JP2730006B2 - Reciprocating external combustion engine operating according to the Carnot cycle - Google Patents

Reciprocating external combustion engine operating according to the Carnot cycle

Info

Publication number
JP2730006B2
JP2730006B2 JP2161377A JP16137790A JP2730006B2 JP 2730006 B2 JP2730006 B2 JP 2730006B2 JP 2161377 A JP2161377 A JP 2161377A JP 16137790 A JP16137790 A JP 16137790A JP 2730006 B2 JP2730006 B2 JP 2730006B2
Authority
JP
Japan
Prior art keywords
cylinder
heat
engine
fluid
carnot cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2161377A
Other languages
Japanese (ja)
Other versions
JPH0454264A (en
Inventor
浩毅 汐崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ship Research Institute
Original Assignee
Ship Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ship Research Institute filed Critical Ship Research Institute
Priority to JP2161377A priority Critical patent/JP2730006B2/en
Publication of JPH0454264A publication Critical patent/JPH0454264A/en
Application granted granted Critical
Publication of JP2730006B2 publication Critical patent/JP2730006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines

Description

【発明の詳細な説明】 [産業上の利用分野] 燃焼熱、排熱、太陽熱、冷熱などにより、温度差が存
在する環境から、高効率で機械的エネルギを取り出すこ
とが求められるすべての分野、及び機械的エネルギを投
入して、高い動作係数により低温から高温に熱を汲み上
げることが求められるすべての分野で利用可能である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application fields] All fields in which it is required to extract mechanical energy with high efficiency from an environment where there is a temperature difference due to combustion heat, exhaust heat, solar heat, cold heat, etc. It can be used in all fields where high energy is required to pump heat from low temperature to high temperature by inputting mechanical energy.

[従来の技術] カルノーサイクルを行わせるよう考案された発明とし
て、径の異なるシリンダ−ピストンを組み合わせた機構
による機関(特開昭52−37645)がある。また、理論効
率がカルノー効率に一致する機関としては、スターリン
グ機関がある。
[Prior Art] As an invention devised to carry out a Carnot cycle, there is an engine having a mechanism combining cylinders and pistons having different diameters (JP-A-52-37645). An engine whose theoretical efficiency matches the Carnot efficiency is a Stirling engine.

[発明が解決しようとする課題] 実用化されている機関で、カルノー効率に迫るような
効率を持つ機関はまだない。本機関は、カルノーサイク
ルを模擬することにより、高効率の機関を得ることを目
的としている。また、簡単な機関部品の交換・調整のみ
で、任意の熱源・冷却源温度に対応してカルノーサイク
ルとして運転可能な機関とすることも目的としている。
[Problems to be Solved by the Invention] There is no engine that has been put into practical use and has an efficiency approaching Carnot efficiency. The purpose of this institution is to obtain a highly efficient institution by simulating the Carnot cycle. It is another object of the present invention to provide an engine that can be operated as a Carnot cycle corresponding to any heat source / cooling source temperature by simply replacing and adjusting the engine parts.

[課題を解決するための手段] 本機関は、カルノーサイクルの各課程(等温加熱膨
張、断熱膨張、等温冷却圧縮、断熱圧縮)をそれぞれ受
け持つ、4つのシリンダから構成される。各シリンダは
隣どうし順に通気管で連結され、環状の密閉構造となっ
ている。シリンダと通気管の間には弁があり、これらの
弁と各ピストンが連動して動くことにより、流体が自動
的に一方向に循環し、カルノー線図に沿った状態変化を
行う。
[Means for Solving the Problems] This engine is composed of four cylinders, each of which performs each process of the Carnot cycle (isothermal heating expansion, adiabatic expansion, isothermal cooling compression, adiabatic compression). The cylinders are connected to each other in order by a ventilation pipe, and have an annular closed structure. There are valves between the cylinder and the vent pipe, and when these valves and each piston move in conjunction, the fluid automatically circulates in one direction and changes state according to the Carnot diagram.

