JP2731977B2 - Method for producing optically active sulfoxides - Google Patents

Method for producing optically active sulfoxides

Info

Publication number
JP2731977B2
JP2731977B2 JP2294535A JP29453590A JP2731977B2 JP 2731977 B2 JP2731977 B2 JP 2731977B2 JP 2294535 A JP2294535 A JP 2294535A JP 29453590 A JP29453590 A JP 29453590A JP 2731977 B2 JP2731977 B2 JP 2731977B2
Authority
JP
Japan
Prior art keywords
optically active
general formula
sulfide
oxidation
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2294535A
Other languages
Japanese (ja)
Other versions
JPH04169567A (en
Inventor
和博 丸山
吉徳 成田
文都 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2294535A priority Critical patent/JP2731977B2/en
Publication of JPH04169567A publication Critical patent/JPH04169567A/en
Application granted granted Critical
Publication of JP2731977B2 publication Critical patent/JP2731977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学活性スルホキシド類の製造方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing optically active sulfoxides.

本発明の方法で得られた光学活性スルホキシド類は、
光学活性な医薬、農薬もしくは光学活性な機能性有機物
質を製造するための中間体として利用される。
Optically active sulfoxides obtained by the method of the present invention,
It is used as an intermediate for producing optically active pharmaceuticals, agricultural chemicals or optically active functional organic substances.

また、新しい光学活性中心を誘導するさいに必要な不
斉源として利用することもできる。
Further, it can be used as an asymmetric source necessary for inducing a new optically active center.

〔従来の技術〕[Conventional technology]

従来、光学活性なスルホキシドは、生物を用いてスル
フィドから製造する方法(H.L.Holland,「ケミストリー
レビュ」(Chem.Rev.,88,473(1988)),もしくは光学
活性なジエチル酒石酸を不斉源にし、チタン触媒を用い
てスルフィドから製造する方法(H.B.Kagsa,E.Dnnoch,
C.Nemecek,P.Pifchen,O.Samuel,S.H.Zhae「ピュアーア
ンドアプライドケミストリー」(Pure Appl.Chem.,57,1
911(1985))が知られている。しかし、これらの方法
では、原料となるスルフィドの種類に制限があり、ある
いは目的とする光学活性スルホキシドの収率が低く、あ
るいは不斉源としての大量の光学活性な酒石酸ジエチル
が必要となるため、工業的、大量で安価に光学活性スル
ホキシドを得ることはできなかった。したがって、少量
の不斉源を触媒として用いて、効果的にスルフィドを光
学活性スルホキシドに変換する不斉増殖反応が要望され
ている。
Conventionally, optically active sulfoxide is produced from sulfide using an organism (HL Holland, "Chemistry Review" (Chem. Rev., 88 , 473 (1988)), or an optically active diethyl tartaric acid is used as an asymmetric source, Method for producing from sulfide using titanium catalyst (HBKagsa, E. Dnnoch,
C. Nemecek, P. Pifchen, O. Samuel, SHZhae "Pure and Applied Chemistry" (Pure Appl. Chem., 57 , 1)
911 (1985)). However, in these methods, the type of sulfide as a raw material is limited, or the yield of the optically active sulfoxide intended is low, or a large amount of optically active diethyl tartrate as an asymmetric source is required, Optically active sulfoxides could not be obtained industrially, in large quantities and at low cost. Therefore, there is a demand for an asymmetric growth reaction that effectively converts a sulfide to an optically active sulfoxide using a small amount of an asymmetric source as a catalyst.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は、従来とは異なる光学活性な反応触媒を用い
ることにより上記の課題を解決したものである。本発明
者らは光学活性ポルフィリンを触媒として使用すること
によって不斉点をもたないスルフィドを光学活性スルホ
キシドに効率よく交換することができることを見出し、
上記従来技術の課題を解決することができた。
The present invention has solved the above-mentioned problems by using an optically active reaction catalyst different from the conventional one. The present inventors have found that by using an optically active porphyrin as a catalyst, a sulfide having no asymmetric point can be efficiently exchanged for an optically active sulfoxide,
The above-mentioned problem of the prior art was able to be solved.

すなわち、本発明の目的は不斉点を持たないスルフィ
ドを光学活性スルホキシドに効率よく変換する方法を提
供することにある。
That is, an object of the present invention is to provide a method for efficiently converting a sulfide having no asymmetry point into an optically active sulfoxide.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の目的は、次の光学活性スルホキシドの製造方
法によって達成される。
The object of the present invention is achieved by the following method for producing an optically active sulfoxide.

すなわち、本発明は、一般式(I)で表される芳香族
スルフィド類を、 Ar−S−R′ (I) (たゞし、式中Arは置換基を有しまたは有さない芳香族
基又R′は炭素数1〜20のアルキル基を表わす、以下同
じ) 一般式(II) あるいは一般式(III) (式中Rは ((S)−体)又はその対象体((R)−体)を、また
Xは対アニオンを表わす) で表される光学活性鉄ポルフィリン錯体を触媒として用
いて酸化剤で酸化することを特徴とする 一般式(IV) (式中、*は光学活性原子を表す) で表される光学活性スルホキシドの製造方法に関する。
That is, the present invention provides an aromatic sulfide represented by the general formula (I) by Ar-SR- (I) (wherein Ar is an aromatic group having or not having a substituent. Group or R 'represents an alkyl group having 1 to 20 carbon atoms, the same applies hereinafter) General formula (II) Or the general formula (III) (Where R is (( S ) -isomer) or its target (( R ) -isomer), and X represents a counter anion), and is oxidized with an oxidizing agent using an optically active iron porphyrin complex represented by the following formula: General formula (IV) (Wherein, * represents an optically active atom).

本発明の式(I)の芳香族基には、フェニル基、トリ
ル基、ナフチル基等があり、これらは低級アルキル基、
ハロゲン、ニトロ基等で置換されていてもよい。このよ
うな芳香族スルフィドとしては、メチルフェニルスルフ
ィド、メチル2−ニトロフェニルスルフィド、メチル3
−ニトロフェニルスルフィド、メチル4−ニトロフェニ
ルスルフィド、メチルペンタフルオロフェニルスルフィ
ド、メチルp−トリルスルフィド、メチル2−ナフチル
スルフィド、エチルフェニルスルフィド、プロピルフェ
ニルスルフィド等を例示することができる。
The aromatic group of the formula (I) of the present invention includes a phenyl group, a tolyl group, a naphthyl group and the like, and these are a lower alkyl group,
It may be substituted with a halogen, a nitro group or the like. Such aromatic sulfides include methylphenyl sulfide, methyl 2-nitrophenyl sulfide, methyl 3
-Nitrophenyl sulfide, methyl 4-nitrophenyl sulfide, methyl pentafluorophenyl sulfide, methyl p-tolyl sulfide, methyl 2-naphthyl sulfide, ethyl phenyl sulfide, propyl phenyl sulfide and the like.

また、R′は、メチル、エチル、プロピル、ブチル、
ヘキシル等の低級アルキル、オクタデシル、ノナデシ
ル、エイコシル等の炭素数の高いアルキル、sec−ブチ
ル、tert−ブチル等の第2級、第3級アルキル、あるい
はフェニル基等が置換されたアルキル等を例示すること
ができる。
R ′ is methyl, ethyl, propyl, butyl,
Examples thereof include lower alkyl such as hexyl, high carbon number alkyl such as octadecyl, nonadecyl and eicosyl, secondary and tertiary alkyl such as sec-butyl and tert-butyl, and alkyl substituted with a phenyl group. be able to.

Xは対アニオン(陰イオン)であれば何れでもよくCl
-,Br-,I-等のハロゲンイオンやRO-,RS-等のアルコキシ
ドイオン等を例示することができる。
X may be any counter anion (anion), and may be Cl.
-, Br -, I - and halogen ions and RO of -, RS - can be exemplified such as alkoxide ion.

また、光学活性鉄ポルフィリン錯体触媒としては、一
般式(II)及び一般式(III)で表される化合物(対象
体を含めて4種)がある。これらの触媒は、対応するポ
ルフィリン配位子と第一鉄塩、例えば塩化第一鉄、硝酸
第一鉄等より合成される。
As the optically active iron porphyrin complex catalyst, there are compounds represented by the general formulas (II) and (III) (four types including the target). These catalysts are synthesized from the corresponding porphyrin ligand and a ferrous salt, such as ferrous chloride, ferrous nitrate, and the like.

本発明は、上記した一般式(I)で表される種々の芳
香族スルフィド類をこれらの触媒の存在下酸化剤を用い
て不斉酸化を用い一般式(IV)で表される光学活性芳香
族スルホキシドを得るものである。
The present invention provides an optically active aromatic compound represented by the general formula (IV) using asymmetric oxidation of various aromatic sulfides represented by the above general formula (I) using an oxidizing agent in the presence of these catalysts. To obtain group sulfoxides.

本発明において不斉誘導は触媒ポリフィリン上に配置
した光学活性なビナフチル基部と原料スルフィドの芳香
環部分との立体的相互作用並びにπ−π相互作用により
なされる。従って基質としてはポリフィリンに結合して
いるビナフチル部との間に立体的および電子的な相互作
用を行うものでなければ光学活性なスルホキシドは得ら
れない。
In the present invention, asymmetric induction is performed by a steric interaction and a π-π interaction between an optically active binaphthyl group arranged on the catalyst porphyrin and an aromatic ring portion of the starting sulfide. Therefore, an optically active sulfoxide cannot be obtained unless the substrate has a steric and electronic interaction with the binaphthyl moiety bound to the porphyrin.

本反応における溶媒としては、塩化メチレン、クロロ
ホルム、四塩化炭素、ジエチルエーテル、テトラヒドロ
フラン、ペンタン、ヘキサン、水、あるいはそれらの混
合溶媒を例示することができる。特に、基質、触媒、生
成物、酸化剤、添加剤等の溶解度、反応の状況よりみて
塩化メチレンが最適である。
Examples of the solvent in this reaction include methylene chloride, chloroform, carbon tetrachloride, diethyl ether, tetrahydrofuran, pentane, hexane, water, and a mixed solvent thereof. In particular, methylene chloride is most suitable in view of the solubility of the substrate, the catalyst, the product, the oxidizing agent, the additive, and the like, and the situation of the reaction.

本反応における酸化剤としてはヨードソベンゼン、セ
リックアンモニウムナイトライト、過酸化物、酸素等が
例示し得るが、触媒の寿命、酸化剤の溶媒の溶解度より
ヨードソベンゼンが最適である。
As the oxidizing agent in this reaction, iodosobenzene, ceric ammonium nitrite, peroxide, oxygen and the like can be exemplified. However, iodosobenzene is most suitable in view of the life of the catalyst and the solubility of the solvent of the oxidizing agent.

また生成物の光学純度の向上を目的として添加する添
加剤(酸化促進剤)としてはトリエチルアミン、ピリジ
ン、イミダゾール、1−メチルイミダゾール、その他の
アルキル基で置換されたイミダゾール等を例示し得る
が、1−メチルイミダゾール等置換イミダゾールが本発
明の目的に最も適した添加剤である。
Examples of additives (oxidation accelerators) added for the purpose of improving the optical purity of the product include triethylamine, pyridine, imidazole, 1-methylimidazole, and imidazole substituted with another alkyl group. -Substituted imidazoles such as -methylimidazole are the most suitable additives for the purpose of the present invention.

本発明における反応は、上記溶媒中に光学活性な鉄ポ
ルフィリン触媒、原料スルフィド、及び必要に応じて添
加剤を加え、溶解させ、アルゴン雰囲気下で酸化剤を加
える。反応温度は−20℃〜0℃の範囲が好ましい。反応
時間は反応の進行状況に応じて3〜24時間程度である。
In the reaction of the present invention, an optically active iron porphyrin catalyst, a raw material sulfide, and an additive, if necessary, are added and dissolved in the above solvent, and an oxidizing agent is added under an argon atmosphere. The reaction temperature is preferably in the range of -20C to 0C. The reaction time is about 3 to 24 hours depending on the progress of the reaction.

反応に用いる触媒の濃度は0.1〜10mMを用い得るが、
0.5〜2mMが好適である。スルフィドの濃度は0.1〜1.0M
を用い得るが0.2〜0.5M程度が好ましい。添加剤として
用いる1−メチルイミダゾールの濃度は用いる触媒の1
〜1000モル当量を用い得るが、100モル当量程度が好ま
しい。酸化剤濃度は0.1〜1.0Mを用い得るが0.2〜0.5Mが
好適である。
The concentration of the catalyst used in the reaction may be 0.1 to 10 mM,
0.5-2 mM is preferred. Sulfide concentration 0.1-1.0M
However, about 0.2 to 0.5M is preferable. The concentration of 1-methylimidazole used as an additive is one of the catalysts used.
Although up to 1000 molar equivalents can be used, about 100 molar equivalents are preferred. The concentration of the oxidizing agent may be 0.1-1.0M, but preferably 0.2-0.5M.

次に本発明を、実施例を示して具体的に説明する。 Next, the present invention will be specifically described with reference to examples.

〔実施例〕〔Example〕

塩化メチレン1mlに一般式(II)のS体の鉄ポルフィ
リン錯体を1μmol溶解し、さらにメチルフェニルスル
フィド500μmolを溶解した。酸化促進剤として1−メチ
ルイミダゾールを100μmol加え反応系をアルゴン雰囲気
下に置いた。ジャケット付きの反応容器の外側に冷媒を
流し、溶流を−15℃に保つ条件でヨードソベンゼン200
μmolを加え反応を行った。7.5時間の反応の後生成した
スルホキシドをガスクロマトグラフィで分析しあるいは
単離してその収率を求めた。この場合139μmolのスルホ
キシドが得られた。得られたスルホキシドの光学純度
は、光学活性なシフト試薬を用いて1H-NMR法で測定し
た。光学純度は46%eeであり絶対配置はS体であった。
1 μmol of the S-form iron porphyrin complex of the general formula (II) was dissolved in 1 ml of methylene chloride, and 500 μmol of methylphenyl sulfide was further dissolved. 100 μmol of 1-methylimidazole was added as an oxidation promoter, and the reaction system was placed under an argon atmosphere. A refrigerant is allowed to flow outside the jacketed reaction vessel, and iodosobenzene 200
The reaction was performed by adding μmol. The sulfoxide produced after 7.5 hours of reaction was analyzed or isolated by gas chromatography to determine its yield. In this case, 139 μmol of sulfoxide was obtained. The optical purity of the obtained sulfoxide was measured by 1 H-NMR using an optically active shift reagent. The optical purity was 46% ee and the absolute configuration was S-form.

実施例2 実施例1と同様な方法で、触媒の種類、原料、添加物
(酸化促進剤)の有無、反応温度、反応時間等を変えて
光学活性スルホキシドを製造した。そのさいの反応は次
式のように行われる。また、生成物スルホキシドの収率
(対触媒量=Turnover numberで表わす)、光学純度、
その絶対配置について第1表に示す。
Example 2 In the same manner as in Example 1, an optically active sulfoxide was produced by changing the type of catalyst, the raw material, the presence or absence of an additive (oxidation promoter), the reaction temperature, the reaction time and the like. The reaction at that time is carried out as follows. Further, the yield of the product sulfoxide (expressed in terms of the amount of catalyst to Turnover number), optical purity,
The absolute configuration is shown in Table 1.

鉄ポルフィリン錯体を触媒として用いない場合は、ス
ルフィドはほとんどヨードソベンゼンで酸化されない
が、鉄ポルフィリン錯体を触媒として用いると第1表に
示すようにスルフィドが酸化され光学純度の高い光学活
性スルホキシドを得ることができる。しかもスルホンは
殆んど生成しない。このさい酸化促進剤として1−メチ
ルイミダゾールを用いると光学純度をいちゞるしく高め
ることができる。
When iron porphyrin complex is not used as a catalyst, sulfide is hardly oxidized by iodosobenzene, but when iron porphyrin complex is used as a catalyst, sulfide is oxidized as shown in Table 1 to obtain optically active sulfoxide having high optical purity. be able to. Moreover, almost no sulfone is formed. When 1-methylimidazole is used as the oxidation accelerator, the optical purity can be significantly increased.

〔発明の効果〕 本発明におけるように、光学活性鉄ポルフィリン錯体
を触媒と用いるスルフィドの不斉酸化反応は、1分子の
光学活性触媒から50〜200分子の光学活性なスルホキシ
ドを合成することができる。また光学活性鉄ポルフィリ
ン錯体を繰り返し使用することができる。従って本発明
によると医薬、農薬あるいは機能性有機物質等有用物質
の中間体として重要な光学活性スルホキシドの製造を効
率よく経済的に行うことができる。
[Effect of the Invention] As in the present invention, the asymmetric oxidation of sulfide using an optically active iron porphyrin complex as a catalyst can synthesize 50 to 200 optically active sulfoxides from one optically active catalyst. . Further, an optically active iron porphyrin complex can be repeatedly used. Therefore, according to the present invention, it is possible to efficiently and economically produce an optically active sulfoxide which is important as an intermediate of a useful substance such as a medicine, a pesticide or a functional organic substance.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式(I) Ar−S−R′ (I) (式中Arは置換基を有し又は有さない芳香族基を、又
R′は炭素数1〜20のアルキル基を表わす) で表わされる芳香族スルフィド類を 下記一般式(II) あるいは一般式(III) (式中Rは ((S)−体)又はその対象体((R)−体)、またXは
対アニオンを表わす) で表される光学活性鉄ポルフィリン錯体を触媒として酸
化剤を用いて酸化することを特徴とする一般式(IV) (式中、*は光学活性原子を表わす) で表される光学活性スルホキシドの製造方法
(1) Ar--S--R '(I) wherein Ar is an aromatic group with or without a substituent, and R' is an alkyl group having 1 to 20 carbon atoms. Represents an aromatic sulfide represented by the following general formula (II) Or the general formula (III) (Where R is (( S ) -isomer) or its object (( R ) -isomer), and X represents a counter anion). Oxidation using an oxidizing agent with an optically active iron porphyrin complex represented by the following formula: General formula (IV) (Wherein * represents an optically active atom) A method for producing an optically active sulfoxide represented by the formula:
【請求項2】酸化剤としてヨードソベンゼンを用いて酸
化することを特徴とする請求項(1)に記載の光学活性
スルホキシドの製造方法
2. The method for producing an optically active sulfoxide according to claim 1, wherein the oxidation is carried out using iodosobenzene as an oxidizing agent.
【請求項3】一般式(I)で表される芳香族スルフィド
類を一般式(II)あるいは一般式(III)で表される光
学活性鉄ポルフィリン錯体を触媒として酸化剤及び酸化
促進剤を用いて酸化することを特徴とする一般式(IV)
に記載の光学活性スルホキシドの製造法
3. An aromatic sulfide represented by the general formula (I) is prepared by using an oxidizing agent and an oxidation promoter by using an optically active iron porphyrin complex represented by the general formula (II) or (III) as a catalyst. General formula (IV) characterized by oxidation
PROCESS FOR PRODUCING OPTICALLY ACTIVE SULFOXIDE
【請求項4】酸化促進剤として1−置換イミダゾールを
用いる請求項(3)に記載の光学活性スルホキシドの製
造方法
4. The process for producing an optically active sulfoxide according to claim 3, wherein 1-substituted imidazole is used as an oxidation promoter.
JP2294535A 1990-10-31 1990-10-31 Method for producing optically active sulfoxides Expired - Lifetime JP2731977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2294535A JP2731977B2 (en) 1990-10-31 1990-10-31 Method for producing optically active sulfoxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2294535A JP2731977B2 (en) 1990-10-31 1990-10-31 Method for producing optically active sulfoxides

Publications (2)

Publication Number Publication Date
JPH04169567A JPH04169567A (en) 1992-06-17
JP2731977B2 true JP2731977B2 (en) 1998-03-25

Family

ID=17809041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2294535A Expired - Lifetime JP2731977B2 (en) 1990-10-31 1990-10-31 Method for producing optically active sulfoxides

Country Status (1)

Country Link
JP (1) JP2731977B2 (en)

Also Published As

Publication number Publication date
JPH04169567A (en) 1992-06-17

Similar Documents

Publication Publication Date Title
Roberts et al. Synthesis, characterization, and oxygen atom transfer reactions of {HB (Me2C3N2H) 3} MoO {S2P (OR) 2} and {HB (Me2C3N2H) 3} MoO2 {. eta. 1-S2P (OEt) 2}
Tucci et al. Nickel-mediated formation of thio esters from bound methyl, thiols, and carbon monoxide: A possible reaction pathway of acetyl-coenzyme A synthase activity in nickel-containing carbon monoxide dehydrogenases
Flood et al. Preparation, resolution, and sulfur dioxide insertion reactions of chiral iron alkyl complexes
Shaw III et al. Gold (III) oxidation of disulfides in aqueous solution
Stavropoulos et al. Structural and reaction chemistry of nickel complexes in relation to carbon monoxide dehydrogenase: A reaction system simulating acetyl-coenzyme A synthase activity
Marchetti et al. Synthesis and characterization of novel oxovanadium (IV) complexes with 4-acyl-5-pyrazolone donor ligands: Evaluation of their catalytic activity for the oxidation of styrene derivatives
Jenter et al. Aminotroponiminate zinc complexes as catalysts for the intramolecular hydroamination
Naruta et al. Enantioselective oxidation of sulfides catalyzed by iron complexes of chiral “twin coronet” porphyrins
Menati et al. A new oxovanadium (IV) complex containing an O, N-bidentate Schiff base ligand: Synthesis at ambient temperature, characterization, crystal structure and catalytic performance in selective oxidation of sulfides to sulfones using H2O2 under solvent-free conditions
Tamaru et al. Stereoselective generation of Z-enolates of thioamides: its application to diastereoselective aldol condensations and thio-Claisen rearrangements
Kawashima et al. Synthesis and x-ray crystallographic analysis of pentacoordinate 1, 2-oxasiletanides, intermediates of the Peterson reaction
Singh et al. Silver (I) catalyzed oxidation of thiocarboxylic acids into the corresponding disulfides and synthesis of some new Ag (I) complexes of thiophene-2-thiocarboxylate
JP2731977B2 (en) Method for producing optically active sulfoxides
Peschel et al. An Update on WII and MoII Carbonyl Precursors and Their Application in the Synthesis of Potentially Bio‐Inspired Thiophenolate‐Oxazoline Complexes
JP2004189695A (en) Method for manufacturing chromanones or thiochromanones
Keiter et al. Controlling the number of metal sites to which Ph2PCH2CH2PPhCH2CH2PPh2 coordinates in tungsten carbonyls
Blagg et al. Isomerism in rhodium (I) N, S-donor heteroscorpionates: ring substituent and ancillary ligand effects
Han et al. Convenient synthetic route to [Fe2S2 (SR) 4] 2-via reaction of [Fe (SR) 4]-with sulfur
Backes-Dahmann et al. Preparation, characterization, and electrochemistry of novel, air-stable nitrosyl complexes of molybdenum and tungsten of the type {M-NO} 6, 5, 4 containing the ligand N, N', N"-trimethyl-1, 4, 7-triazacyclononane
Seino et al. Preparation of mononuclear and dinuclear Rh hydrotris (pyrazolyl) borato complexes containing arenethiolato ligands and conversion of the mononuclear complexes into dinuclear Rh–Rh and Rh–Ir complexes with bridging arenethiolato ligands
JPH05286894A (en) New production of carboxylic acid ester or carboxylic acid thioster
Sato et al. Synthesis and reactivities of the indenyl-ruthenium cluster [(η5-C9H7) Ru (μ-SEt)] 3: indenyl effect in the trinuclear ruthenium cluster
JP2865993B2 (en) Aromatic β-diimine compound
Adams et al. Reactions of EtO2CC. tplbond. CCO2Et with Dimanganese Carbonyls. Alkyne Insertion into the Mn-Mn Bond, Coupling to CO, and a New Route to Carboxylate-Substituted Pyrans
US11891409B2 (en) Trifluoromethyl alkenylphosphonate and preparation method therefor