPH02164710A (en) 1990-06-25
JP2736538B2 true JP2736538B2 (en) 1998-04-02

Family

ID=18109260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63319358A Expired - Fee Related JP2736538B2 (en) 1988-12-20 1988-12-20 Method and apparatus for firing and activating porous infusibilized pitch granules or carbon granules

Country Status (1)

Country Link
JP (1) JP2736538B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223369B2 (en) * 1972-12-11 1977-06-23

Also Published As

Publication number Publication date
JPH02164710A (en) 1990-06-25

Similar Documents

Publication Publication Date Title
US2621118A (en) Process for fluid bed operation
US2780525A (en) Process and apparatus for the production of aluminum oxide from aluminum chloride
US2650084A (en) Calcining lime bearing sludges
US3940236A (en) Methods and apparatus for the heat treatment of fine-grained materials
US3043660A (en) Production of silicon dioxide
US3676365A (en) Method for manufacturing activated carbon and apparatus therefor
JP2594818B2 (en) Pelletizing furnace and method for producing vitreous beads
US3954390A (en) Method for producing aggregate used in hardening compositions, predominantly concretes, a fluidized-bed kiln for calcining mineral stock by means of same method, and an aggregate produced by same method
JPS6352933B2 (en)
US3032398A (en) Process and furnace for the continuous production of aluminum nitride
JP2736538B2 (en) Method and apparatus for firing and activating porous infusibilized pitch granules or carbon granules
US3043657A (en) Production of metal oxides
US3852216A (en) Process for producing coarse particles of active carbon in a fluidized bed with added inert particles
CN103072967B (en) Continuously carbonizing device and method for preparing intermediate product carbonized material of carbon molecular sieve
US3043659A (en) Process for the production of purified silicon dioxide
HU223445B1 (en) Method for conducting reactions in fluidized particle layers
CN85106397A (en) Light-burned processing method of magnesite gas suspension and device thereof
US3188173A (en) Process for the production of oxides of al, si and ti
US3956454A (en) Process for producing aluminum trichloride
EP0088181B1 (en) Manufacture of highly porous refractory material
JPH0378131B2 (en)
US2503013A (en) Apparatus for pyrolytic conversion of hydrocarbons
CN219531747U (en) Cyclone gas-solid flow guiding grading heat exchange device
US2532606A (en) Pebble heater
US2675295A (en) Process for rapidly and continuously performing a high temperature endothermic reaction between a solid and a gaseous reactant

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees