JP2729213B2 - Manufacturing method of dielectric resonator - Google Patents

Manufacturing method of dielectric resonator

Info

Publication number
JP2729213B2
JP2729213B2 JP27993387A JP27993387A JP2729213B2 JP 2729213 B2 JP2729213 B2 JP 2729213B2 JP 27993387 A JP27993387 A JP 27993387A JP 27993387 A JP27993387 A JP 27993387A JP 2729213 B2 JP2729213 B2 JP 2729213B2
Authority
JP
Japan
Prior art keywords
dielectric
resonator
case
manufacturing
dielectric resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27993387A
Other languages
Japanese (ja)
Other versions
JPH01120902A (en
Inventor
陽次 礒田
守泰 宮崎
修己 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27993387A priority Critical patent/JP2729213B2/en
Publication of JPH01120902A publication Critical patent/JPH01120902A/en
Application granted granted Critical
Publication of JP2729213B2 publication Critical patent/JP2729213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、VHF帯,UHF帯,マイクロ波帯及びミリ波
帯で使用される誘電体共振器の製造方法に関するもので
ある。 〔従来の技術〕 従来の、例えば特公昭58−29882号公報および実公昭6
1−41286号公報に示された誘電体共振器を第3図(a)
および第3図(b)に示す。 第3図(a)において、1は共振器の外導体、2は内
導体、3は外導体1と内導体2の間に充填された誘電体
である。第3図(b)において、4は金属ケース、5は
誘電体、6はこの誘電体5を支持する支持台である。第
3図(a)の誘電体共振器は同軸形TEMモード共振器で
あり、内導体2の一端が外導体1と接続されて短絡端と
なり、他端は開放端となっている。内導体2の長さは1/
4波長であるが、充填された誘電体3の効果により短縮
されている。 また、第3図(b)の誘電体共振器は、TEMモード以
外のモードすなわちTE01δモードあるいはHE11δモード
で共振する共振器であり、誘電体5が低損失であればか
なり大きな無負荷Qが得られる。 〔発明が解決しようとする問題点〕 従来の誘電体共振器は以上のように構成されているの
で、外,内導体1,2あるいは金属ケース4に銅,銀等の
金属を用いているが、導電率が有限であり、無負荷Qの
大きさに限界があった。また、第3図(b)の誘電体共
振器のように金属ケース4の中に誘電体5を支持状態で
配置するという構造では部品数が多く、製造コストが高
くなるという問題があった。さらに、金属ケース4と誘
電体5の間に隙間が生じるが、温度が変化すると、金属
ケース4と誘電体5の線膨張係数の差によって隙間が変
化し、共振周波数が大きく変化するという問題があっ
た。 この発明は上記のような問題点を解消するためになさ
れたもので、大きな無負荷Qが得られると共に、製造が
容易で製造コストが安価となり、しかも、共振器と誘電
体との間に隙間が生じない誘電体共振器を得ることを目
的とする。 〔問題点を解決するための手段〕 この発明に係る誘電体共振器の製造方法は共振器ケー
スを超電導材料で形成し、この共振器ケース内部に収納
した誘電体材料をプレス圧を加えながら焼成する。 〔作用〕 この発明における誘電体共振器は、超電導材料と誘電
体材料をプレス成形しながら焼成するので超電導材料と
誘電体材料の間に隙間が生じず、しかも、温度変化に対
しても決定である。また、超電導材料を用いているた
め、大きな無負荷Qが得られる。 〔発明の実施例〕 以下、この発明の一実施例を第1図に基づいて説明す
る。第1図において、15は共振器ケースであり、これは
超電導材料で形成された外導体10及び内導体20より構成
される。この共振器ケース15は、円筒状の外導体10の筒
中央部に、この外導体10より小径の同筒状の内導体20を
有しており、上記外導体10の内壁10Sと、内導体20の外
壁20Sとの間でリング状の収納空間15aを区画するように
プレス加工される。30はこの収納空間15aに収納される
誘電体で、あらかじめリング状にプレス加工されてい
る。この誘電体30を共振器ケース15の収納空間15aに挿
入した状態で再度プレスしながら焼成すれば、誘電体30
と外導体10,内導体20の間に隙間もなく、一体成形され
た誘電体共振器となる。また、誘電体30と超電導材料の
焼成温度および焼成時の収縮率を同一に設定しておけ
ば、焼成後も変形することがない。 次に、この発明の他の実施例を第2図(a),(b)
に基づき説明する。各図において、40は超電導材料で形
成された円筒状の共振器ケース、41は共振器ケース40内
に挿入される誘電体で、中央に円柱状の中空部41aが形
成されたリング状のものより成る。42は上記誘電体41の
中空部41a内に挿入される円柱状の誘電体であり、これ
は円柱の長さ方向における両端側を構成する誘電体45,4
5と、中央側を構成する誘電体50より成る。上記誘電体4
1及び誘電体45,45は比誘電率が小さく、誘電体50はこれ
らよりも大きな比誘電率を有している。上記ケース40,
誘電体41,42はまずそれぞれ別個にプレス加工され、こ
れらを組み立て、再びプレスで変形しながら焼成する。
これにより、第2図(b)に示すような断面形状を持つ
誘電体共振器となる。 上記各実施例によれば、共振器ケース15,40を超電導
材料で形成したので、大きな無負荷Qが得られる。ま
た、共振器ケース15と誘電体30及び共振器ケース40と誘
電体41,42をプレスしながら焼成するので、共振器ケー
スと誘電体との間に隙間が生じず、しかも、温度変化に
対しても安定な誘電体共振器が得られる。さらに、一体
成形されるので、製造が容易となり製造コストが安価と
なる。 なお、上記実施例では、円筒形の共振器を製造する場
合について説明したが、この発明の誘電体共振器の製造
方法によれば共振器の形状は円筒形に限定されるもので
はなく、方形,三角形あるいはその他の形状に形成可能
である。 〔発明の効果〕 以上説明したように、この発明の誘電体共振器の製造
方法によれば、共振器ケースを超電導材料で形成し、こ
の共振器ケース内部に収納した誘電体材料をプレスしな
がら焼成したので、共振器の製造が容易となり、製造コ
ストが安価となる。また、超電導材料と誘電体材料の隙
間がなく、しかも、温度変化に対して安定で、かつ、大
きな無負荷Qが得られる誘電体共振器を製造することが
できる。
