JP2734083B2 - Method for producing transparent quartz glass molded body - Google Patents

Method for producing transparent quartz glass molded body

Info

Publication number
JP2734083B2
JP2734083B2 JP1112411A JP11241189A JP2734083B2 JP 2734083 B2 JP2734083 B2 JP 2734083B2 JP 1112411 A JP1112411 A JP 1112411A JP 11241189 A JP11241189 A JP 11241189A JP 2734083 B2 JP2734083 B2 JP 2734083B2
Authority
JP
Japan
Prior art keywords
molded body
particles
quartz glass
transparent quartz
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1112411A
Other languages
Japanese (ja)
Other versions
JPH02293339A (en
Inventor
信行 村井
洋司 岩阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP1112411A priority Critical patent/JP2734083B2/en
Publication of JPH02293339A publication Critical patent/JPH02293339A/en
Application granted granted Critical
Publication of JP2734083B2 publication Critical patent/JP2734083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は透明石英ガラス成形体の製造方法に関する。
詳しくは本発明は、球状シリカ凝集体を用いて工業的有
利に透明石英ガラス成形体を製造する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a transparent quartz glass molded body.
More specifically, the present invention relates to a method for industrially advantageously producing a transparent quartz glass molded article using a spherical silica aggregate.

[従来の技術] 従来より球状シリカ粒子から透明石英ガラス成形体を
得る方法が検討されている。その代表的な方法はSacks
ら(Journal of American Ceramic Society,Vol.67,No
8,P.526〜537(1984))およびTsengら(Journal of Ma
terial Science,21,P.3615〜3624(1986))により開示
されている。
[Prior Art] Conventionally, methods for obtaining a transparent quartz glass molded article from spherical silica particles have been studied. The typical method is Sacks
(Journal of American Ceramic Society, Vol. 67, No.
8, pp. 526-537 (1984)) and Tseng et al. (Journal of Ma
terial Science, 21, p. 3615-3624 (1986)).

SacksらおよびTsengらの方法は、透明石英ガラス成形
体を得るためには、球状シリカ粒子を充填したときに粗
大なポアーが無くシャープなポアー分布が必要であると
し、これを達成するためには単分散球状シリカ粒子を最
密充填したグリーン成形体が必要であるとの認識に立っ
ており、成形方法として0.5μm以下の単分散球状シリ
カ粒子が良く分散したスラリーを長時間静置して粒子の
重力沈降によりグリーン成形体を得る方法(以後「沈降
成形法」と呼ぶ)を採用している。この方法により粒子
は凝集すること無く沈降し、したがって凝集塊相互の充
填に起因するポアーが殆ど無く粒子相互の間に生じるポ
アーのみからなるシャープなポアー分布を持つグリーン
成形体を得ており、更に該成形体を焼成して透明石英ガ
ラスを製造している。Sacksらの方法は粗大な100nm以上
のポアーをなくしポアー分布をシャープにすることが重
要であることを示している。
Sacks et al. And Tseng et al. Argued that, in order to obtain a transparent quartz glass molded body, a sharp pore distribution without coarse pores was necessary when spherical silica particles were filled, and in order to achieve this, It is recognized that a green compact in which monodisperse spherical silica particles are closest packed is necessary, and as a molding method, a slurry in which monodisperse spherical silica particles of 0.5 μm or less are well dispersed is allowed to stand for a long time to obtain particles. (Hereinafter referred to as "sedimentation molding method"). According to this method, the particles settle without agglomeration, and thus a green compact having a sharp pore distribution consisting of only pores generated between the particles with few pores due to the packing of the aggregates is obtained. The molded body is fired to produce a transparent quartz glass. The method of Sacks et al. Shows that it is important to eliminate coarse pores larger than 100 nm and sharpen the pore distribution.

[発明が解決しようとする課題] しかしながらSacksらが採用した沈降成形法ではサブ
ミクロンの微細な粒子を重力沈降させるため、成形体を
得るのに数週間以上に要し、また、成形体を乾燥する過
程で成形体が割れて細片しか得られないという問題点を
有しているため、グリーン成形体の成形方法の改良が望
まれている。
[Problems to be Solved by the Invention] However, in the sedimentation molding method adopted by Sacks et al., It takes several weeks or more to obtain a molded body because submicron fine particles are sedimented by gravity, and the molded body is dried. However, there is a problem that the molded body is broken in the process of forming, and only a small piece can be obtained. Therefore, improvement of a molding method of a green molded body is desired.

[課題を解決するための手段] 本発明者らはこのような従来技術の課題を克服すべく
鋭意検討した結果、特定の球状シリカ粒子を水又は有機
溶媒中に分散したスラリーを噴霧乾燥して得られる球状
シリカ凝集体を加圧成形することにより重力沈降法を採
用せずとも粗大なポアーのないグリーン成形体を得るこ
とができることを見出し、本発明に到達した。
[Means for Solving the Problems] As a result of intensive studies to overcome such problems of the prior art, the present inventors have spray-dried a slurry in which specific spherical silica particles are dispersed in water or an organic solvent. The present inventors have found that a green molded body without coarse pores can be obtained without employing a gravity sedimentation method by pressure-molding the obtained spherical silica aggregate, and have reached the present invention.

即ち、本発明は、 平均粒径が0.05〜1.5μmであり、かつ粒径分布が標
準偏差値(σ)で1.5以下である球状シリカ粒子を水又
は有機溶媒中に分散させてなるスラリーを噴霧乾燥して
得られる球状凝集体を加圧成形した後、該成形体を焼成
することを特徴とする透明石英ガラス成形体の製造方
法、 を要旨とするものである。
That is, the present invention sprays a slurry obtained by dispersing spherical silica particles having an average particle size of 0.05 to 1.5 μm and a particle size distribution of 1.5 or less in standard deviation (σ) in water or an organic solvent. A method for producing a transparent quartz glass molded body, which comprises subjecting a spherical aggregate obtained by drying to pressure molding, and firing the molded body.

以下に本発明につき更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

本発明で使用するシリカ粒子は凝集時に充填性の良い
球状粒子を用いる。さらに該球状粒子を焼成して石英ガ
ラスとするため粒子は非晶質である必要がある。
As the silica particles used in the present invention, spherical particles having good filling properties at the time of aggregation are used. Further, in order to bake the spherical particles into quartz glass, the particles need to be amorphous.

また、本発明においては球状シリカ粒子の中でも平均
粒径0.05〜1.5μmの範囲で、より好ましくは平均粒径
0.1〜1.0μmの範囲で標準偏差値(σ)が1.5以下、よ
り好ましくは1.2以下のものを用いる。これは平均粒径
0.05μmより小さい粒子を使うと粒子全体の表面積が大
きくなってスラリーの粒子分散性が低下し良好な球状凝
集体が得られず、従って高密度成形体が得られないため
好ましくなく、また平均粒径が1.5μmより大きい場合
は成形後の粒子相互の間に100nm以上の粗大なポアーが
形成され、しかも粒子自体の焼成性が低下するため焼結
および緻密化が十分に進行せず透明石英ガラスが得られ
ないからである。また粒径分布の標準偏差値(σ)が1.
5より大きい粒子を用いると粒子の充填および粒子相互
の間に形成されるポアーが均一にならず、焼結および緻
密化が十分に進行しないため好ましくない。粒子の充填
密度を向上させる点で標準偏差値(σ)を1.2以下とす
ることが好ましい。
Further, in the present invention, the average particle size in the range of 0.05 to 1.5 μm among the spherical silica particles, more preferably the average particle size
Those having a standard deviation (σ) of 1.5 or less, more preferably 1.2 or less in the range of 0.1 to 1.0 μm are used. This is the average particle size
When particles smaller than 0.05 μm are used, the surface area of the whole particles becomes large, and the particle dispersibility of the slurry is reduced, so that good spherical aggregates cannot be obtained. Therefore, high-density compacts cannot be obtained. When the diameter is larger than 1.5 μm, coarse pores of 100 nm or more are formed between the particles after molding, and the sintering and densification do not proceed sufficiently because the sinterability of the particles themselves is reduced, so that transparent quartz glass Is not obtained. The standard deviation (σ) of the particle size distribution is 1.
The use of particles larger than 5 is not preferable because the filling of the particles and the pores formed between the particles are not uniform, and the sintering and densification do not sufficiently proceed. The standard deviation (σ) is preferably set to 1.2 or less from the viewpoint of improving the packing density of the particles.

上記した特定の球状シリカ粒子を製造する方法につい
ては上記した粒径及び粒径分布を有する球状シリカ粒子
が得られる限り特に限定されるものではないが、例えば
次のような方法で製造することができる。
The method for producing the above-mentioned specific spherical silica particles is not particularly limited as long as spherical silica particles having the above-mentioned particle size and particle size distribution are obtained, but for example, it can be produced by the following method. it can.

一般に、ケイ素のアルコキシドを塩基性触媒の存在下
で加水分解・重合してシリカ粒子を得ることができるが
本発明における特定の球状シリカ粒子を得るには例えば
次のような条件で行なう。
In general, silica particles can be obtained by hydrolyzing and polymerizing an alkoxide of silicon in the presence of a basic catalyst. To obtain specific spherical silica particles in the present invention, for example, the following conditions are used.

水0.2〜20mol好ましくは1.0〜10mol、塩基性触媒0.1
〜10mol好ましくは0.2〜5mol、更に好ましくは0.2〜2mo
lを反応溶媒中に溶かして1の反応液とする。0〜60
℃、好ましくは5〜40℃、更に好ましくは10〜40℃の温
度条件下にケイ素のアルコキシドを反応液に対して0.01
〜1mol/、好ましくは0.02〜0.5mol/となる量で攪拌
しながら一時に全量加えて加水分解・重合反応させる。
1〜5時間で反応は完結し、本発明における粒径及び粒
径分布を満たす球状シリカ粒子を得ることができる。
Water 0.2 to 20 mol, preferably 1.0 to 10 mol, basic catalyst 0.1
~ 10 mol, preferably 0.2-5 mol, more preferably 0.2-2 mol
is dissolved in a reaction solvent to obtain 1 reaction solution. 0-60
C., preferably 5 to 40 ° C., more preferably 10 to 40 ° C., at a temperature of 0.01 to 0.01 wt.
攪拌 1 mol /, preferably 0.02-0.5 mol /, with stirring, the whole amount is added at a time and the hydrolysis / polymerization reaction is carried out.
The reaction is completed in 1 to 5 hours, and spherical silica particles satisfying the particle size and the particle size distribution in the present invention can be obtained.

使用される反応溶媒としてはメタノール、エタノー
ル、プロパノール、ブタノール、ペンタノールなどのア
ルコールが挙げられる。また上記したケイ素のアルコキ
シドとしては例えば、テトラメトキシシラン、テトラエ
トキシシラン、テトラプロポキシシラン、テトラブトキ
シシラン、テトラペントキシシラン等が挙げられる。ま
た塩基性触媒としてはアンモニア、アミン、苛性アルカ
リ等が挙げられる。
The reaction solvent used includes alcohols such as methanol, ethanol, propanol, butanol and pentanol. Examples of the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentoxysilane, and the like. Examples of the basic catalyst include ammonia, amine, and caustic.

次に本発明においては上記した球状シリカ粒子を水又
は有機溶媒中に分散させてシリカ粒子分散スラリーとす
る。シリカ粒子分散スラリーに対しては必要に応じてバ
インダー、分散剤等の添加物が用いられる。
Next, in the present invention, the above-mentioned spherical silica particles are dispersed in water or an organic solvent to obtain a silica particle-dispersed slurry. Additives such as a binder and a dispersant are used as needed for the silica particle dispersion slurry.

分散媒は水又は有機溶媒ならばいかなるものでも良い
が、好適には水、アルコール等の水酸基を持った極性分
散媒体を用いる。これに前記球状シリカ粒子を加えて超
音波分散器等で十分に分散させてシリカ粒子分散スラリ
ーとする。
The dispersion medium may be any water or organic solvent, but a polar dispersion medium having a hydroxyl group such as water or alcohol is preferably used. The spherical silica particles are added thereto and sufficiently dispersed by an ultrasonic disperser or the like to obtain a silica particle dispersed slurry.

スラリー中のシリカ濃度は特に限定されないが分散媒
に対して通常、5〜50wt%、中でも10〜40wt%が好まし
い。スラリー濃度が高すぎると粘度が高くなり過ぎて噴
霧できず、一方濃度が低すぎると多量のスラリーを用い
る必要があり製造効率が悪くなる傾向がある。
The silica concentration in the slurry is not particularly limited, but is usually 5 to 50% by weight, preferably 10 to 40% by weight, based on the dispersion medium. If the slurry concentration is too high, the viscosity becomes too high to spray, whereas if the slurry concentration is too low, a large amount of slurry needs to be used, and the production efficiency tends to deteriorate.

次に前記のように調製したシリカ粒子分散スラリーを
スプレードライヤーで噴霧乾燥する。噴霧乾燥機として
は、ノズルタイプ、ディスクタイプ、二流体方式が一般
的でありいずれのタイプでも良い。
Next, the silica particle dispersion slurry prepared as described above is spray-dried with a spray drier. As a spray dryer, a nozzle type, a disk type, and a two-fluid type are generally used, and any type may be used.

噴霧乾燥により得られた球状凝集体は加圧成形により
グリーン成形体とする。加圧成形方法としては油圧プレ
スやCIP(冷間等方圧プレス)等が一般的でありいずれ
のタイプでも良い。このような条件での成形によって10
0nm以上の粗大なポアーが無くシャープなポアー分布を
持つグリーン成形体が得られる。
The spherical aggregate obtained by spray drying is formed into a green compact by pressure molding. As a pressure molding method, a hydraulic press, a CIP (cold isostatic press) and the like are generally used, and any type may be used. By molding under such conditions, 10
A green compact having a sharp pore distribution without coarse pores of 0 nm or more can be obtained.

このようにして得られた成形体を通常1000〜1500℃、
好ましくは1100〜1300℃の温度で焼成し、空隙の除去を
行って透明石英ガラス成形体とする。このとき通常は大
気雰囲気中で焼成を行なうが、空隙の除去を容易にする
ためにHe雰囲気中や減圧下で、またHe雰囲気にした後減
圧して焼成しても良い。またホットプレス法などの加圧
成形法を用いても良い。
The molded body thus obtained is usually 1000 to 1500 ° C,
Preferably, it is fired at a temperature of 1100 to 1300 ° C. to remove voids to obtain a transparent quartz glass molded body. At this time, baking is usually performed in an air atmosphere, but baking may be performed in a He atmosphere or under reduced pressure to facilitate the removal of voids, or may be performed after reducing the pressure to a He atmosphere. Further, a pressure molding method such as a hot press method may be used.

本発明方法によれば、簡便かつ短時間で粗大なポアー
のないグリーン成形体が歩留り良く得られ、該成形体を
焼成することにより透明シリカガラスを歩留り良く製造
できる。得られる透明シリカガラスは半導体溶融用るつ
ぼ等として工業的有利に用いられる。
According to the method of the present invention, a green molded body without coarse pores can be obtained with good yield in a simple and short time, and by firing the molded body, a transparent silica glass can be produced with good yield. The obtained transparent silica glass is industrially advantageously used as a crucible for melting semiconductors and the like.

[実施例] 以下本発明を実施例にて具体的に説明するが、本発明
はその要旨を超えない限り、これら実施例のみに限定さ
れるものではない。
[Examples] Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples unless it exceeds the gist.

なお、平均粒径()及び標準偏差値(σ)は次式に
従って求めたものである。
The average particle size () and the standard deviation value (σ) are determined according to the following equations.

また、乾燥後成形体中の空隙容積を水銀圧入法により
測定し、粒子の密度をピクノメーター法により測定して
次の式から乾燥後成形体中の粒子充填率を計算した。
Further, the void volume in the dried compact was measured by a mercury intrusion method, the density of the particles was measured by a pycnometer method, and the particle filling rate in the dried compact was calculated from the following equation.

ただし、Vpore(cm3/g)は水銀圧入法により測定され
る成形体単位重量当りの空隙容積である。
Here, V pore (cm 3 / g) is a void volume per unit weight of a molded article measured by a mercury intrusion method.

ρparticleはシリカ粒子の密度であり、本発明で使用
したシリカ粒子の密度はすべて2.2g/cm3であった。
ρ particle is the density of silica particles, and the density of all silica particles used in the present invention was 2.2 g / cm 3 .

実施例1 蒸留精製したエタノール3330gに蒸留水200gと25%ア
ンモニア水272gを溶解混合した液をジャケット付反応器
に入れ、以後800rpmで攪拌しながらジャケットに通水し
て反応器内の温度を20℃に保った。
Example 1 A solution obtained by dissolving and mixing 200 g of distilled water and 272 g of 25% ammonia water in 3330 g of ethanol purified by distillation was put into a jacketed reactor, and thereafter, water was passed through the jacket while stirring at 800 rpm to reduce the temperature inside the reactor to 20. C.

次に蒸留精製したテトラエトキシシラン208gを20℃に
調整した後20℃に保たれた反応器内に一時に全量添加し
た。反応は5時間で完結し、該反応液中に平均粒径=
0.40μm、標準偏差値(σ)=1.1の均一な粒子が見ら
れた。該反応液を目開き0.45μmのメンブランフィルタ
ーで加圧過して過ケーキを得た。このケーキを150
℃で乾燥した後ジェットミルにて粉砕して球状シリカ粉
末とした。こうして得られた平均粒径=0.4μm、標
準偏差値(σ)=1.1の球状シリカ粒子400gを蒸留水600
gに加え超音波分散機で30分間分散させて得られたスラ
リーに10wt%のポリビニルアルコール水溶液40gを加
え、さらに超音波分散機で30分間分散させてシリカ粒子
分散スラリーを得た。該スラリーを回転ディスク方式の
スプレードライヤーに1.5/hrの速度で供給し、ディス
ク回転数20000rpm、熱風入口温度250℃の条件で噴霧乾
燥し、粒径5〜100μmの凝集体を得た。
Next, 208 g of distilled and purified tetraethoxysilane was adjusted to 20 ° C., and then the whole amount was added at once to a reactor kept at 20 ° C. The reaction was completed in 5 hours, and the average particle size in the reaction solution was
Uniform particles having a diameter of 0.40 μm and a standard deviation (σ) of 1.1 were found. The reaction solution was pressurized with a 0.45 μm membrane filter to obtain an overcake. 150 this cake
After drying at ℃, it was pulverized with a jet mill to obtain spherical silica powder. 400 g of spherical silica particles having an average particle diameter of 0.4 μm and a standard deviation value (σ) of 1.1 thus obtained were mixed with distilled water 600 g.
g, a slurry obtained by dispersing with an ultrasonic disperser for 30 minutes, 40 g of a 10 wt% aqueous solution of polyvinyl alcohol was added, and the mixture was further dispersed with an ultrasonic disperser for 30 minutes to obtain a silica particle-dispersed slurry. The slurry was supplied to a rotary disk type spray dryer at a rate of 1.5 / hr, and spray-dried under the conditions of a disk rotation speed of 20,000 rpm and a hot air inlet temperature of 250 ° C. to obtain an aggregate having a particle size of 5 to 100 μm.

凝集体の一部を走査電子顕微鏡(SEM)用の試料に供
した。得られたSEM写真の一例を第1図に示す。第1図
から、上記凝集体は球状シリカを一次粒子として最密充
填された球状体であることが明らかである。またこの凝
集体を油圧プレスにて予備成形後、ラバープレスにて2t
/cm2の圧力を加えて直径2cm、厚さ0.23cmのペレット状
グリーン成形体を得た。成形体中には100nm以上のポア
ーは存在せず粒子充填率は62vol%であった。該成形体
を50℃/hrで600℃まで加熱した後600℃で2時間保持し
引き続いて60℃/hrで1200℃まで加熱し、1200℃で5時
間保持することによって直径1.7cm、厚さ0.2cmの透明な
石英ガラスのペレットが得られた。
A part of the aggregate was used as a sample for a scanning electron microscope (SEM). FIG. 1 shows an example of the obtained SEM photograph. From FIG. 1, it is clear that the above-mentioned aggregates are spherical particles that are closest packed with spherical silica as primary particles. After pre-forming this aggregate by hydraulic press, 2t by rubber press
By applying a pressure of / cm 2 , a pellet-shaped green compact having a diameter of 2 cm and a thickness of 0.23 cm was obtained. No pores of 100 nm or more were present in the molded body, and the particle packing ratio was 62 vol%. The molded body was heated at 50 ° C./hr to 600 ° C., kept at 600 ° C. for 2 hours, subsequently heated at 60 ° C./hr to 1200 ° C., and kept at 1200 ° C. for 5 hours to obtain a 1.7 cm diameter and a thickness of 1.7 cm. A 0.2 cm clear quartz glass pellet was obtained.

比較例1 平均粒径=0.4μm、標準偏差値(σ)=1.1の球状
シリカ粒子15gを蒸留水500gに加え、さらにアンモニア
水でpH=10に調整した後、超音波分散機で30分間分散し
てシリカ粒子分散スラリーを得た。該スラリーを内径6c
mの容器に移して4週間静置することにより沈降成形し
た。うわずみ液を除去した後、成形体を室温で乾燥した
がその過程で成形体は割れて約1cm角、厚さ0.4cm程度の
細片しか得られなかった。
Comparative Example 1 15 g of spherical silica particles having an average particle diameter of 0.4 μm and a standard deviation (σ) of 1.1 were added to 500 g of distilled water, and further adjusted to pH = 10 with aqueous ammonia, and then dispersed with an ultrasonic disperser for 30 minutes. As a result, a silica particle dispersion slurry was obtained. The slurry has an inner diameter of 6c.
The container was transferred to a container having a length of 4 m and allowed to stand for 4 weeks to form a sediment. After removing the liquid, the molded body was dried at room temperature. In the process, the molded body was broken, and only small pieces of about 1 cm square and about 0.4 cm thick were obtained.

比較例2 平均粒径=0.54μm、標準偏差値(σ)=1.6の球
状シリカ粒子を用いたこと以外は実施例1におけるのと
同様の方法で直径2cm、厚さ0.22cmのペレット状成形体
を得た。該成形体中には100nm以上のポアーが30%以上
存在し、粒子充填率は61.6vol%であった。該成形体を
実施例1におけるのと同様の条件で焼成したが、焼結体
中にはポアーが残存し不透明のままであった。
Comparative Example 2 A pellet-shaped compact having a diameter of 2 cm and a thickness of 0.22 cm was obtained in the same manner as in Example 1 except that spherical silica particles having an average particle size of 0.54 μm and a standard deviation value (σ) of 1.6 were used. I got 30% or more of pores of 100 nm or more were present in the molded body, and the particle filling rate was 61.6 vol%. The compact was fired under the same conditions as in Example 1, but pores remained in the sintered body and remained opaque.

比較例3 実施例1において得られたシリカ粒子分散スラリーを
蒸発乾固した後生成した塊を乳棒にてよくすりつぶしシ
リカ粉末とした。この粉末を実施例1における凝集体の
成形と同様の条件で成形し、直径2cm、厚さ0.2cmのペレ
ット状グリーン成形体を得た。該成形体中には100nm以
上のポアーが15%以上存在し、粒子充填率は61.8vol%
であった。該成形体を実施例1におけるのと同様の条件
で焼成したが、焼結体中にはポアーが残存し、不透明の
ままであった。
Comparative Example 3 The silica particle-dispersed slurry obtained in Example 1 was evaporated to dryness, and the resulting mass was thoroughly ground with a pestle to obtain silica powder. This powder was molded under the same conditions as those for forming the aggregate in Example 1, to obtain a green pellet-shaped green body having a diameter of 2 cm and a thickness of 0.2 cm. 15% or more of pores of 100 nm or more are present in the molded body, and the particle filling rate is 61.8 vol%.
Met. The molded body was fired under the same conditions as in Example 1, but pores remained in the sintered body and remained opaque.

[発明の効果] 本発明方法によれば簡便且つ短時間の成形で粗大なポ
アーがないグリーン成形体が歩留り良く得られ、したが
って該成形体を焼成することにより透明シリカガラスを
歩留り良く製造できるものであり、その工業的価値は大
である。
[Effects of the Invention] According to the method of the present invention, a green molded body without coarse pores can be obtained with good yield by simple and short-time molding, and therefore, a transparent silica glass can be produced with good yield by firing the molded body. And its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例1における凝集体の粒子構造を示す走査
電子顕微鏡写真(SEM)写真の一例を示したものであ
り、倍率は3000倍である。
FIG. 1 shows an example of a scanning electron micrograph (SEM) photograph showing the particle structure of the aggregate in Example 1, and the magnification is 3000 times.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平均粒径が0.05〜1.5μmであり、かつ粒
径分布が標準偏差値(σ)で1.5以下である球状シリカ
粒子を水又は有機溶媒中に分散させてなるスラリーを噴
霧乾燥して得られる球状凝集体を加圧成形した後、該成
形体を焼成することを特徴とする透明石英ガラス成形体
の製造方法。
A slurry obtained by dispersing spherical silica particles having an average particle diameter of 0.05 to 1.5 μm and a particle diameter distribution of 1.5 or less in standard deviation (σ) in water or an organic solvent is spray-dried. A method for producing a transparent quartz glass molded body, which comprises subjecting a spherical aggregate obtained by pressure molding to pressure molding, and then firing the molded body.
JP1112411A 1989-05-01 1989-05-01 Method for producing transparent quartz glass molded body Expired - Lifetime JP2734083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1112411A JP2734083B2 (en) 1989-05-01 1989-05-01 Method for producing transparent quartz glass molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1112411A JP2734083B2 (en) 1989-05-01 1989-05-01 Method for producing transparent quartz glass molded body

Publications (2)

Publication Number Publication Date
JPH02293339A JPH02293339A (en) 1990-12-04
JP2734083B2 true JP2734083B2 (en) 1998-03-30

Family

ID=14585975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1112411A Expired - Lifetime JP2734083B2 (en) 1989-05-01 1989-05-01 Method for producing transparent quartz glass molded body

Country Status (1)

Country Link
JP (1) JP2734083B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5171098B2 (en) * 2007-04-24 2013-03-27 岩崎電気株式会社 Method for producing quartz glass product, silica granule used therefor and production method thereof

Also Published As

Publication number Publication date
JPH02293339A (en) 1990-12-04

Similar Documents

Publication Publication Date Title
Lee et al. Crystallization and densification of nano‐size amorphous cordierite powder prepared by a PVA solution‐polymerization route
KR950010806B1 (en) Oxide powder sintered body process for preparation thereof and target composed thereof
US5466400A (en) Process for drip casting silicon nitride slurries
Kevorkijan et al. Low-temperature synthesis of sinterable SiC powders by carbothermic reduction of colloidal SiO 2
JP2001072427A (en) Sintered material
KR102210029B1 (en) Method preparing silicon carbide particle and the silicon carbide particle prepared the same
US4732750A (en) Preparation of monodisperse titania by titanium alkoxide hydrolysis
JPH02296706A (en) Amorphous or irregular- laminate and spherical in particular boron nitride and its production method
JPS63310768A (en) Zirconia product and chemical manufacture
JP2008150263A (en) Method of manufacturing silicon carbide powder
CN113247940B (en) Method for preparing neodymium oxide nanoparticles with small size by solid-phase sintering
JPS62176928A (en) Production of quartz glass powder
JP2734083B2 (en) Method for producing transparent quartz glass molded body
JP2007504073A (en) SiO2 molded body, production method thereof and use of the molded body
CN113292053B (en) Process for preparing high-dispersity aluminum nitride powder by carbothermic method based on polymer dispersant
Jeon et al. Surface modification of silica particles with organoalkoxysilanes through two-step (acid-base) process in aqueous solution
Shimohira et al. Preparation of amorphous silica particles and their thermal behavior
JPS6081064A (en) Manufacture of silicon carbide sintered body
JP2512835B2 (en) Method for producing silica fine particles
JP2002137913A (en) Silica gel and its manufacturing method
JPH0668935B2 (en) Oxide sintered body, method for producing the same, and target using the same
JPH02293367A (en) Dry particular ceramic material and produc- tion thereof
JPH02293314A (en) Aggregate of particle and production thereof
JPH0653564B2 (en) Method for purifying hexagonal boron nitride
JP2000169213A (en) Ceramic granule molding method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 12