JP2729995B2 - Fluorescent lamp - Google Patents

Fluorescent lamp

Info

Publication number
JP2729995B2
JP2729995B2 JP29979087A JP29979087A JP2729995B2 JP 2729995 B2 JP2729995 B2 JP 2729995B2 JP 29979087 A JP29979087 A JP 29979087A JP 29979087 A JP29979087 A JP 29979087A JP 2729995 B2 JP2729995 B2 JP 2729995B2
Authority
JP
Japan
Prior art keywords
electrodes
fluorescent lamp
arc tube
tube
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29979087A
Other languages
Japanese (ja)
Other versions
JPH01143136A (en
Inventor
健二 数永
佳久 横川
立躬 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP29979087A priority Critical patent/JP2729995B2/en
Publication of JPH01143136A publication Critical patent/JPH01143136A/en
Application granted granted Critical
Publication of JP2729995B2 publication Critical patent/JP2729995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複写機などの原稿照明において、原稿をス
リット状に照明し、そのスリット状に照明された原稿面
をレンズ系を介して感光紙や感光ドラムなどへ投影する
場合に使用される蛍光ランプや、更には原稿面や被照射
面近傍に直接配置される蛍光ランプなどに関するもので
ある。 〔従来技術とその問題点〕 蛍光ランプは、消費電力が少なく、発光効率が優れて
いるので、上記の産業分野をはじめ、各種の用途に幅広
く使用されつつある。これらの用途は、いずれにしても
大きな光量を必要とするが、高周波電力で点灯させるこ
とによって、少ない消費電力で要求される光量を放射す
る蛍光ランプが実用化されている。蛍光ランプは、発光
管の内面に蛍光体が塗布されているが、蛍光体より発す
る光は、発光管外部に放射する光よりも、発光管内に放
射される光の方が多いので、発光管の内部は非常に明る
い。このため、線状光源の場合は、発光管の内面の管軸
方向に沿った細長い部分には蛍光体を塗布せずにアパー
チャー部を形成し、このアパーチャー部から発光管内の
光を放射させることが行われている。 ところで、直線状の蛍光ランプを複写機などの照明光
源に使用する場合には、蛍光ランプの両端部の光量が減
少するために、ランプ管面の照明面の放射照度分布は、
中央部が大きく、両端に近い部分では小さくなってい
た。このような照射面をセルフォックレンズアレイ(商
品名)で結像する場合は、当然両端部近傍の結像面照度
は低く、また、通常の光学レンズ系で被照射面に投影し
て結像する場合は、「余弦4乗則」に従い、被照射面に
おいては周辺部がより暗くなってしまう問題点がある。 これを解決するためには、中央部よりも両端部の光量
を大きくし、被照射面における照度を所定の分布にする
必要がある。そこで、例えば、照明光源と被照射面との
間に蛍光ランプの長手方向に沿って、中央部の開口が狭
く両端部の開口が広い調光手段を設け、この調光手段に
よって被照射面における光量を調節していた。また、場
合によっては、放電路長が原稿巾よりもかなり大きい蛍
光ランプを使用し、原稿端部での照度の低下を抑えてい
た。 しかし、これらの方法では、照明光源から出てきた光
量を有効に利用しておらず、調光手段が占有する容積が
必要であったり、必要以上に長い蛍光ランプを使用する
という不具合があり、かかる光源が小型で軽量な機器に
組み込まれる場合、その機器の機能性を著しく阻害して
いた。 〔発明の目的〕 本発明は、かかる事情に鑑みてなされたものであり、
その目的とするところは、ランプ全長が短くても有効発
光長の長い蛍光ランプであって、小型で軽量な機器に組
み込むのに適し、被照射面上における照度を所定の分布
にすることができる新規な蛍光ランプを提供することに
ある。 〔発明の構成とその作用〕 上記目的を達成するために、本発明の蛍光ランプは、
管形発光管の内部両端に一対の内部電極を配置し、この
発光管内壁に、管軸方向に沿った線状のアパーチャー部
を除いて蛍光体を塗布し、アパーチャー部と対向する発
光管外面に電源に接続された複数の第三電極を設けると
ともに、発光管の蛍光体が塗布された部分の壁面の所定
位置に第三電極と絶縁された反射膜を設けて構成する。 すなわち、電源に接続された複数の第三電極を管形バ
ルブ外面のアパーチャー部と対向する所定位置に配置す
ると、管形バルブを構成するガラスは誘導体であるので
コンデンサとして作用し、第三電極が配置された内部近
傍では、プラズマ中のイオンや電子の集積と発散が周波
数に応じて生じる。つまり、バリヤ放電が起るので、イ
オンや電子の密度が高くなり、その部分の輝度が相対的
に大きくなる。そして、第三電極と絶縁された反射膜が
設けられているので、第三電極と対向するアパーチャー
部の輝度が大きくなる。従って、複数の第三電極および
反射膜の位置およびその長さを適当に設計すれば、所定
の輝度分布を得ることができ、使用目的に応じた輝度分
布を有する蛍光ランプとすることができる。 〔実施例〕 第1図は、画像読取用の蛍光ランプの説明図であっ
て、高周波電源1に接続される一対の電極2a,2bを放電
路が直線状に形成された管形発光管3の内部両端に配置
する。そして、発光管3の放電路を取り囲む直線状部の
外面であって電極2a,2bの近傍に第三電極4a,4b、つまり
複数の第三電極を配置し、これも高周波電源1に接続す
る。第三電極4a,4bは、細長い帯状の一枚の電極板から
なり、中央部には絶縁物8が介在して第三電極4aおよび
4bに分割されているが、それぞれを独立した電極板で構
成しても良い。そして、第三電極4a,4bが配置された発
光管3の壁面に反射膜9a,9bが設けられている。この反
射膜9a,9bは、発光管3の外面もしくは内面のいずれに
設けても良い。発光管3の内面には、第2図に示すよう
に、蛍光体5が塗布されているが、発光管3の管軸方向
に蛍光体5の塗布されていない線状のアパーチャー部6
が形成されており、第三電極4a,4bは、このアパーチャ
ー部6と対向する位置に配置されている。そして、反射
膜9a,9bはアパーチャー部6を除いた部分に設けられて
おり、第三電極4a,4bとは絶縁されている。これは、も
し導通させると放電が不安定になるためである。なお、
7a,7b,7cはコンデンサであり、また図例では電極2a,2b
と第三電極4a,4bは同一の高周波電源1に接続されてい
るが、別個の高周波電源にそれぞれ接続してもよい。 次に具体的な数値例を示すならば、管形発光管3の外
径は4.1mm,放電路の長さ、即ち電極2a,2b間距離は63.5m
mであり、発光管内部にはクリプトンガスが20トール(2
5℃)のガス圧で封入され、また、蛍光体5としてZn2Si
O4:Mnが塗布されており、アパーチャー部6の巾は2.4mm
である。電極2a,2b間には周波数が50KHzの高周波電力が
印加されるが、電圧は495V,放電電流は10mAであり、消
費電力は約5Wである。一方、第三電極4a,4bは、巾が1.5
mmのアルミニウム箔を発光管外面に密着せしめたもので
あるが、それぞれの長さは11.5mmであり、電極2a,2bの
先端から9.5mmだけ中央部方向に伸びている。そして、
容量が25pFのコンデンサ7cを介して前記の高周波電源1
に接続する。なお、電極2a,2bに接続されるコンデンサ7
a,7bの容量はいずれも110pFである。そして、第三電極4
a,4bに投入される電気量は約2.2Wであり、従って、本実
施例では全体の消費電力が約7.2Wであるが、第三電極4
a,4bには全体の30%弱の電気量が投入されている。この
第三電極4a,4bに投入される電気量は高周波電源1の出
力を変化させることによって変えられる。反射膜9a,9b
は、酸化マグネシウムや酸化チタンなどを主成分とする
ものであるが、反射特性の優れてものであれば、いずれ
であってもよい。そして、本実施例では、反射膜9a,9b
の長さは第三電極4a,4bと等しく、両者が一致するよう
にしてある。 かかる蛍光ランプの輝度分布を測定した。輝度分布の
測定方法は、先端のスリット巾が0.5mmのフォトガイド
をアパーチャー部6に接触させ、このフォトガイドを1m
mピッチで移動させながらアパーチャー部6からの光を
受光器に導き、受光器のフォトダイオードの出力を記録
した。また、比較例として、第三電極および反射膜のい
ずれをも設けない蛍光ランプの輝度分布も測定した。そ
の結果を第3図に示すが、第3図は両蛍光ランプのそれ
ぞれの最高輝度を100とした相対値で表示してある。 これから理解できるように、第三電極4a,4bおよび反
射膜9a,9bを設けた部分が最高輝度になり、第三電極4a,
4bおよび反射膜9a,9bを設けない中央部よりも30%程度
輝度が大きい。これに対して、第三電極4a,4bおよび反
射膜9a,9bを設けない比較例は、輝度分布がほゞフラッ
トになっており、輝度分布は一定である。 そして、第三電極4a,4bおよび反射膜9a,9bを配置した
部分の輝度は、第三電極4a,4bおよび反射膜9a,9bの大き
さおよびコンデンサ7cの容量を変えることによって調節
することができる。従って、複写機の原稿照明用ランプ
のように、中央部よりも両端部が大きな光量を要する場
合にも、調光手段などを使用せずに、光電変換面である
被照射面上の照度分布を均一にできる。従って、放射光
の利用率が高く、また、被照射区域としては、放電路長
の長さをほゞ一杯に使用可能となるので、従来のよう
に、必要以上に長い蛍光ランプを使用する必要もなくな
る。このため、小型で軽量な機器に組み込む蛍光ランプ
として都合の良いものを提供できるばかりでなく、複写
機のように、スリット露光照明方式を採用した光学機械
の蛍光ランプとして優れたものが提供できる。 更には、本実施例のように、反射膜9a,9bと第三電極4
a,4bとを必ずしも一致させる必要はなく、第三電極4a,4
bが配置されていない部分にも反射膜9a,9bを設けたり、
逆に反射膜9a,9bを設けない部分にも第三電極4a,4bを配
置してもよく、両者の組合せによって輝度分布を任意に
変化させることができるので、複写機に限らず、あらゆ
る使用目的に応じた輝度分布を有する蛍光ランプとする
ことができる。 〔発明の効果〕 以上説明したように、本発明によれば、線状に長いア
パーチャー部を有する蛍光ランプにおいて、その長手方
向に沿って光の放射強度を任意に変えることができるの
で、被照射面で蛍光ランプの長手方向で必要とされる所
定の照度分布を得ることができる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to illumination of an original such as a copying machine, which illuminates the original in a slit shape and exposes the slit-illuminated original surface via a lens system. The present invention relates to a fluorescent lamp used when projecting onto a paper or a photosensitive drum, and further relates to a fluorescent lamp directly disposed near a document surface or an irradiated surface. [Prior art and its problems] Fluorescent lamps are being widely used in various applications including the above-mentioned industrial fields because of their low power consumption and excellent luminous efficiency. These applications require a large amount of light anyway, but fluorescent lamps that emit the required amount of light with low power consumption by being lit with high-frequency power have been put to practical use. Fluorescent lamps have a phosphor coated on the inner surface of the arc tube, but the light emitted from the phosphor is more radiated into the arc tube than light emitted outside the arc tube. The interior is very bright. For this reason, in the case of a linear light source, an aperture portion is formed without applying a fluorescent substance to an elongated portion of the inner surface of the arc tube along the tube axis direction, and light in the arc tube is emitted from the aperture portion. Has been done. By the way, when a linear fluorescent lamp is used as an illumination light source for a copying machine or the like, the irradiance distribution on the illumination surface of the lamp tube surface is reduced because the amount of light at both ends of the fluorescent lamp is reduced.
The central part was large and the parts near both ends were small. When such an irradiation surface is imaged by a SELFOC lens array (trade name), the illuminance of the imaging surface near both ends is naturally low, and the image is projected on the surface to be irradiated by a normal optical lens system. In this case, there is a problem that the peripheral portion becomes darker on the surface to be illuminated in accordance with the "cosine fourth power rule". In order to solve this, it is necessary to increase the amount of light at both ends than at the center and to make the illuminance on the surface to be irradiated a predetermined distribution. Therefore, for example, along the longitudinal direction of the fluorescent lamp, between the illumination light source and the surface to be illuminated, a dimming means having a narrow opening at the center and a wide opening at both ends is provided by the dimming means. The light amount was being adjusted. In some cases, a fluorescent lamp whose discharge path length is much larger than the width of the original is used to suppress a decrease in illuminance at the end of the original. However, these methods do not effectively use the amount of light emitted from the illumination light source, and require a volume occupied by the dimming means, or have a disadvantage that a fluorescent lamp that is longer than necessary is used. When such a light source is incorporated into a small and lightweight device, the functionality of the device has been significantly impaired. [Object of the Invention] The present invention has been made in view of such circumstances,
The purpose is to provide a fluorescent lamp having a long effective emission length even if the overall length of the lamp is short, which is suitable for being incorporated into a small and lightweight device, and which can provide a predetermined distribution of illuminance on an irradiated surface. It is to provide a new fluorescent lamp. [Configuration of the invention and its operation] To achieve the above object, the fluorescent lamp of the present invention is:
A pair of internal electrodes are arranged at both ends of the inside of the tube-shaped arc tube, and a phosphor is applied to the inner wall of the arc tube except for a linear aperture portion along the tube axis direction, and the outer surface of the arc tube facing the aperture portion Are provided with a plurality of third electrodes connected to a power supply, and a reflective film insulated from the third electrodes is provided at a predetermined position on the wall surface of the portion of the arc tube to which the phosphor is applied. That is, when a plurality of third electrodes connected to the power supply are arranged at predetermined positions facing the aperture portion on the outer surface of the tubular valve, the glass constituting the tubular valve is a derivative, and thus acts as a capacitor, and the third electrode functions as a capacitor. In the vicinity of the disposed inside, accumulation and divergence of ions and electrons in the plasma occur according to the frequency. That is, since the barrier discharge occurs, the density of ions and electrons increases, and the luminance of that portion relatively increases. Since the reflective film insulated from the third electrode is provided, the brightness of the aperture portion facing the third electrode increases. Therefore, by appropriately designing the positions and lengths of the plurality of third electrodes and the reflective film, a predetermined luminance distribution can be obtained, and a fluorescent lamp having a luminance distribution according to the purpose of use can be obtained. FIG. 1 is an explanatory view of a fluorescent lamp for reading an image, in which a pair of electrodes 2a and 2b connected to a high-frequency power supply 1 are connected to a tube-shaped light emitting tube 3 having a discharge path formed in a straight line. At both ends inside. Then, third electrodes 4a and 4b, that is, a plurality of third electrodes are arranged on the outer surface of the linear portion surrounding the discharge path of the arc tube 3 and near the electrodes 2a and 2b. . The third electrodes 4a and 4b are formed of a single elongated strip-shaped electrode plate, and the third electrode 4a and 4
Although divided into 4b, each may be constituted by an independent electrode plate. Further, reflection films 9a and 9b are provided on the wall surface of the arc tube 3 on which the third electrodes 4a and 4b are arranged. The reflection films 9a and 9b may be provided on either the outer surface or the inner surface of the arc tube 3. As shown in FIG. 2, the inner surface of the arc tube 3 is coated with the phosphor 5, but the linear aperture 6 is not coated with the phosphor 5 in the tube axis direction of the arc tube 3.
Are formed, and the third electrodes 4 a and 4 b are arranged at positions facing the aperture section 6. The reflection films 9a and 9b are provided in portions other than the aperture section 6, and are insulated from the third electrodes 4a and 4b. This is because the discharge becomes unstable if conducting. In addition,
7a, 7b, 7c are capacitors, and in the illustrated example, electrodes 2a, 2b
Although the and the third electrodes 4a and 4b are connected to the same high-frequency power supply 1, they may be connected to separate high-frequency power supplies. Next, as a specific numerical example, the outer diameter of the tubular arc tube 3 is 4.1 mm and the length of the discharge path, that is, the distance between the electrodes 2a and 2b is 63.5 m.
m, and 20 ktor of krypton gas (2
5 ° C.) and Zn 2 Si as phosphor 5
O 4 : Mn is applied, and the width of the aperture 6 is 2.4 mm
It is. High-frequency power having a frequency of 50 KHz is applied between the electrodes 2a and 2b. The voltage is 495 V, the discharge current is 10 mA, and the power consumption is about 5 W. On the other hand, the third electrodes 4a and 4b have a width of 1.5
An aluminum foil having a thickness of 1 mm was adhered to the outer surface of the arc tube, and the length of each was 11.5 mm, and it extended 9.5 mm toward the center from the tips of the electrodes 2a and 2b. And
The high-frequency power source 1 is connected via a capacitor 7c having a capacitance of 25 pF.
Connect to The capacitor 7 connected to the electrodes 2a and 2b
The capacitance of both a and 7b is 110 pF. And the third electrode 4
The amount of electricity supplied to a, 4b is about 2.2 W, and therefore, in this embodiment, the total power consumption is about 7.2 W.
A little less than 30% of the electricity input to a and 4b. The amount of electricity supplied to the third electrodes 4a, 4b can be changed by changing the output of the high frequency power supply 1. Reflective films 9a, 9b
Is mainly composed of magnesium oxide, titanium oxide or the like, but may be any as long as it has excellent reflection characteristics. In the present embodiment, the reflection films 9a and 9b
Is equal to the length of the third electrodes 4a and 4b, so that they match. The luminance distribution of the fluorescent lamp was measured. To measure the luminance distribution, a photo guide with a slit width of 0.5 mm at the tip was brought into contact with the aperture section 6 and this photo guide was measured for 1 m.
The light from the aperture section 6 was guided to the light receiver while moving at an m pitch, and the output of the photodiode of the light receiver was recorded. Further, as a comparative example, the luminance distribution of a fluorescent lamp having neither the third electrode nor the reflective film was measured. The results are shown in FIG. 3. In FIG. 3, the maximum luminance of each of the two fluorescent lamps is indicated by a relative value with 100 being the maximum luminance. As can be understood from this, the portion where the third electrodes 4a, 4b and the reflection films 9a, 9b are provided has the highest luminance, and the third electrodes 4a, 4b
The luminance is higher by about 30% than in the central part where 4b and the reflective films 9a and 9b are not provided. On the other hand, in the comparative example in which the third electrodes 4a and 4b and the reflective films 9a and 9b are not provided, the luminance distribution is almost flat, and the luminance distribution is constant. The brightness of the portion where the third electrodes 4a, 4b and the reflection films 9a, 9b are arranged can be adjusted by changing the size of the third electrodes 4a, 4b and the reflection films 9a, 9b and the capacitance of the capacitor 7c. it can. Therefore, even in the case where a large amount of light is required at both ends than at the center, such as a lamp for illuminating a document of a copier, the illuminance distribution on the illuminated surface, which is a photoelectric conversion surface, can be achieved without using light control means. Can be made uniform. Therefore, the utilization rate of the radiated light is high, and the length of the discharge path can be used almost as the illuminated area. Therefore, it is necessary to use a fluorescent lamp that is longer than necessary as in the related art. Is also gone. For this reason, not only a convenient fluorescent lamp can be provided as a small and lightweight fluorescent lamp, but also an excellent fluorescent lamp for an optical machine employing a slit exposure illumination system such as a copying machine. Further, as in the present embodiment, the reflection films 9a and 9b and the third electrode 4
a, 4b does not necessarily have to match, the third electrode 4a, 4
Reflection films 9a and 9b are also provided in parts where b is not arranged,
Conversely, the third electrodes 4a, 4b may be arranged in portions where the reflection films 9a, 9b are not provided, and the luminance distribution can be arbitrarily changed by a combination of the two, so that not only the copying machine but A fluorescent lamp having a luminance distribution according to the purpose can be obtained. [Effects of the Invention] As described above, according to the present invention, in a fluorescent lamp having a linearly long aperture, the radiation intensity of light can be arbitrarily changed along the longitudinal direction. The required illuminance distribution required in the surface in the longitudinal direction of the fluorescent lamp can be obtained.

【図面の簡単な説明】 第1図は本発明実施例の説明図、第2図は第1図のII−
II線での断面図、第3図は輝度分布の説明図である。 1……高周波電源、2a,2b……電源 3……発光管、4a,4b……第三電極 5……蛍光体、6……アパーチャー部 9a,9b……反射膜
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of an embodiment of the present invention, and FIG.
FIG. 3 is a cross-sectional view taken along the line II, and FIG. 3 is an explanatory diagram of a luminance distribution. 1 high frequency power supply, 2a, 2b power supply 3 light emitting tube, 4a, 4b third electrode 5 phosphor, 6 aperture part 9a, 9b reflection film

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−281256(JP,A) 特開 昭63−141256(JP,A) 特開 昭63−58752(JP,A) 特公 平7−27773(JP,B2)   ────────────────────────────────────────────────── ─── Continuation of front page                   (56) References JP-A-62-281256 (JP, A)                 JP-A-63-141256 (JP, A)                 JP-A-63-58752 (JP, A)                 Tokiko Hei 7-27773 (JP, B2)

Claims (1)

(57)【特許請求の範囲】 1.管形発光管の内部両端に一対の内部電極を配置し、
該発光管内壁に、管軸方向に沿った線状のアパーチャー
部を除いて蛍光体を塗布し、該アパーチャー部と対向す
る発光管外面に電源に接続された複数の第三電極を設け
るとともに、発光管の蛍光体が塗布された部分の壁面の
所定位置に該第三電極と絶縁された反射膜を設けたこと
を特徴とする蛍光ランプ。
(57) [Claims] Placing a pair of internal electrodes at both ends inside the tube-shaped arc tube,
On the inner wall of the arc tube, a phosphor is applied except for a linear aperture portion along the tube axis direction, and a plurality of third electrodes connected to a power source are provided on the outer surface of the arc tube facing the aperture portion, A fluorescent lamp, characterized in that a reflection film insulated from the third electrode is provided at a predetermined position on a wall surface of a portion of the arc tube to which the phosphor is applied.
JP29979087A 1987-11-30 1987-11-30 Fluorescent lamp Expired - Fee Related JP2729995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29979087A JP2729995B2 (en) 1987-11-30 1987-11-30 Fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29979087A JP2729995B2 (en) 1987-11-30 1987-11-30 Fluorescent lamp

Publications (2)

Publication Number Publication Date
JPH01143136A JPH01143136A (en) 1989-06-05
JP2729995B2 true JP2729995B2 (en) 1998-03-18

Family

ID=17876971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29979087A Expired - Fee Related JP2729995B2 (en) 1987-11-30 1987-11-30 Fluorescent lamp

Country Status (1)

Country Link
JP (1) JP2729995B2 (en)

Also Published As

Publication number Publication date
JPH01143136A (en) 1989-06-05

Similar Documents

Publication Publication Date Title
US5013966A (en) Discharge lamp with external electrodes
EP0270004B1 (en) Gas discharge lamp and apparatus utilizing the same
WO1997041589A1 (en) External electrode fluorescent lamp and illumination unit
JP2729994B2 (en) Fluorescent lamp
GB2165392A (en) Arc tubes
JPS61185857A (en) Electrodeless discharge lamp
JP2729995B2 (en) Fluorescent lamp
US4695763A (en) Reflector type fluorescent lamp for optical apparatus
JP3509551B2 (en) Light source device with external electrode type discharge lamp
JP3616299B2 (en) Line light source and image sensor using the same
JPH10284008A (en) External electrode type fluorescent lamp
JP3576661B2 (en) Rare gas discharge lamp
JPH0345510U (en)
JPH01143130A (en) Fluorescent lamp
JPS6349344B2 (en)
JPH0449222B2 (en)
JPH0456421B2 (en)
JPS62219457A (en) Illuminator
JPH0727773B2 (en) Discharge lamp
JP3346290B2 (en) External electrode type fluorescent lamp
JP2002190919A (en) Contact type imaging apparatus
JP3139077B2 (en) Low pressure discharge lamp
JP2839251B2 (en) Lighting method of rare gas fluorescent lamp
JPH07105916A (en) Discharge lamp, its associate device, document illuminating device, and image forming device
JPS63292562A (en) Electrodeless discharge lamp apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees