JP2730870B2 - Sound conversion efficiency measuring method and measuring device - Google Patents

Sound conversion efficiency measuring method and measuring device

Info

Publication number
JP2730870B2
JP2730870B2 JP6321903A JP32190394A JP2730870B2 JP 2730870 B2 JP2730870 B2 JP 2730870B2 JP 6321903 A JP6321903 A JP 6321903A JP 32190394 A JP32190394 A JP 32190394A JP 2730870 B2 JP2730870 B2 JP 2730870B2
Authority
JP
Japan
Prior art keywords
sound
conversion efficiency
vibration
underwater
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6321903A
Other languages
Japanese (ja)
Other versions
JPH08178740A (en
Inventor
貴昭 武捨
克己 猿渡
睦男 高嶋
勲 安部
昭 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JEI AARU SHII TOTSUKI KK
ONO SOTSUKI KK
Original Assignee
JEI AARU SHII TOTSUKI KK
ONO SOTSUKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JEI AARU SHII TOTSUKI KK, ONO SOTSUKI KK filed Critical JEI AARU SHII TOTSUKI KK
Priority to JP6321903A priority Critical patent/JP2730870B2/en
Publication of JPH08178740A publication Critical patent/JPH08178740A/en
Application granted granted Critical
Publication of JP2730870B2 publication Critical patent/JP2730870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水中音波受信器が搭載
され、少なくとも一部が水中に配置された被測定体、例
えば水中測深機を搭載した海洋観測船や超音波魚群探知
器を搭載した漁船の船体への加振が、搭載された水中測
深機、超音波魚群探知器等の水中音波受信器で受信され
る信号にどのように影響等を及ぼすかを表わす、加振力
の受信信号への変換効率を、被測定体の各点毎に測定す
る音響変換効率測定方法およびその方法の実施に用いる
音響変換効率測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater sound wave receiver, and at least a part of the object to be measured which is disposed underwater, for example, a marine observation boat or an ultrasonic fish finder equipped with an underwater sounding device. Receiving the excitation force, which indicates how the vibration applied to the hull of the fishing boat affected the signal received by the underwater sound wave receiver such as the mounted underwater sounder and ultrasonic fish finder. The present invention relates to an acoustic conversion efficiency measuring method for measuring the conversion efficiency into a signal for each point on a measured object and an acoustic conversion efficiency measuring device used for implementing the method.

【0002】[0002]

【従来の技術】図9は、船体の外観図、図10は船体を
伝搬する振動や水中を伝播する音の流れを示した模式図
である。船体1の前端下部には、水中音波送受信器2が
備えられており、この水中音波送受信器2から船体1の
下方もしくは前方に向けて水中に音波が送信され、海底
又は魚群等で反射して戻ってきた音波が再度この水中音
波送受信器2で受信され、これが画面上に表示されて海
底又は魚群等の位置が確認される。尚、図9における、
船体の外壁に描かれた等高線模様については後述する。
2. Description of the Related Art FIG. 9 is an external view of a hull, and FIG. 10 is a schematic diagram showing a flow of vibrations propagating in a hull and sounds propagating in water. An underwater acoustic wave transmitter / receiver 2 is provided at the lower front end of the hull 1, and sound waves are transmitted from the underwater acoustic wave transmitter / receiver 2 to the water below or forward of the hull 1, and reflected by the sea floor or a school of fish. The returned sound wave is again received by the underwater sound wave transmitter / receiver 2, and this is displayed on the screen to confirm the position of the sea floor or the school of fish. Incidentally, in FIG.
The contour pattern drawn on the outer wall of the hull will be described later.

【0003】ところが、この船体1に搭載されたエンジ
ンやモータ等(これらを代表して図10にモータ3が示
されている)が稼動することにより船体に振動が発生
し、その振動は、図10に示すように、船体自身を経由
(固体伝搬)したり、船体の外壁を通じて水中に音波と
して放射されその音波が水中を経由(水中伝搬)したり
して水中音波送受信器2に受信され、それがノイズとな
ってこの水中音波送受信器2の探知性能を劣化させる恐
れがある。その影響は、船体自身を経由してきた振動よ
りも水中を経由してきた音波の方がかなり大きい。
However, when an engine, a motor, etc. mounted on the hull 1 (representatively, the motor 3 is shown in FIG. 10) are operated, the hull vibrates. As shown in 10, the underwater sound wave transceiver 2 receives the sound wave via the hull itself (solid propagation), or is radiated as sound waves into the water through the outer wall of the hull, and the sound waves pass through the water (water propagation). This may cause noise and deteriorate the detection performance of the underwater acoustic wave transceiver 2. The effect is much greater for sound waves traveling underwater than for vibrations traveling through the hull itself.

【0004】[0004]

【発明が解決しようとする課題】船体に搭載された水中
音波受信器のS/Nを向上させるためには船体の振動を
防止する施策が望まれるが、現在では、船体のどの部分
に防振対策を施すと水中音波送受信器のノイズが軽減で
きるか必ずしも明らかではなく、やみくもに防振対策を
施すのではそのための費用が莫大なものとなってしまう
という問題がある。
In order to improve the S / N ratio of the underwater acoustic wave receiver mounted on the hull, it is desired to take measures to prevent vibration of the hull. It is not always clear whether taking measures can reduce the noise of the underwater acoustic wave transmitter / receiver, and there is a problem in that blindly taking measures against vibrations would require enormous costs.

【0005】ノイズの大きな原因となる水中伝搬を引き
起こすノイズ音源を探査するには、船体の各点を加振し
たときに、その加振力が水中音波送受信器にどの程度の
ノイズとしてあらわれるかを表わす、加振力の、ノイズ
への変換効率ηt を船体の各点について測定し、例えば
図9に示すように変換効率ηt の等高線分布を求めるこ
とにより、変換効率ηt の大きい部分を見い出すことが
有効である。このようにして変換効率ηt の大きい部分
を見つけ、その部分に防振対策を施すことにより、水中
音波送受信器のノイズを効果的に低減することが可能と
なる。
In order to search for a noise source that causes underwater propagation which is a major cause of noise, when each point of the hull is vibrated, it is necessary to determine how much noise the vibrating force appears in the underwater acoustic wave transceiver. represents, the excitation force, the conversion efficiency eta t to noise was measured for each point of the hull, for example, by obtaining a contour distribution of the conversion efficiency eta t as shown in FIG. 9, a large part of the conversion efficiency eta t It is effective to find out. Thus we find a large part of the conversion efficiency eta t, by applying the anti-vibration that portion, it is possible to effectively reduce the noise of underwater sound transceivers.

【0006】この目的から、従来、船体の各点を加振し
その加振により生じる振動の測定等が行なわれてきた
が、水中伝搬に起因するノイズと固体伝播に起因するノ
イズとを分離することができず、ノイズの発生原因や上
記変換効率ηt が大きい部分を特定することが困難であ
った。本発明は、上記事情に鑑み、船体等の被測定体の
各点の加振力が水中音波に変換されて水中を伝搬し、さ
らに水中音波受信器のノイズに変換されるときの音響音
波効率ηt を、固体伝搬とは分離して高精度に求めるこ
とのできる音響変換効率測定法、およびその測定法の実
施に好適な測定装置を提供することを目的とする。
Conventionally, for this purpose, each point of the hull has been vibrated and vibrations caused by the vibrations have been measured. However, noise caused by underwater propagation and noise caused by solid propagation are separated. it is not possible, it is difficult to identify the cause and part the conversion efficiency eta t large noise. In view of the above circumstances, the present invention provides an acoustic sound wave efficiency when an exciting force at each point of a measured object such as a hull is converted into underwater sound waves, propagates underwater, and further converted into noise of a underwater sound wave receiver. It is an object of the present invention to provide an acoustic conversion efficiency measuring method capable of determining η t with high accuracy separately from solid-state propagation, and a measuring apparatus suitable for implementing the measuring method.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明の音響変換効率測定法は、水中音波受信器が搭載さ
れ、少なくとも一部が水中に配置された被測定体の各点
への加振力の、上記水中音波受信器で受信される信号へ
の変換効率を、上記被測定体の各点毎に測定する音響変
換効率測定法であって、 水中に音源を配置して、その音源から放射された音の音
圧、その音に起因する被測定体の所定点の振動、および
その音に起因する上記信号の信号レベルを測定し、それ
ら音圧、振動および信号レベルに基づいて上記所定点の
上記変換効率を求めることを特徴とするものである。
According to the sound conversion efficiency measuring method of the present invention, which achieves the above object, an underwater acoustic wave receiver is mounted, and at least a part thereof is added to each point of an object to be measured which is arranged in water. A sound conversion efficiency measuring method for measuring a conversion efficiency of a vibration force into a signal received by the underwater acoustic wave receiver for each point of the measured object, wherein a sound source is arranged in water and the sound source is The sound pressure of the sound radiated from, the vibration of a predetermined point of the measured object caused by the sound, and the signal level of the signal caused by the sound are measured, and based on the sound pressure, the vibration, and the signal level, The conversion efficiency of a predetermined point is obtained.

【0008】ここで、上記本発明の音響変換効率測定法
において、上記音圧を測定するための音センサと、上記
振動を測定するための振動センサを、上記音源から互い
に略等距離に配置して、それぞれ、音圧と振動を測定す
ることが好ましい。また、上記本発明の音響変換効率測
定法では、上記音圧をp′、上記振動の加速度をα、上
記信号レベルをv、上記変換効率をηt としたとき、変
換効率ηtは、式 ηt =C・<α2 >・<v2 >/<p′22 …(1) 但し、Cは定数、<…>は…の平均的な値を表わす に従って求めることができる。
In the sound conversion efficiency measuring method of the present invention, a sound sensor for measuring the sound pressure and a vibration sensor for measuring the vibration are arranged at substantially the same distance from the sound source. It is preferable to measure sound pressure and vibration, respectively. Further, the acoustic conversion efficiency measurement of the present invention, the sound pressure p ', the acceleration of the vibration alpha, when the signal level v, the conversion efficiency eta t, conversion efficiency eta t has the formula η t = C · <α 2 > · <v 2 > / <p ′ 2 > 2 (1) where C is a constant and <…> represents an average value of.

【0009】また本発明の音響変換効率測定装置は、水
中音波受信器が搭載され、少なくとも一部が水中に配置
された被測定体の各点への加振力の、水中音波受信器で
受信される信号への変換効率を、被測定体の各点毎に測
定する音響変換効率測定装置であって、 (1) 水中に音を放射する音源 (2)被測定体の各点の振動を検出する振動センサ (3)音の水中における音圧を検出する音センサ (4)振動センサの出力、音センサの出力、および水中
音波受信器の出力に基づいて上記変換効率を求める変換
効率演算部 を備えたことを特徴とするものである。
The acoustic conversion efficiency measuring apparatus according to the present invention is provided with an underwater acoustic wave receiver, and receives an exciting force applied to each point of an object to be measured which is at least partially disposed underwater by the underwater acoustic wave receiver. A sound conversion efficiency measuring device for measuring the conversion efficiency to a signal to be measured for each point of the measured object, comprising: (1) a sound source that radiates sound into water; and (2) a vibration of each point of the measured object. Vibration sensor to detect (3) Sound sensor to detect sound pressure of sound in water (4) Conversion efficiency calculation unit for obtaining the above conversion efficiency based on output of vibration sensor, output of sound sensor, and output of underwater sound wave receiver It is characterized by having.

【0010】上記本発明の音響変換効率測定装置におい
て、上記被測定体の各点に当接される当接面を有し、そ
の当接面を被測定体の所定点に当接させたときにその所
定点と音源との間の距離および音源と音センサとの間の
距離が互いに略等距離となるように音源および音センサ
が固定される測定ヘッドを備えることが好ましい。
In the above-described sound conversion efficiency measuring apparatus of the present invention, the apparatus has a contact surface which is in contact with each point of the object to be measured, and the contact surface is brought into contact with a predetermined point of the object to be measured. It is preferable to provide a measuring head to which the sound source and the sound sensor are fixed so that the distance between the predetermined point and the sound source and the distance between the sound source and the sound sensor are substantially equal to each other.

【0011】[0011]

【作用】ここでは、一例として、図9に示すような船体
1を本発明にいう被測定体、船体1に装備された水中音
波送受信器2を例として、本発明の測定原理について説
明する。図1は、船体の所定点の加振と水中音波受信器
のノイズとの関係を表わした図、図2は、その水中伝播
系をモデル化して示した図である。
Here, as an example, the measurement principle of the present invention will be described by taking a hull 1 as shown in FIG. 9 as an example of an object to be measured according to the present invention and an underwater acoustic wave transceiver 2 mounted on the hull 1 as an example. FIG. 1 is a diagram showing a relationship between excitation of a predetermined point on a hull and noise of an underwater acoustic wave receiver, and FIG. 2 is a diagram showing a model of the underwater propagation system.

【0012】船体1のある点を加振力<F2 >(<…>
は…の平均を表わす)で加振し、この加振により水中に
音圧<P2 >の音が放射され、その音が水中を伝搬して
水中音波送受信器2に入り込み、水中音波送受信器2で
音圧信号(ノイズ)<v2 >が受信されるものとする。
このとき、図2に示すように、加振力<F2 >の音圧<
2 >への変換効率をηrad 、音圧<P2 >の信号<v
2 >への変換効率をη s としたときに、加振力<F2
の、信号<v2 >へのトータルの変換効率ηtは、 ηt =ηrad ・ηs …(2) で表わされる。
[0012] A certain point of the hull 1 is determined by an excitation force <FTwo > (<…>
Represents the average of ...)
Sound pressure <PTwo > The sound is emitted and the sound propagates through the water
Enters the underwater acoustic wave transmitter / receiver 2 and
Sound pressure signal (noise) <vTwo > Is received.
At this time, as shown in FIG.Two > Sound pressure <
PTwo > Conversion efficiency to ηrad , Sound pressure <PTwo > Signal <v
Two > Conversion efficiency to η s And the excitation force <FTwo >
Signal <vTwo > Total conversion efficiency ηtIs ηt = Ηrad ・ Ηs .. (2)

【0013】そこで原理的には船体の各点を所定の加振
力<F2 >で加振し、そのときの水中音波送受信器2の
信号<v2 >を観測すればトータルの変換効率ηt が求
められそうではあるが、この原理を用いると船体の各点
をかなり強い加振力で加振する必要があり、そうすると
水中に音波が放射されるとともにかなり大きな固体振動
も同時に生じてしまい、その固体振動が船体を伝搬して
水中音波送受信器2に入り込むこととなる。これが従
来、水中伝播と固体伝搬とが分離できなかった所以であ
る。
Therefore, in principle, each point of the hull is vibrated with a predetermined vibrating force <F 2 >, and if the signal <v 2 > of the underwater acoustic wave transceiver 2 at that time is observed, the total conversion efficiency η Although t is likely to be required, using this principle it is necessary to excite each point of the hull with a fairly strong excitation force, which will radiate sound waves into the water and simultaneously generate considerable solid vibration. The solid vibration propagates through the hull and enters the underwater acoustic wave transceiver 2. This is why underwater propagation and solid propagation could not be separated conventionally.

【0014】引き続き、船体を直接加振する加振法の原
理についてさらに詳細に説明し、その後本発明における
測定原理について説明する。図3は、従来の加振法によ
る音響変換効率の測定原理説明図である。弾性材料10
を例えばハンマー等で叩いてその弾性材料10に力Fを
加え、その力Fをハンマーに取付けたロードセルや弾性
材料10に取付けた加速度センサ(図示せず)で検出す
ると共に、その弾性材料10を叩いたことによりその弾
性材料10から放射された音の音圧pをマイクロホンで
検出する。
Subsequently, the principle of the vibration method for directly vibrating the hull will be described in more detail, and then the measurement principle in the present invention will be described. FIG. 3 is a diagram illustrating the principle of measuring the sound conversion efficiency by the conventional vibration method. Elastic material 10
Is applied with a hammer or the like to apply a force F to the elastic material 10. The force F is detected by a load cell attached to the hammer or an acceleration sensor (not shown) attached to the elastic material 10, and the elastic material 10 is detected. The sound pressure p of the sound radiated from the elastic material 10 by being hit is detected by the microphone.

【0015】ところで、音響変換効率ηrad は、Wac
音響パワー、Wvibrを加振力のパワーとしたとき、 ηrad =Wac/Wvibr …(3) で定義される。ここで音響パワーWacは、音圧pを検出
するマイクロフォンまでの距離をrとすると、
The acoustic conversion efficiency η rad is defined as follows : η rad = W ac / W vibr (3) where W ac is acoustic power and W vibr is excitation power. Here, assuming that the sound power W ac is r, the distance to the microphone for detecting the sound pressure p is r.

【0016】[0016]

【数1】 (Equation 1)

【0017】ただしρo は音響媒体の密度 Co は音響媒体中を伝搬する縦波の速度 で表わされる。一方、加振力のパワーWvibrは、<V2
>を材料の表面波速度の2乗平均値、Ziを船体の機械
インピーダンスとすると、
Where ρ o is the density of the acoustic medium and C o is the velocity of a longitudinal wave propagating in the acoustic medium. On the other hand, the power W vibr of the excitation force is <V 2
> Is the mean square value of the surface wave velocity of the material, and Zi is the mechanical impedance of the hull.

【0018】[0018]

【数2】 (Equation 2)

【0019】であるから(D.Ross,Mechan
ics of UnderwaterNoise,Pe
rgamon Press,(1976),135−1
40.参照)、これらを式(3)に代入すると、
(D. Ross, Mechan)
ics of UnderwaterNoise, Pe
rgamon Press, (1976), 135-1
40. Substituting these into equation (3) gives

【0020】[0020]

【数3】 (Equation 3)

【0021】が導かれる。従って上述のようにして検出
した力Fと音圧pを(6)式に代入することにより、音
響変換効率ηrad が求められる。図4は、音響可逆則の
説明図であり、材料10の近傍の音源20から放射され
た音により材料10の表面に振動が発生している状態を
示している。図において、Uは音源の強さ、Vは入射音
により材料10に生ずる表面波速度である。
Is derived. Accordingly, the sound conversion efficiency η rad is obtained by substituting the force F and the sound pressure p detected as described above into the equation (6). FIG. 4 is an explanatory diagram of the law of acoustic reversibility, and shows a state where vibration is generated on the surface of the material 10 due to the sound radiated from the sound source 20 near the material 10. In the figure, U is the intensity of the sound source, and V is the surface wave velocity generated on the material 10 by the incident sound.

【0022】このUとVは、図3に示すFとPとの間
に、音響可逆則に基づく以下に示す関係がある(例え
ば、「T.ten Wolde,Reciprocit
y experiments on the tran
smission of sound in ship
s,Ph.D.thesis.Tech.Un.Del
ft.Pubi.Hooglond & Waltma
n,Delft,(1973)」、「H.F.Stee
nhoek,T.ten Wolde,“Therec
iprocal measurement of me
chanical−acoustical trans
fer functions”,Acoustica,
Vol.23,(1970),301−305.」、
「T.tenWolde,Onthe validit
y and application of reci
procity in acoustical,mec
hano−acoustical and other
dynamical systems,Acoust
ical,Vol.28,(1973),23−3
2.」、「T.ten Wolde,J.W.Verh
eij,H.F.Steenhoek,Recipro
city method for the measu
rement of mechano−acousti
cal transfer functions,Jo
urn.Sound & Vibr.,Vol.42,
(1975),49−55.」参照)。
These U and V have the following relationship based on the law of acoustic reversibility between F and P shown in FIG. 3 (for example, “T. ten Wolde, Reciprocit”).
y experiments on the tran
mission of sound in shop
s, Ph. D. thesis. Tech. Un. Del
ft. Pubi. Hooglond & Waltma
n, Delft, (1973) "," HF Stee
nhoek, T .; ten Wolde, "Therec
iprocal measurement of me
mechanical-acoustic trans
fer functions ", Acoustica,
Vol. 23, (1970), 301-305. "
"T.tenWolde, Onthe validit
y and application of reci
proccity in acoustic, mec
hano-acoustic and other
dynamic systems, Acoustic
ical, Vol. 28, (1973), 23-3
2. "," T. ten Wolde, JW Verh
eij, H .; F. Steenhoek, Recipro
city method for the measure
rement of mechano-acousti
cal transfer functions, Jo
urn. Sound & Vibr. , Vol. 42,
(1975), 49-55. "reference).

【0023】 (p/F)U=0 =(V/U)F=0 …(7) ここでU=0は周囲に音源がないことを表わし、F=0
はその材料10への加振力がないことを表わしている。
ここで、表面波加速度をα、そのときの角周波数をω、
材料10の表面波速度VをV=V0 ・exp(−jω
t)とすると、α=−jωVであるから、式(7)は、 (p/F)U=0 =−(α/jω・U)F=0 …(8) となる。この関係から、図4の場合における音響放射効
率ηacが以下のようにして求められる。
(P / F) U = 0 = (V / U) F = 0 (7) where U = 0 indicates that there is no sound source in the vicinity, and F = 0
Indicates that there is no excitation force on the material 10.
Here, the surface wave acceleration is α, the angular frequency at that time is ω,
The surface wave velocity V of the material 10 is calculated as V = V 0 · exp (−jω
Assuming that t), α = −jωV, and therefore, Expression (7) becomes (p / F) U = 0 = − (α / jω · U) F = 0 (8) From this relationship, the acoustic radiation efficiency η ac in the case of FIG. 4 is obtained as follows.

【0024】音響の可逆則の式(8)、および音源20
から距離r′だけ離れた位置で測定した音圧p′と音源
の強さUとの関係式(R.D.Ford,Introd
uction to Acoustics,Elsev
ier Publ.Co.Ltd.,(1970).参
照) jωU=(4πr′/ρo )p′ …(9) より、音響変換効率ηrad は、
Equation (8) of the acoustic reversibility law and the sound source 20
(RD Ford, Introd) between the sound pressure p 'measured at a position r' away from the sound source and the sound source intensity U
action to Acoustics, Elsev
ier Publ. Co. Ltd. , (1970). Reference) jωU = (4πr '/ ρ o) p' ... (9), acoustic conversion efficiency η rad is,

【0025】[0025]

【数4】 (Equation 4)

【0026】として表わすことができる。このとき、式
(10)を簡略化するためr=r′とすると、音響変換
効率ηrad は、
Can be expressed as At this time, assuming that r = r ′ in order to simplify Expression (10), the acoustic conversion efficiency η rad becomes

【0027】[0027]

【数5】 (Equation 5)

【0028】となり、音圧pと材料の表面で計測した表
面加速度αから音響変換効率ηrad を計算することがで
きる。図5は本発明の測定原理図である。水中に音源を
配置し、その水中音源の水中音圧<p′2 >を測定す
る。また、それとともに船体の振動<α2 >を測定し、
上述した音響可逆則に基づいて船体の音響変換効率η
rad を求める。また、水中音波受信器の信号レベル<v
2 >も測定しておき、水中音圧<p′2 >に対する信号
レベル<v2 >の音響変換効率ηs (図2参照)も求め
ることができ、これにより、トータルの音響変換効率η
t が求められる。具体的には、(2)式に(11)式を
代入し、
The sound pressure p and the table measured on the surface of the material
Sound conversion efficiency η from surface acceleration αrad Can be calculated by
Wear. FIG. 5 is a diagram illustrating the principle of measurement according to the present invention. Sound source underwater
Underwater sound pressure of the underwater sound source <p 'Two > Measure
You. Also, the vibration of the hull <αTwo >
The acoustic conversion efficiency η of the hull based on the acoustic reversibility law described above
rad Ask for. Also, the signal level of the underwater acoustic wave receiver <v
Two > Underwater sound pressure <p 'Two Signal for>
Level <vTwo > Sound conversion efficiency ηs (See Figure 2)
And thus the total sound conversion efficiency η
t Is required. Specifically, Equation (11) is replaced with Equation (2).
Substitute,

【0029】[0029]

【数6】 (Equation 6)

【0030】となる。この(12)式に、測定された水
中音圧<p′2 >、振動<α2 >、信号レベル<v2
を代入することによりトータルとしての音響変換効率η
t を求めることができる。このような測定を船体の各点
について行なうことにより、図9に示すような音響変換
効率ηt の等高線を描くことができる。音響変換効率η
t の大きい部分に防振対策を施すことにより、水中音波
受信器のノイズを効果的に低減することができる。
## EQU1 ## In this equation (12), the measured water
Medium sound pressure <p 'Two >, Vibration <αTwo >, Signal level <vTwo >
To the total sound conversion efficiency η
t Can be requested. Such measurements are taken at each point on the hull.
, The sound conversion as shown in FIG.
Efficiency ηt Contour lines can be drawn. Sound conversion efficiency η
t By taking measures against vibrations in large areas of
The noise of the receiver can be effectively reduced.

【0031】[0031]

【実施例】以下本発明の実施例について説明する。図6
は本発明の音響変換効率測定装置の一実施例の構成図、
図7は、図6に示す音響変換効率測定装置を用いて船体
の音響変換効率を測定している様子を示す模式図であ
る。
Embodiments of the present invention will be described below. FIG.
Is a configuration diagram of an embodiment of a sound conversion efficiency measuring device of the present invention,
FIG. 7 is a schematic diagram showing a state where the sound conversion efficiency of the hull is measured using the sound conversion efficiency measuring device shown in FIG.

【0032】図6に示す音響変換効率測定装置30に
は、水中音源31が備えられており、この水中音源31
は発振器32により駆動され水中に音波を放射する。ま
た、この音響変換効率測定装置30には、水中音源31
から放射された水中音波の音圧p′をピックアップする
水中マイクロホン33、および水中音源31から放射さ
れた水中音波による船体振動を検出する複数の振動ピッ
クアップ34,…,34が備えられている。これら複数
の振動ピックアップ34,…,34は、図7に示すよう
に、船体の各測定点の振動をピックアップするようにそ
れらの各測定点に取り付けられる。水中マイク33でピ
ックアップされた水中音波の音圧p′は直接に計測器3
5に入力され、また振動ピックアップ34,…,34で
検出された船体の振動αは切換え器36を経由して計測
器35に入力される。また、水中音波送受信器2(図7
参照)の受信信号vも計測器35に入力される。水中音
源31および水中マイクロホン33を、順次各測定点近
傍に配置し、これとともにその測定点の振動ピックアッ
プ34の検出信号が測定器35に入力されるように切換
え器36を順次切り換えながら各測定点について測定を
行なう。計測器35ではその各測定点について、前述し
た(12)式に基づいて音響変換効率ηt が求められ
る。
The underwater sound source 31 is provided in the sound conversion efficiency measuring device 30 shown in FIG.
Is driven by an oscillator 32 to emit sound waves into water. The acoustic conversion efficiency measuring device 30 includes an underwater sound source 31.
An underwater microphone 33 that picks up the sound pressure p ′ of the underwater sound wave radiated from the underwater sound source, and a plurality of vibration pickups 34,. As shown in FIG. 7, the plurality of vibration pickups 34,..., 34 are attached to the respective measurement points of the hull so as to pick up vibration at the measurement points. The sound pressure p ′ of the underwater sound wave picked up by the underwater microphone 33 is directly measured by the measuring device 3.
The vibration α of the hull detected by the vibration pickups 34,..., 34 is input to the measuring instrument 35 via the switch 36. In addition, the underwater acoustic wave transceiver 2 (FIG. 7)
2) is also input to the measuring device 35. The underwater sound source 31 and the underwater microphone 33 are sequentially arranged in the vicinity of each measurement point. At the same time, the switching unit 36 is sequentially switched so that the detection signal of the vibration pickup 34 at the measurement point is input to the measurement unit 35. Is measured. For instrument 35 in its respective measuring point, an acoustic conversion efficiency eta t is determined based on the aforementioned equation (12).

【0033】測定器35で求められた各測定点の音響変
換効率ηt はコンピュータ37に入力され、コンピュー
タ37では、音響変換効率ηt の等高線が求められ、そ
の等高線がCRTディスプレイ38に表示される。これ
により、船体の音響変換効率ηt の分布を知ることがで
きる。図8は、水中音源と水中マイクロホンが固定され
た測定ヘッドを示した図である。
The acoustic conversion efficiency η t of each measurement point obtained by the measuring device 35 is input to the computer 37, and the computer 37 determines the contour line of the acoustic conversion efficiency η t , and the contour line is displayed on the CRT display 38. You. Thus, it is possible to know the distribution of the acoustic conversion efficiency eta t hull. FIG. 8 is a diagram showing a measuring head to which an underwater sound source and an underwater microphone are fixed.

【0034】この測定ヘッド40には水中音源31と水
中マイクロホン33が固定されており、この測定ヘッド
40はロープ41で吊り下げられており、甲板上からそ
のロープ41を操作することにより測定ヘッド40が各
測定点に移動される。またこの測定ヘッド40は、測定
時には必ず一定の当接面42が船体に当接され、その状
態で、水中音源31と船体の測定点との間の距離と、水
中音源31と水中マイクロホン33との間の距離が等し
くなるように構成されている。これにより、(11)式
を求めるにあたり仮定されたr=r′が保証され、(1
0)式に代わり(11)式を用いて音響変換効率ηrad
を求めることができる。ただし水中音源31と船体の測
定点との間の距離と、水中音源31と水中マイクロホン
33との間の距離が異なっていてもそれらの距離を測定
しておくことにより、(10)式に基づいて音響変換効
率を求めることもできる。
An underwater sound source 31 and an underwater microphone 33 are fixed to the measuring head 40. The measuring head 40 is suspended by a rope 41, and the measuring head 40 is operated by operating the rope 41 on the deck. Is moved to each measurement point. In the measurement head 40, a constant contact surface 42 is always in contact with the hull at the time of measurement, and in this state, the distance between the underwater sound source 31 and the measurement point of the hull, the underwater sound source 31 and the underwater microphone 33, Are configured so that the distance between them is equal. As a result, r = r ′, which was assumed in obtaining the equation (11), is guaranteed, and (1)
Using the equation (11) instead of the equation (0), the sound conversion efficiency η rad
Can be requested. However, even if the distance between the underwater sound source 31 and the measurement point of the hull and the distance between the underwater sound source 31 and the underwater microphone 33 are different, the distances are measured in advance based on the equation (10). The sound conversion efficiency can also be obtained by using

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
被測定体の各点の加振力に対する、水中音波受信器で受
信される信号への水中伝搬の影響のみの変換効率ηt
求めることができ、これにより水中音波受信器のノイズ
低減のための効果的な防振対策を施すことができる。
As described above, according to the present invention,
With respect to the excitation force of each point of the measured object, the conversion efficiency η t of only the influence of underwater propagation on the signal received by the underwater acoustic wave receiver can be obtained, thereby reducing the noise of the underwater acoustic wave receiver. Effective anti-vibration measures can be taken.

【図面の簡単な説明】[Brief description of the drawings]

【図1】船体の所定点の加振と水中音波受信器のノイズ
との関係を表わした図である。
FIG. 1 is a diagram showing a relationship between excitation of a predetermined point of a hull and noise of an underwater acoustic wave receiver.

【図2】水中伝搬系をモデル化して示した図である。FIG. 2 is a diagram showing a model of an underwater propagation system.

【図3】従来の加振法による音響放射効率の測定原理説
明図である。
FIG. 3 is a diagram illustrating the principle of measuring acoustic radiation efficiency by a conventional vibration method.

【図4】音響可逆則の説明図である。FIG. 4 is an explanatory diagram of an acoustic reversibility law.

【図5】本発明の測定原理図である。FIG. 5 is a diagram illustrating a measurement principle of the present invention.

【図6】本発明の音響変換効率測定装置の一実施例の構
成図である。
FIG. 6 is a configuration diagram of one embodiment of a sound conversion efficiency measuring device of the present invention.

【図7】図6に示す音響変換効率測定装置を用いて船体
の音響変換効率を測定している様子を示す模式図であ
る。
FIG. 7 is a schematic diagram showing a state in which the acoustic conversion efficiency of the hull is measured using the acoustic conversion efficiency measuring device shown in FIG.

【図8】水中音源と水中マイクロホンが固定された測定
ヘッドを示した図である。
FIG. 8 is a diagram showing a measurement head to which an underwater sound source and an underwater microphone are fixed.

【図9】船体の外観図である。FIG. 9 is an external view of a hull.

【図10】船体を伝搬する振動や水中を伝搬する音の流
れを示した模式図である。
FIG. 10 is a schematic diagram showing a flow of vibration propagating in a hull and sound propagating in water.

【符号の説明】[Explanation of symbols]

1 船体 2 水中音波受信器 30 音響変換効率測定装置 31 水中音源 32 発振器 33 水中マイクロホン 34 振動ピックアップ 35 測定器 36 切換え器 37 コンピュータ 38 CRTディスプレイ 40 測定ヘッド DESCRIPTION OF SYMBOLS 1 Hull 2 Underwater sound wave receiver 30 Sound conversion efficiency measuring device 31 Underwater sound source 32 Oscillator 33 Underwater microphone 34 Vibration pickup 35 Measuring device 36 Switching device 37 Computer 38 CRT display 40 Measurement head

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高嶋 睦男 神奈川県横浜市港北区新吉田町781番地 ジェイ・アール・シー特機株式会社内 (72)発明者 安部 勲 香川県高松市屋島中町436 (72)発明者 篠原 昭 長野県長野市中御所4−9−18 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Mutsuo Takashima 781 Shin-Yoshida-cho, Kohoku-ku, Yokohama-shi, Kanagawa Prefecture Inside JR RC Special Machinery Co., Ltd. 72) Inventor Akira Shinohara 4-9-18 Nakagosho, Nagano City, Nagano Prefecture

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水中音波受信器が搭載され、少なくとも
一部が水中に配置された被測定体の各点への加振力の、
前記水中音波受信器で受信される信号への変換効率を、
前記被測定体の各点毎に測定する音響変換効率測定法で
あって、 水中に音源を配置して、該音源から放射された音の音
圧、該音に起因する被測定体の所定点の振動、および該
音に起因する前記信号の信号レベルを測定し、 それら音圧、振動および信号レベルに基づいて前記所定
点の前記変換効率を求めることを特徴とする音響変換効
率測定法。
An underwater acoustic wave receiver is mounted, and at least a part of the excitation force applied to each point of an object to be measured placed in water,
The conversion efficiency into a signal received by the underwater acoustic wave receiver,
A sound conversion efficiency measuring method for measuring each point of the measured object, wherein a sound source is disposed in water, a sound pressure of a sound radiated from the sound source, a predetermined point of the measured object caused by the sound. And measuring the signal level of the signal caused by the vibration and the sound, and obtaining the conversion efficiency of the predetermined point based on the sound pressure, the vibration and the signal level.
【請求項2】 前記音圧を測定するための音センサと、
前記振動を測定するための振動センサを、前記音源から
互いに略等距離に配置して、それぞれ、前記音圧と前記
振動を測定することを特徴とする請求項1記載の音響変
換効率測定法。
2. A sound sensor for measuring the sound pressure,
The method according to claim 1, wherein vibration sensors for measuring the vibration are arranged at substantially equal distances from the sound source, and the sound pressure and the vibration are measured, respectively.
【請求項3】 前記音圧をp′、前記振動の加速度を
α、前記信号レベルをv、前記変換効率をηt としたと
き、該変換効率ηt を、式 ηt =C・<α2 >・<v2 >/<p′22 但し、Cは定数、<…>は…の平均的な値を表わす に従って求めることを特徴とする請求項1記載の音響変
換効率測定法。
3. When the sound pressure is p ′, the acceleration of the vibration is α, the signal level is v, and the conversion efficiency is η t , the conversion efficiency η t is expressed by the following equation: η t = C · <α 2 > · <v 2 > / <p ′ 2 > 2 wherein C is a constant and <... Represents an average value of...
【請求項4】 水中音波受信器が搭載され、少なくとも
一部が水中に配置された被測定体の各点への加振力の、
前記水中音波受信器で受信される信号への変換効率を、
前記被測定体の各点毎に測定する音響変換効率測定装置
であって、 水中に音を放射する音源と、 前記被測定体の各点の振動を検出する振動センサと、 前記音の水中における音圧を検出する音センサと、 前記振動センサの出力、前記音センサの出力、および前
記水中音波受信器の出力に基づいて前記変換効率を求め
る変換効率演算部とを備えたことを特徴とする音響変換
効率測定装置。
4. An apparatus for mounting an underwater acoustic wave receiver, wherein at least a part of the object under test is placed in water,
The conversion efficiency into a signal received by the underwater acoustic wave receiver,
A sound conversion efficiency measuring device that measures each point of the measured object, a sound source that emits sound into water, a vibration sensor that detects vibration of each point of the measured object, A sound sensor that detects a sound pressure; and a conversion efficiency calculation unit that obtains the conversion efficiency based on an output of the vibration sensor, an output of the sound sensor, and an output of the underwater sound wave receiver. Sound conversion efficiency measurement device.
【請求項5】 前記被測定体の各点に当接される当接面
を有し、該当接面を前記被測定体の所定点に当接させた
ときに該所定点と前記音源との間の距離および前記音源
と前記音センサとの間の距離が互いに略等距離となるよ
うに前記音源および前記音センサが固定される測定ヘッ
ドを備えたことを特徴とする請求項4記載の音響変換効
率測定装置。
5. A contact surface which is in contact with each point of the object to be measured, wherein when the corresponding contact surface is brought into contact with a predetermined point of the object to be measured, the predetermined point and the sound source are separated from each other. The sound according to claim 4, further comprising a measurement head to which the sound source and the sound sensor are fixed so that a distance between the sound source and the sound sensor is substantially equal to each other. Conversion efficiency measurement device.
JP6321903A 1994-12-26 1994-12-26 Sound conversion efficiency measuring method and measuring device Expired - Fee Related JP2730870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6321903A JP2730870B2 (en) 1994-12-26 1994-12-26 Sound conversion efficiency measuring method and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6321903A JP2730870B2 (en) 1994-12-26 1994-12-26 Sound conversion efficiency measuring method and measuring device

Publications (2)

Publication Number Publication Date
JPH08178740A JPH08178740A (en) 1996-07-12
JP2730870B2 true JP2730870B2 (en) 1998-03-25

Family

ID=18137698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6321903A Expired - Fee Related JP2730870B2 (en) 1994-12-26 1994-12-26 Sound conversion efficiency measuring method and measuring device

Country Status (1)

Country Link
JP (1) JP2730870B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100338190B1 (en) * 1999-10-16 2002-05-24 김징완 Noise instrument for water tunnel
KR100338191B1 (en) * 1999-10-16 2002-05-24 김징완 Method for instrumentation noise of water tunnel
JP4584951B2 (en) 2007-04-11 2010-11-24 株式会社日立製作所 Sound source separation device and sound source separation method
CN102464087B (en) * 2010-11-09 2016-06-08 中国舰船研究设计中心 The multiple functional measurement region design method of large-scale underwater acoustic measurement test vessel
CN106828802A (en) * 2016-12-23 2017-06-13 广东雨嘉水产食品有限公司 The roller type fisherman of fishy smell attracting

Also Published As

Publication number Publication date
JPH08178740A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
EP2626721A1 (en) Sonar assembly for reduced interference
AU2008297648B2 (en) Acoustic thickness measurements using gas as a coupling medium
JP2730870B2 (en) Sound conversion efficiency measuring method and measuring device
US7259864B1 (en) Optical underwater acoustic sensor
CN114364979B (en) Non-contact non-destructive inspection system, signal processing device, and non-contact non-destructive inspection method
JP2008076294A (en) Under-bottom-of-water survey method and instrument
US8203909B1 (en) Forward-looking sonar for ships and boats
US4648275A (en) Underwater acoustic impedance measuring apparatus
JP2780698B2 (en) Underwater vehicle detection device
US4380929A (en) Method and apparatus for ultrasonic detection of near-surface discontinuities
JP2011033584A (en) Artificial object detection system, method of detecting artificial object used therein, and artificial object detection control program
JP4058074B2 (en) Fish finder and transducer for fish finder
JP2000131297A (en) Leakage elastic surface wave measuring probe
JPH0334588B2 (en)
JP2004012237A (en) Method and apparatus for detecting vessel by cross-fan beam
SU1174844A1 (en) Separated-combined transducer for ultrasonic inspection
KR200184719Y1 (en) Underwater investigation device
JP2730869B2 (en) Radiation noise estimation device
JPH11183235A (en) Method and device for detecting gas layer in pipe using ultrasonic wave
JPH07239384A (en) Distance sensor
JP3250070B2 (en) Ultrasonic anemometer
Musha Evaluation of the acoustic radiation efficiency for ship structures using the reciprocity method
JPH07174843A (en) Sonic velocity correcting device in position measurement and its method
Ibisi et al. Impedance and impulse response measurements using low‐cost components
JP2987433B2 (en) Circulating water tank acoustic measurement device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971125

LAPS Cancellation because of no payment of annual fees