内部には3つに独立した流体が入っており、互いに位
相をずらしながら、各々カルノーサイクルに従って状態
変化する。一つのシリンダについてみると、ある流体を
隣のシリンダに送り出すと、すぐに反対側のシリンダか
ら次の流体が送り込まれるという形で、各シリンダは常
に動作状態にある。
The inside contains three independent fluids, each of which changes state according to the Carnot cycle while shifting the phase from each other. With respect to one cylinder, each cylinder is always in operation, such that when one fluid is delivered to the next cylinder, the next fluid is immediately delivered from the opposite cylinder.

[作用] 第1図に機関の動作説明図を示す。[Operation] FIG. 1 is a diagram for explaining the operation of the engine.

動作 3つの独立した流体のうち、例として太い斜線の流体
に注目する。(a)図の状態で、流体はシリンダAに有
り、p−v線図及びT−S線図上では1の状態にある
(弁は二つとも閉じており、シリンダ内は密閉状態)。
また、このとき通気管アには、線図上の2に対応する圧
力、温度の流体が前課程の結果残存している。図では省
略しているが、各ピストンの下にはクランク機構があ
り、4つのクランクは互いに位相をずらしながら連動す
る。クランク角の相対関係は、中央の円の図に示すとお
りである。この局面は(a)図に対応している(例えば
Dのピストンは上死点に来ている)。
Operation Of the three independent fluids, let us focus on the fluid with thick diagonal lines as an example. (A) In the state shown in the figure, the fluid is in the cylinder A, and is in the state 1 on the pv diagram and the TS diagram (both valves are closed and the inside of the cylinder is closed).
At this time, a fluid having a pressure and a temperature corresponding to 2 on the diagram remains in the vent pipe a as a result of the previous process. Although not shown in the drawing, a crank mechanism is provided below each piston, and the four cranks are interlocked with each other while being out of phase with each other. The relative relationship between the crank angles is as shown in the figure of the center circle. This phase corresponds to the diagram (a) (for example, the piston of D is at the top dead center).

クランクの回転により、A内の流体は、大きな熱容量
を持ちほぼ等温と見なせる高温熱源から熱を吸収し、等
温膨張する。(b)図の位置で、必要な等温膨張は終了
(線図の2)であるが、往復運動のために、一度下死点
まで行った後(線図の2′)、(c)図で再び線図2に
帰る。この動作は来た道を戻るだけで(線図の点線)、
仕事には影響しない。
Due to the rotation of the crank, the fluid in A absorbs heat from a high-temperature heat source that has a large heat capacity and can be regarded as almost isothermal, and expands isothermally. (B) At the position shown in the figure, the necessary isothermal expansion has been completed (2 in the diagram), but once to the bottom dead center for reciprocation (2 'in the diagram), (c) diagram Return to Diagram 2 again. All you have to do is return to the road you came from (dotted line in the diagram)
Does not affect work.

通気管アの両側の弁は、(c)図の局面で開く。通気
管内の流体も前述のように線図の2の状態にあったた
め、弁が開いても流体の移動、温度の変化等はない。次
に、シリンダAのピストンの上昇、シリンダBのピスト
ンの下降により、流体はAからBに移動する。(d)図
は、完全にAが空になった後に、通気管アの両側の弁を
閉じたところである。移動前後の体積は等しいから、流
体はやはり線図上の2の状態にある。従って、通気管ア
内には先ほどと同じように線図2の状態の流体が密閉さ
れ、次にくる流体に利用される。
The valves on both sides of the ventilation pipe (a) are opened in the state of FIG. Since the fluid in the ventilation pipe is also in the state of 2 in the diagram as described above, even if the valve is opened, there is no movement of the fluid and no change in temperature. Next, the fluid moves from A to B as the piston of cylinder A rises and the piston of cylinder B descends. (D) In the figure, after A is completely emptied, the valves on both sides of the ventilation pipe A are closed. Since the volumes before and after the movement are equal, the fluid is still in the state 2 on the diagram. Accordingly, the fluid in the state shown in FIG. 2 is sealed in the vent pipe a in the same manner as before, and is used for the next fluid.

一方シリンダBは周囲から断熱されており、B内の流
体はクランクの回転により断熱膨張し、(e)図を経て
(f)図に達する。このとき、線図では状態3に達す
る。ここで通気管イの両側の弁を開く。通気管アの場合
と同様、イ内には状態3の流体が残存している。
On the other hand, the cylinder B is insulated from the surroundings, and the fluid in B is adiabatically expanded by rotation of the crank, and reaches the diagram (f) through the diagram (e). At this time, state 3 is reached in the diagram. Here, the valves on both sides of the ventilation pipe a are opened. As in the case of the vent pipe a, the fluid of state 3 remains in the a.

次にクランクの回転により、流体はシリンダBからC
へ移される。(g)図は流体が完全にCに移った後、通
気管イの両端の弁を閉じたところである。イには、やは
り状態3の流体が密閉される。
Next, the rotation of the crank causes the fluid to move from cylinder B to C
Moved to (G) The figure shows a state in which the valves at both ends of the vent pipe a are closed after the fluid has completely moved to C. In (a), the fluid in the state 3 is also sealed.

シリンダC内の状態3の流体は、大きな熱容量を持ち
ほぼ等温と見なせる冷却源によって冷却され、熱を放出
しつつ等温圧縮される。(h)を経て(i)に達し(線
図上では状態4)、通気管ウの両側の弁が開く。ウに
は、やはり状態4の流体が残存している。
The fluid in the state 3 in the cylinder C is cooled by a cooling source that has a large heat capacity and can be regarded as substantially isothermal, and is isothermally compressed while releasing heat. After (h), (i) is reached (state 4 in the diagram), and the valves on both sides of the ventilation pipe c are opened. The fluid of state 4 still remains in c.

(j)図で流体はシリンダDに移動し、ウの両側の弁
が閉じられる。D中の状態4の流体は、断熱条件下で、
一度ピストンが下降して下死点に達した後(線図では状
態4′)、再び圧縮され(l)図で状態1に達する。こ
こで通気管エの両側の弁が開く。エには、やはり状態1
の流体が残存している。
(J) In the figure, the fluid moves to the cylinder D, and the valves on both sides of the c are closed. The fluid in state 4 in D under adiabatic conditions
Once the piston descends and reaches bottom dead center (state 4 'in the diagram), it is compressed again (l) and reaches state 1 in the figure. Here, the valves on both sides of the ventilation pipe d open. In d, still state 1
Fluid remains.

最後に、クランクの回転により、流体はシリンダAに
送り込まれ、(a)図で通気管エの弁が閉じられる。こ
れが初期状態である。
Finally, the rotation of the crank causes the fluid to be fed into the cylinder A, and the valve of the ventilation pipe d is closed in FIG. This is the initial state.

以上は1つの流体に注目したが、他の2つの流体につ
いては、(a)図の代わりに(e)図または(i)図か
ら始まって、上と同じ課程が行われている。
The above focuses on one fluid, but the other two fluids have undergone the same process as above, starting from the diagram (e) or (i) instead of the diagram (a).

熱源温度の変化への対応 以上の例のクランク相対角は、ある熱源温度に対応し
た設定となっている。異なる熱源温度比の場合(例えば
高温熱源温度が変わる場合)も、クランクの相対角、及
びそれに連動する弁の開閉のタイミングを若干変えるだ
けで、対応するカルノーサイクルとすることができる。
弁のタイミングについては、カム機構で動かす場合には
カムを温度比に対応したものと交換し、電気制御式の弁
とする場合にはタイミングを温度比に合わせて制御す
る。
Correspondence to change in heat source temperature The crank relative angle in the above example is set corresponding to a certain heat source temperature. In the case of different heat source temperature ratios (for example, when the high-temperature heat source temperature changes), a corresponding Carnot cycle can be achieved by only slightly changing the relative angle of the crank and the opening / closing timing of the valve linked thereto.
As for the timing of the valve, when the cam mechanism is operated, the cam is replaced with one corresponding to the temperature ratio, and when the valve is of an electrically controlled type, the timing is controlled in accordance with the temperature ratio.

なお、クランク角の関係を運転中に制御することがで
きれば、電気制御式の弁とあわせて、熱源温度が経時的
に変化する場合にも、リアルタイムで追従し、常にカル
ノーサイクルで運転させることが可能である。
In addition, if the relationship between the crank angles can be controlled during operation, in conjunction with an electrically controlled valve, even if the heat source temperature changes over time, it can follow in real time and always operate in a Carnot cycle. It is possible.

[発明の効果] 高効率の機関として、エネルギ利用の効率化に寄与す
る。また環境に存在する、従来利用できなかった比較的
温度差の小さい熱源からも、エネルギを取り出すことが
できるようになる。
[Effect of the Invention] As a high-efficiency engine, it contributes to more efficient use of energy. In addition, energy can be extracted from a heat source existing in the environment and having a relatively small temperature difference that has not been conventionally used.

特に本機関は、製作後に、クランク角やカム機構の設
定を若干変更するだけで、任意の熱源温度に対してカル
ノーサイクルとして動作させることができる特徴を有し
ている。さらに各クランクの相対角を自動制御できれ
ば、熱源温度が経時的に変化するような場合にも、リア
ルタイムで最適運転させることが可能である。
In particular, this engine has a feature that it can be operated as a Carnot cycle at an arbitrary heat source temperature by slightly changing the settings of the crank angle and the cam mechanism after production. Further, if the relative angle of each crank can be automatically controlled, it is possible to perform an optimal operation in real time even when the heat source temperature changes with time.

なお、カルノー線図の形状からくる短所として、発生
エネルギ当りの装置体積は、従来の機関に比べて大きく
なる。試算によると、これは特に熱源温度差が大きい場
合に顕著である。従って本機関は、装置サイズに厳しい
制約が無く、比較的温度差の小さい熱源を利用する場合
に用いるのが最も効果的である。
A disadvantage of the shape of the Carnot diagram is that the device volume per generated energy is larger than that of a conventional engine. According to trial calculations, this is particularly noticeable when the heat source temperature difference is large. Therefore, this engine is most effective when there is no severe restriction on the device size and a heat source having a relatively small temperature difference is used.

一方、本機関を逆回転し、逆カルノーサイクルのヒー
トポンプとして用いると、非常に大きな動作係数が得ら
れる。特に冷暖房、給湯など温度差が小さい場合に効果
的である。例えば常温付近で、温度差が30℃である場合
を考えると、理論的には投入仕事1に対し、10程度の熱
を供給(または除去)することができる。
On the other hand, when this engine is rotated in the reverse direction and used as a heat pump of a reverse Carnot cycle, a very large operating coefficient can be obtained. This is particularly effective when the temperature difference is small, such as in cooling and heating, hot water supply, and the like. For example, considering a case where the temperature difference is about 30 ° C. near normal temperature, about 10 heat can theoretically be supplied (or removed) to the input work 1.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(l)は、機関の1サイクル間の諸局面
を示している。 各図の長方形はシリンダを示し、内部の横線はピストン
の上端を示している。またシリンダをつなぐ通気管の両
端には弁があり、その閉状態を太線で示している。 中央の図は、機関のp−v線図、T−S線図及びクラン
ク角の相互関係である。
1 (a) to 1 (l) show various aspects during one cycle of the engine. The rectangle in each figure indicates the cylinder, and the horizontal line inside indicates the upper end of the piston. Further, there are valves at both ends of the ventilation pipe connecting the cylinders, and the closed state is indicated by a thick line. The middle diagram is the correlation of the engine's pv diagram, TS diagram and crank angle.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】外燃式熱機関であって、熱容量が大きくほ
ぼ等温と見なせる熱源に接して加熱されるシリンダA、
断熱壁で覆われたシリンダB、前記同様の冷却源に接し
て冷却されるシリンダC、断熱壁で覆われたシリンダ
D、それらを順に環状につなぐ通気管、各通気管に設け
た弁機構から構成され、各シリンダのピストンと弁機構
の動作の連動によって内部に密封された流体が各シリン
ダを順に移動し、シリンダA内で等温膨張、シリンダB
内で断熱膨張、シリンダC内で等温圧縮、シリンダD内
で断熱圧縮の各過程が行われることにより、カルノーサ
イクルとして作動する機関。
1. An external combustion type heat engine, wherein a cylinder A is heated in contact with a heat source which has a large heat capacity and can be regarded as substantially isothermal.
Cylinder B covered with a heat-insulating wall, cylinder C cooled in contact with the same cooling source as described above, cylinder D covered with a heat-insulating wall, a vent pipe connecting them in order in a ring, and a valve mechanism provided in each vent pipe The fluid sealed inside moves sequentially through each cylinder by the interlocking of the piston of each cylinder and the operation of the valve mechanism, isothermal expansion in cylinder A, cylinder B
An engine that operates as a Carnot cycle by performing adiabatic expansion in the cylinder, isothermal compression in the cylinder C, and adiabatic compression in the cylinder D.
【請求項2】請求項1の機関を逆回転させることによ
り、逆カルノーサイクルで動作するヒートポンプ。
2. A heat pump that operates in a reverse Carnot cycle by rotating the engine of claim 1 in reverse.
JP2161377A 1990-06-21 1990-06-21 Reciprocating external combustion engine operating according to the Carnot cycle Expired - Lifetime JP2730006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2161377A JP2730006B2 (en) 1990-06-21 1990-06-21 Reciprocating external combustion engine operating according to the Carnot cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2161377A JP2730006B2 (en) 1990-06-21 1990-06-21 Reciprocating external combustion engine operating according to the Carnot cycle

Publications (2)

Publication Number Publication Date
JPH0454264A JPH0454264A (en) 1992-02-21
JP2730006B2 true JP2730006B2 (en) 1998-03-25

Family

ID=15733937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2161377A Expired - Lifetime JP2730006B2 (en) 1990-06-21 1990-06-21 Reciprocating external combustion engine operating according to the Carnot cycle

Country Status (1)

Country Link
JP (1) JP2730006B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1004921B (en) 2004-05-06 2005-06-22 Λεωνιδας Κων/Νου Τσικωνης Piston engine operating with circular displacement of the working medium
FR2929381B1 (en) * 2008-04-01 2010-05-14 Centre Nat Rech Scient INSTALLATION FOR THE PRODUCTION OF COLD, HEAT AND / OR WORKING
BR102013026634A2 (en) * 2013-10-16 2015-08-25 Abx En Ltda Eight Thermodynamic Transformation Differential Thermal Machine and Control Process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237645A (en) * 1975-09-19 1977-03-23 Fuji Electric Co Ltd Outer burning type carnot#s cycle engine

Also Published As

Publication number Publication date
JPH0454264A (en) 1992-02-21

Similar Documents

Publication Publication Date Title
US2484392A (en) Hot-air engine actuated refrigerating apparatus
US20110314805A1 (en) Heat engine with regenerator and timed gas exchange
US3751904A (en) Heat engines
US20110030366A1 (en) Stirling engine
US3830059A (en) Heat engine
US4389844A (en) Two stage stirling engine
US5924305A (en) Thermodynamic system and process for producing heat, refrigeration, or work
US3971230A (en) Stirling cycle engine and refrigeration systems
JP2003536015A (en) Stirling motor and heat pump
US3379026A (en) Heat powered engine
JP2730006B2 (en) Reciprocating external combustion engine operating according to the Carnot cycle
US20170130671A1 (en) Heat engine
JPH05248720A (en) Thermal-compression heat pump
EP0162868B1 (en) Stirling cycle engine and heat pump
EP3097280B1 (en) Variable volume transfer shuttle capsule and valve mechanism
CN103470399A (en) Volumetric heat engine
CN1563693A (en) External combustion engine
CA3053638A1 (en) A near-adiabatic engine
KR101749213B1 (en) Single Piston Type Stirling Engine
JP2005098271A (en) Hot air type rotary external combustion engine
RU2549273C1 (en) External combustion engine heat exchange section
US11808503B2 (en) Heat engines and heat pumps with separators and displacers
US20030196424A1 (en) Warren cycle external combustion engine
RU2051287C1 (en) Method of operating engine with external heat supply and engine with external heat supply
JP2542637B2 (en) Stirling engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term