The present invention relates to a method of manufacturing a dielectric resonator used in a VHF band, a UHF band, a microwave band, and a millimeter wave band. [Prior Art] Conventionally, for example, Japanese Patent Publication No. 58-29882 and
FIG. 3 (a) shows a dielectric resonator disclosed in JP-A-1-41286.
And FIG. 3 (b). In FIG. 3 (a), 1 is an outer conductor of the resonator, 2 is an inner conductor, and 3 is a dielectric filled between the outer conductor 1 and the inner conductor 2. In FIG. 3 (b), 4 is a metal case, 5 is a dielectric, and 6 is a support for supporting the dielectric 5. The dielectric resonator shown in FIG. 3A is a coaxial TEM mode resonator. One end of the inner conductor 2 is connected to the outer conductor 1 to form a short-circuit end, and the other end is an open end. The length of the inner conductor 2 is 1 /
4 wavelengths, but shortened by the effect of the filled dielectric 3. The dielectric resonator shown in FIG. 3 (b) is a resonator that resonates in a mode other than the TEM mode, that is, in the TE01δ mode or the HE11δ mode. Is obtained. [Problems to be Solved by the Invention] Since the conventional dielectric resonator is configured as described above, a metal such as copper or silver is used for the outer and inner conductors 1 and 2 or the metal case 4. And the conductivity was finite, and the size of the no-load Q was limited. Further, the structure in which the dielectric 5 is disposed in the metal case 4 in a supported state as in the dielectric resonator shown in FIG. 3B has a problem that the number of components is large and the manufacturing cost is increased. Further, a gap is formed between the metal case 4 and the dielectric 5. However, when the temperature changes, the gap changes due to a difference in linear expansion coefficient between the metal case 4 and the dielectric 5, and the resonance frequency greatly changes. there were. SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. A large no-load Q can be obtained, the manufacturing is easy and the manufacturing cost is low, and a gap between the resonator and the dielectric is required. It is an object of the present invention to obtain a dielectric resonator that does not cause the problem. [Means for Solving the Problems] In a method for manufacturing a dielectric resonator according to the present invention, a resonator case is formed of a superconducting material, and the dielectric material housed inside the resonator case is fired while applying a pressing pressure. I do. [Operation] Since the dielectric resonator of the present invention is fired while press-molding the superconducting material and the dielectric material, there is no gap between the superconducting material and the dielectric material, and the temperature change can be determined. is there. Further, since a superconducting material is used, a large no-load Q can be obtained. An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, reference numeral 15 denotes a resonator case, which comprises an outer conductor 10 and an inner conductor 20 formed of a superconducting material. The resonator case 15 has an inner conductor 20 having a smaller diameter than the outer conductor 10 in the center of the cylindrical outer conductor 10, and an inner wall 10S of the outer conductor 10 and an inner conductor 10S. Press processing is performed so as to define a ring-shaped storage space 15a between the outer wall 20S and the outer wall 20S. Reference numeral 30 denotes a dielectric housed in the housing space 15a, which has been pressed in a ring shape in advance. If the dielectric 30 is inserted into the storage space 15a of the resonator case 15 and fired while pressing again, the dielectric 30
There is no gap between the outer conductor 10, the inner conductor 20, and the dielectric resonator is integrally formed. In addition, if the firing temperature and the shrinkage ratio during firing of the dielectric 30 and the superconducting material are set to be the same, there is no deformation after firing. Next, another embodiment of the present invention will be described with reference to FIGS. 2 (a) and 2 (b).
It will be described based on. In each figure, 40 is a cylindrical resonator case formed of a superconducting material, 41 is a dielectric inserted into the resonator case 40, and has a ring shape in which a cylindrical hollow portion 41a is formed in the center. Consisting of Reference numeral 42 denotes a cylindrical dielectric inserted into the hollow portion 41a of the dielectric 41, which is a dielectric 45, 4 constituting both ends in the length direction of the cylinder.
5 and a dielectric 50 constituting the center side. Above dielectric 4
1 and the dielectrics 45, 45 have a small relative dielectric constant, and the dielectric 50 has a relative dielectric constant larger than these. Case 40 above,
First, the dielectrics 41 and 42 are separately pressed, assembled, and fired while deforming again by pressing.
Thus, a dielectric resonator having a cross-sectional shape as shown in FIG. 2 (b) is obtained. According to the above embodiments, since the resonator cases 15, 40 are formed of a superconducting material, a large no-load Q can be obtained. In addition, since the baking is performed while pressing the resonator case 15 and the dielectric 30 and the resonator case 40 and the dielectrics 41 and 42, no gap is generated between the resonator case and the dielectric, and furthermore, with respect to a temperature change. However, a stable dielectric resonator can be obtained. Furthermore, since it is integrally molded, the production is easy and the production cost is low. In the above embodiment, the case where a cylindrical resonator is manufactured has been described. However, according to the method for manufacturing a dielectric resonator of the present invention, the shape of the resonator is not limited to a cylindrical shape, but may be a square shape. , Triangles or other shapes. [Effects of the Invention] As described above, according to the method of manufacturing a dielectric resonator of the present invention, the resonator case is formed of a superconducting material, and the dielectric material housed inside the resonator case is pressed while being pressed. Since it is fired, the manufacture of the resonator becomes easy and the manufacturing cost is reduced. Further, it is possible to manufacture a dielectric resonator which has no gap between the superconducting material and the dielectric material, is stable against temperature change, and can obtain a large no-load Q.

【図面の簡単な説明】 第1図はこの発明の誘電体共振器の製造方法の一実施例
による誘電体共振器を示す分解構成図、第2図(a),
(b)はこの発明の他の実施例を示す分解構成図及び断
面図、第3図(a),(b)は従来の誘電体共振器の一
例を示す構成図である。 15,40……共振器ケース、30,41,42……誘電体。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded view showing a dielectric resonator according to an embodiment of a method for manufacturing a dielectric resonator according to the present invention, and FIGS.
FIG. 3B is an exploded configuration diagram and a sectional view showing another embodiment of the present invention, and FIGS. 3A and 3B are configuration diagrams showing an example of a conventional dielectric resonator. 15, 40: resonator case, 30, 41, 42: dielectric.

Claims (1)

(57)【特許請求の範囲】 1.共振器ケースの内部に誘電体を配置あるいは充填し
て成る誘電体共振器の製造方法において、 上記共振器ケースを超電導材料で形成し、この共振器ケ
ース内部に収納した誘電体材料をプレス圧を加えながら
焼成したことを特徴とする誘電体共振器の製造方法。
(57) [Claims] In a method for manufacturing a dielectric resonator, in which a dielectric is placed or filled in a resonator case, the resonator case is formed of a superconducting material, and the dielectric material housed inside the resonator case is subjected to a pressing pressure. A method for manufacturing a dielectric resonator, characterized by firing while adding.
JP27993387A 1987-11-05 1987-11-05 Manufacturing method of dielectric resonator Expired - Fee Related JP2729213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27993387A JP2729213B2 (en) 1987-11-05 1987-11-05 Manufacturing method of dielectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27993387A JP2729213B2 (en) 1987-11-05 1987-11-05 Manufacturing method of dielectric resonator

Publications (2)

Publication Number Publication Date
JPH01120902A JPH01120902A (en) 1989-05-12
JP2729213B2 true JP2729213B2 (en) 1998-03-18

Family

ID=17617937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27993387A Expired - Fee Related JP2729213B2 (en) 1987-11-05 1987-11-05 Manufacturing method of dielectric resonator

Country Status (1)

Country Link
JP (1) JP2729213B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790179B2 (en) * 1987-12-10 1998-08-27 株式会社村田製作所 Dielectric coaxial resonator
JPH0343301U (en) * 1989-08-29 1991-04-23
JPH06296107A (en) * 1993-04-08 1994-10-21 Fuji Elelctrochem Co Ltd Manufacture of dielectric resonator

Also Published As

Publication number Publication date
JPH01120902A (en) 1989-05-12

Similar Documents

Publication Publication Date Title
US5047739A (en) Transmission line resonator
US5059929A (en) Dielectric resonator
EP0434296A2 (en) Dielectric resonator, filter device using same and method of producing such dielectric resonator
JP2729213B2 (en) Manufacturing method of dielectric resonator
US4271399A (en) Dielectric resonator for VHF to microwave region
US4942377A (en) Rod type dielectric resonating device with coupling plates
JP2572344B2 (en) Dielectric resonator and band-pass filter using this resonator
US4365221A (en) Helical resonator filter with dielectric apertures
JPS6390201A (en) Dielectric filter
JPH09219315A (en) Inductor built-in electronic component
JPS6160601B2 (en)
JP2651713B2 (en) Dielectric filter with suppressed higher order mode resonance.
JPS6143287Y2 (en)
JPS58108802A (en) Dielectric-loaded coaxial resonator
JPH03143103A (en) Dielectric resonator
JP2552520B2 (en) NRD guide filter
JPS59161B2 (en) Filter using coaxial resonator
JPH0526802Y2 (en)
JPS625526B2 (en)
JPH0133042B2 (en)
Elfeshawy et al. Quadruple-Mode Wideband Bandpass Filter Using Symmetric Structure in Single Cylindrical Cavity
JPS6114164Y2 (en)
JPH01258501A (en) Dielectric filter
JPH032966Y2 (en)
JPH0336083Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees