JP2728207B2 - Cooling medium condensation promotion method - Google Patents

Cooling medium condensation promotion method

Info

Publication number
JP2728207B2
JP2728207B2 JP63152136A JP15213688A JP2728207B2 JP 2728207 B2 JP2728207 B2 JP 2728207B2 JP 63152136 A JP63152136 A JP 63152136A JP 15213688 A JP15213688 A JP 15213688A JP 2728207 B2 JP2728207 B2 JP 2728207B2
Authority
JP
Japan
Prior art keywords
water
air
temperature
heat
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63152136A
Other languages
Japanese (ja)
Other versions
JPH024181A (en
Inventor
精二郎 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENU TEI TEI RIISU KK
SUISO ENERUGII KENKYUSHO KK
Original Assignee
ENU TEI TEI RIISU KK
SUISO ENERUGII KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENU TEI TEI RIISU KK, SUISO ENERUGII KENKYUSHO KK filed Critical ENU TEI TEI RIISU KK
Priority to JP63152136A priority Critical patent/JP2728207B2/en
Publication of JPH024181A publication Critical patent/JPH024181A/en
Application granted granted Critical
Publication of JP2728207B2 publication Critical patent/JP2728207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/041Details of condensers of evaporative condensers

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷媒の圧縮式及び熱駆動式のサイクルを利
用した冷凍機における、放熱能力を向上させて冷却能力
の低下を抑制することにより、冷凍機を円滑に作動させ
るための方法に関するものであり、自動車、電車、船舶
などの移動体や住宅、事務所、工場などの固定設備に設
置された冷凍機に好適に用いることができる。
Description: BACKGROUND OF THE INVENTION The present invention relates to a refrigeration system using a refrigerant compression-type and heat-drive-type cycle, by improving the heat radiation capacity and suppressing the cooling capacity from decreasing. The present invention relates to a method for operating a machine smoothly, and it can be suitably used for a refrigerator installed in a movable body such as an automobile, a train, a ship, or a fixed facility such as a house, an office, or a factory.

従来の技術 冷媒の圧縮式及び熱駆動式のサイクルを利用した冷凍
機、いわゆる圧縮冷凍機は、蒸発器から蒸発してきた冷
媒の蒸気を圧縮するための圧縮機、圧縮機で圧縮された
冷媒の蒸気を冷却し、凝縮するための凝縮器、凝縮され
た液体冷媒を低圧の蒸発器に適正量送り出すための膨張
弁及び液体冷媒を蒸発して周囲を冷却するための蒸発器
から構成されている。ところで、上記の凝縮器において
は、冷媒の液化に際して発生する熱を連続的に除去する
ことが必要であるが、その方法としては、これまで、放
熱部に水を循環させ、凝縮器内部の温度と水温との温度
差を利用して熱を除去する水冷式、水の代りに空気を用
いる空冷式が知られている。
2. Description of the Related Art A refrigerator using a refrigerant compression type and a heat driven type cycle, a so-called compression refrigerator, is a compressor for compressing refrigerant vapor evaporated from an evaporator, and a refrigerant compressed by the compressor. It is composed of a condenser for cooling and condensing the vapor, an expansion valve for sending the condensed liquid refrigerant to a low-pressure evaporator in an appropriate amount, and an evaporator for evaporating the liquid refrigerant and cooling the surroundings. . By the way, in the above-mentioned condenser, it is necessary to continuously remove the heat generated during the liquefaction of the refrigerant. A water-cooled type that removes heat by using a temperature difference between water and a water temperature, and an air-cooled type that uses air instead of water are known.

しかし、水冷式は、多量の水を常時循環させる必要が
あるため、設備全体が大型化するのを免れず、自動車、
電車のような移動体に取り付けるには不便である。この
ような水冷式の欠点を改良したものとして、水を薄膜状
で放熱面に供給し、水の蒸気熱を利用して冷媒の冷却を
行う、いわゆる蒸発式のものが提案されている。このも
のは水冷式に比べ理論上の水の使用量を数%程度でよい
筈であるが、実際には放熱面を常に水膜でおおう必要が
ある上、蒸発した水量を補充しなければならないため、
それほど減少させることができないし、また蒸発に従っ
て水中の不純物が濃縮され、接触面の腐食、汚染など望
ましくない事態を招くため、ときどき水を交換しなけれ
ばならないという欠点がある。
However, the water-cooled type requires constant circulation of a large amount of water, which inevitably increases the size of the entire equipment.
It is inconvenient to attach to a moving object such as a train. As an improvement over the water-cooled type, there has been proposed a so-called evaporative type in which water is supplied to a heat radiation surface in a thin film form and the refrigerant is cooled by utilizing the steam heat of water. In this case, the theoretical amount of water used should be about several percent compared to the water-cooled type. However, in practice, the heat radiation surface must always be covered with a water film, and the amount of evaporated water must be replenished. For,
It has the disadvantage that it cannot be reduced so much and that the impurities in the water are concentrated as it evaporates, which leads to undesired situations such as corrosion and contamination of the contact surfaces, so that the water must be changed from time to time.

以上の理由で現在用いられている圧縮冷凍機は一部の
産業用を除き、ほとんどが空冷式である。
For the above reasons, most of the compression refrigerators currently used are air-cooled except for some industrial ones.

ところで、この空冷式凝縮器は、空気との熱交換のた
めの放熱部を有しているが、一般にこの部分の伝熱係数
が10〜30kcal/m2・hr・℃と低いため、プレート式又は
コルゲート式のフィンが備えられ、空気との接触面積を
増大させている。しかしながら、冷凍機の容量が増し、
放熱量が多くなるのに対応させるためには、より大きい
フィンを設け、さらにこの部分に供給する空気の流速を
十分に速くしうるように送風機を大型化する必要がある
が、配設場所の関係で、それにはおのずから限度があ
る。
Meanwhile, the air-cooled condenser, has the heat radiation portion for heat exchange with air, generally for heat transfer coefficient of this part is low and 10~30kcal / m 2 · hr · ℃ , plate type Alternatively, corrugated fins are provided to increase the contact area with air. However, the capacity of the refrigerator has increased,
In order to cope with an increase in the amount of heat radiation, it is necessary to provide a larger fin and further increase the size of the blower so that the flow velocity of the air supplied to this portion can be sufficiently increased. In relation, it naturally has its limits.

一方において、空冷式凝縮器の周囲条件が凝縮器の能
力の許容限度を越える場合、例えば空気温度が上昇し、
冷媒と空気との温度差が小さくなり、冷媒の凝縮に必要
な熱量の除去に追従できなくなった場合には、凝縮器を
作動させてもその内部が臨界状態に達し、正常な冷媒の
液化が行われず、したがって、冷凍機の冷却能力が失わ
れる結果になる。特に自動車、電車のような移動体の場
合は、凝縮器を常にその能力限度内の条件下、例えば日
陰や風通しの良い場所にのみ置くことは困難なので、冷
却能力の低下が著しく、交通渋滞などでは設計値の50%
以上になるような状態にもしばしば遭遇する。また、放
熱温度の上昇によって冷媒圧力が上昇する結果、冷凍機
の安全限界を超える圧力が発生し、安全装置が作動して
運転停止となる場合もある。
On the other hand, if the ambient conditions of the air-cooled condenser exceed the permissible limit of the capacity of the condenser, for example, the air temperature rises,
If the temperature difference between the refrigerant and the air becomes smaller and it becomes impossible to follow the removal of the heat required for the condensation of the refrigerant, the inside of the condenser will reach a critical state even when the condenser is operated, and the normal refrigerant liquefaction will occur. No, resulting in loss of cooling capacity of the refrigerator. Especially in the case of moving objects such as automobiles and trains, it is difficult to always place the condenser in a condition within its capacity limit, for example, only in a shaded or well-ventilated place. Then 50% of the design value
Such situations are often encountered. Further, as a result of an increase in the refrigerant pressure due to an increase in the heat radiation temperature, a pressure exceeding the safety limit of the refrigerator may be generated, and the safety device may be activated to stop the operation.

このような、圧縮冷凍機の熱交換能力の低下を防止す
る方法として、室外側交換器に微小液滴を噴霧する方
法、すなわち前記した蒸発式凝縮器を利用することが提
案されている(特公昭60−40583号公報)。
As a method for preventing such a decrease in the heat exchange capacity of the compression refrigerator, it has been proposed to spray fine droplets on the outdoor exchanger, that is, to use the above-mentioned evaporative condenser (particularly). Japanese Patent Publication No. 60-40583).

しかしながら、伝熱面に液滴を噴霧したのみでは、過
剰な液体の噴霧によって伝熱面に厚い液膜を生成し、液
体の蒸発によって凝縮器の放熱を促進しようとしている
にもかかわらず、放熱部からの熱は液膜の伝熱面側から
熱交換されるため、液膜の空気側とは反対側から蒸発が
起こることのなり、この場合液膜の存在が蒸発を阻害す
ることになる。さらに液膜の存在によって空気との熱交
換が困難となることから、単に液滴を噴霧しただけでは
凝縮器の放熱作用を低下させる欠点を有している。ま
た、放熱部で蒸発しきれない過剰な液体の噴霧は、常に
凝縮器を濡らす状態を発生させるとともに、空気と同伴
して液状の水分飛沫が装置内に付着する等の問題が起こ
り、冷凍機の故障の原因となることもある。また、空冷
式の熱交換器の場合でも被冷却媒体が凝縮するか冷却さ
れるかの違いのみであり、空気側の放熱に関しては凝縮
器の場合と同様の現象が起こる。
However, simply spraying liquid droplets on the heat transfer surface creates a thick liquid film on the heat transfer surface due to excessive liquid spray, and despite the fact that the liquid evaporates to promote heat dissipation of the condenser, Since heat from the part is exchanged from the heat transfer surface side of the liquid film, evaporation will occur from the opposite side of the liquid film from the air side, in which case the presence of the liquid film will inhibit evaporation . Further, since heat exchange with air becomes difficult due to the presence of the liquid film, there is a disadvantage that merely spraying the droplets lowers the heat radiation effect of the condenser. In addition, spraying of excess liquid that cannot be completely evaporated in the heat radiating section always causes a state in which the condenser is wetted, and also causes a problem that liquid moisture droplets adhere to the inside of the device together with air, and the refrigerator has a problem. May cause a malfunction. In the case of an air-cooled heat exchanger, the only difference is whether the medium to be cooled is condensed or cooled, and the same phenomenon as in the case of the condenser occurs with respect to heat radiation on the air side.

発明が解決しようとする課題 本発明は、従来の空冷式凝縮器がもつ前記した欠点を
克服し、その許容能力を超えた周囲条件下においても、
円滑に機能を発揮させるための、簡単な冷却促進方法を
提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention overcomes the aforementioned disadvantages of conventional air-cooled condensers, and under ambient conditions that exceed their capacity,
It is an object of the present invention to provide a simple cooling promoting method for exerting a function smoothly.

課題を解決するための手段 本発明者らは、圧縮冷凍機特に空冷式凝縮器を有する
圧縮冷凍機の周囲条件の変化による機能低下を防止する
方法について種々研究を重ねた結果、凝縮器内の温度が
冷媒の液化限界温度に達したとき、適量の水を常に連続
して蒸発することが可能な間隔で噴霧状で空気と同伴さ
せて放熱部に供給し、放熱部表面で気化させ、その際の
蒸発潜熱を利用して、内部温度を臨界値以下にもたらす
ことにより、その目的を達成しうることを見出し、この
知見に基づいて本発明をなすに至った。
Means for Solving the Problems The present inventors have conducted various studies on a method of preventing a functional deterioration of a compression refrigerator, particularly a compression refrigerator having an air-cooled condenser, due to a change in ambient conditions. When the temperature reaches the liquefaction limit temperature of the refrigerant, an appropriate amount of water is supplied to the heat dissipating part together with air in the form of a spray at intervals capable of evaporating continuously and vaporized on the heat dissipating part surface. It has been found that the purpose can be achieved by using the latent heat of evaporation to bring the internal temperature below the critical value, and the present invention has been accomplished based on this finding.

すなわち、本発明は、放熱部を有する冷凍機の空冷式
凝縮器を作動するに際し、凝縮器内の温度が冷媒の液化
限界温度に達したとき、該放熱部表面に対し、液膜を形
成せず、かつ0.1〜2秒間で蒸発しうる量の水を微細液
滴として空気に同伴させて供給することにより、水の蒸
発潜熱と空気の顕熱を利用して、凝縮器内の温度を冷媒
の液化温度以下に低下させる処理を行うこと及びこの処
理を供給した水が放熱部表面において常に蒸発状態を維
持しうる時間間隔で行うことを特徴とする冷却媒体の凝
縮促進方法を提供するものである。
That is, when operating the air-cooled condenser of the refrigerator having the heat radiating part, the present invention forms a liquid film on the heat radiating part surface when the temperature in the condenser reaches the liquefaction limit temperature of the refrigerant. By supplying the water that can evaporate in 0.1 to 2 seconds as fine droplets along with the air and utilizing the latent heat of evaporation of water and the sensible heat of the air, the temperature inside the condenser is reduced A method for accelerating the condensation of a cooling medium, characterized by performing a process of lowering the temperature to below the liquefaction temperature, and performing the process at a time interval at which water supplied with the process can always maintain an evaporating state on the surface of the radiator. is there.

本発明方法における、水の供給量としては、放熱部表
面に対し、液膜を形成させず、かつ0.1〜2秒間で蒸発
しうる量とすることが必要である。この水の中には、所
望に応じ伝熱促進剤、蒸発促進剤、洗浄剤、防錆剤など
を添加して、気化の促進あるいは器材の腐食、汚染の防
止をはかることができる。
In the method of the present invention, the supply amount of water needs to be an amount capable of evaporating in 0.1 to 2 seconds without forming a liquid film on the surface of the heat radiating portion. Into the water, a heat transfer promoter, an evaporation promoter, a cleaning agent, a rust inhibitor, and the like can be added as required to promote vaporization or prevent corrosion and contamination of equipment.

本発明方法によれば、最適量の水を散布し、その水の
蒸発潜熱を利用する場合、蒸発潜熱が560kcal/kgと空気
に比べて格段に大きく、適量の水の散布によって空気に
よる放熱量の不足分を補うことが可能であり、また、一
定温度で水の蒸発が起きることから、放熱部の温度を下
げることもでき、空気温度の上昇による冷却能力の低下
も避けられる。さらに、放熱温度の低下は冷媒の作動圧
力を低下させることが可能となり、それによって冷凍機
の正常運転や冷凍サイクル上の性能の向上につながる。
また、空気と同伴させることによっては、凝縮器に入る
前に水が空気中で蒸発し、それによって空気の温度を低
下させることができるとともに、放熱部へ散布された水
の蒸発時の伝熱係数は空気に比べて100倍以上であり、
放熱部での伝熱特性の向上による冷却能力の向上もはか
れることが分かった。この場合、水の散布量、空気との
熱交換量および冷媒の凝縮量との関係は次式で示され
る。
According to the method of the present invention, when an optimal amount of water is sprayed and the latent heat of evaporation of the water is used, the latent heat of evaporation is 560 kcal / kg, which is much larger than that of air. Can be compensated for, and since water evaporates at a constant temperature, the temperature of the heat radiating section can be reduced, and a decrease in cooling capacity due to an increase in air temperature can be avoided. Further, the lowering of the heat radiation temperature makes it possible to lower the operating pressure of the refrigerant, which leads to the normal operation of the refrigerator and the improvement of the performance on the refrigeration cycle.
Also, depending on the entrainment with the air, the water evaporates in the air before entering the condenser, thereby lowering the temperature of the air, and the heat transfer during the evaporation of the water sprayed to the heat radiating portion. The coefficient is more than 100 times that of air,
It has been found that the cooling capacity can be improved by improving the heat transfer characteristics in the heat radiating section. In this case, the relationship between the amount of water sprayed, the amount of heat exchange with air, and the amount of refrigerant condensed is expressed by the following equation.

ΔHc・Wc・(1−x)=Ca・Wa・Δta+y・ΔHw …(1) ΔHc:冷媒の凝縮潜熱[kcal/kg] Wc:冷媒の流量[kg/hr] x:乾き度[−] Ca:空気の比熱[kcal/kg・℃] Wa:空気流量[kg/hr] Δta:凝縮器での空気の出入口温度差[℃] y:水の散布量[kg/hr] ΔHw:水の蒸発潜熱[kcal/kg] 水を散布しない場合は、上式の右辺第2項のy・ΔHw
がない場合であり、空気温度の上昇によって冷媒との温
度差が減少すると、空気との熱交換が十分に行われずΔ
taが減少し、その結果冷媒の乾き度xが上昇する。xの
上昇は冷媒が完全に凝縮しないことを意味しており、こ
の場合の冷却能力は低下する。
ΔHc · Wc · (1−x) = Ca · Wa · Δta + y · ΔHw (1) ΔHc: Latent heat of condensation of refrigerant [kcal / kg] Wc: Flow rate of refrigerant [kg / hr] x: Dryness [−] Ca : Specific heat of air [kcal / kg · ° C] Wa: Air flow rate [kg / hr] Δta: Temperature difference between inlet and outlet of air in condenser [° C] y: Sprayed amount of water [kg / hr] ΔHw: Evaporation of water Latent heat [kcal / kg] When water is not sprayed, y · ΔHw in the second term on the right side of the above equation
When the temperature difference with the refrigerant decreases due to the increase in the air temperature, heat exchange with the air is not sufficiently performed, and Δ
ta decreases, and as a result, the dryness x of the refrigerant increases. An increase in x means that the refrigerant does not completely condense, and the cooling capacity in this case decreases.

また、車載用等の移動式のものは、走行時と停止時と
では冷却用空気流量Waが異なり、停止時はWaが減少する
ために乾き度xが増加し、冷却能力が低下する。これに
対し、本発明方法は、空気と同伴して凝縮器に水を常に
蒸発状態を維持しうる時間間隔で散布し、この散布した
水が蒸発する時の潜熱を利用して、ΔtaもしくはWaの減
少に伴う乾き度xの増加を防止し、凝縮器での冷媒の液
化を促進させて、乾き度を0に近づけようとしたもので
ある。したがって、水の散布量yは乾き度を0とする最
適条件が存在する。従来までのように凝縮器に常時水を
噴霧することにより、噴霧した水の量が最適値よりも過
剰となる場合、凝縮器の放熱面で蒸発しきれない液体が
残存し、その液体が厚い液膜を形成することにより空気
との熱交換および液体の放熱面側からの好適な蒸発を阻
害することが発生するが、本方法によればそのような現
象は生じない。
In addition, in the case of a mobile type such as a vehicle-mounted type, the cooling air flow rate Wa differs between when the vehicle is running and when the vehicle is stopped, and when the vehicle is stopped, the dryness x increases because the Wa decreases. On the other hand, in the method of the present invention, water is sprayed to the condenser together with air at a time interval capable of always maintaining an evaporating state, and the latent heat generated when the sprayed water evaporates is used to make Δta or Wa This is intended to prevent the increase in the dryness x due to the decrease in the dryness, promote the liquefaction of the refrigerant in the condenser, and bring the dryness close to zero. Therefore, there is an optimum condition for setting the degree of dryness to 0 for the spray amount y of water. If the amount of sprayed water becomes more than the optimal value by spraying water constantly to the condenser as before, liquid that cannot be evaporated remains on the heat dissipation surface of the condenser, and the liquid is thick The formation of the liquid film impedes the heat exchange with the air and the preferable evaporation of the liquid from the heat dissipation surface side. However, according to the present method, such a phenomenon does not occur.

本発明方法における水の散布は、適度に散布した水が
放熱面より蒸発すると同時に次回の散布が行われること
を特徴としており、それによって最も有効な凝縮器での
放熱を行おうとするもので、そのため水の散布は適切な
間隔で実施される。ここで、散布量と散布間隔との関係
は次式のようになる y :散布量[kg/hr] A :放熱部の伝熱面積[m2] t :散布した液が放熱部に付着した場合の厚さ[m] ρ :液の密度[kg/m3] θ1:散布に要する時間[sec] θ2:水の蒸発に要する時間[sec] 例えば自動車、家庭室内冷房用などの冷凍機において
は、θは0.1〜2秒、yは放熱部の単位面積(cm2)当
り、10〜100mg程度が適当である。
The spraying of water in the method of the present invention is characterized in that the next spraying is carried out at the same time that the moderately sprayed water evaporates from the heat radiation surface, thereby attempting to radiate heat in the most effective condenser, Therefore, water spraying is performed at appropriate intervals. Here, the relation between the spraying amount and the spraying interval is as follows: y: Spraying amount [kg / hr] A: Heat transfer area of heat radiating part [m 2 ] t: Thickness when sprayed liquid adheres to heat radiating part [m] ρ: Liquid density [kg / m 3 ] θ 1 : time required for spraying [sec] θ 2 : time required for evaporation of water [sec] For example, in refrigerators for automobiles, home-room cooling, etc., θ 2 is 0.1 to 2 seconds, and y is the unit of the radiator. About 10 to 100 mg per area (cm 2 ) is appropriate.

実施例 次に添付図面に従って本発明の実施例を説明する。第
1図は本発明方法の実施態様の1例を示す説明図で、凝
縮器1、その放熱部2から構成された空冷式凝縮器の放
熱部に、ノズル4で発生させた水の微細液滴を送風機3
から送られる空気に同伴させて供給する。この水はタン
ク6からポンプ5によりノズル4に送られ、かつこのノ
ズル4への水の供給は、タイマー7により制御されてい
る。
Embodiment Next, an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is an explanatory view showing an example of an embodiment of the method of the present invention, in which a fine liquid of water generated by a nozzle 4 is supplied to a heat radiating portion of an air-cooled condenser composed of a condenser 1 and a heat radiating portion 2 thereof. Blower 3 for drops
It is supplied together with the air sent from. This water is sent from a tank 6 to a nozzle 4 by a pump 5, and the supply of water to the nozzle 4 is controlled by a timer 7.

凝縮器1の中で冷媒Aは凝縮され、膨張弁8を経て蒸
発器9へ送られ、気化される。一般に空冷式では空気と
冷媒との熱交換能力が低いため、放熱部2にフィンを取
付け、さらに送風機3の能力を高めて空気量を増やす方
法がとられている。この場合、送風機を含む凝縮器の容
量が大きくなり、加えて空気温度が上昇すると放熱部で
の熱交換量は大幅に低下する。その改善方法として、タ
ンク6に充填された水をポンプ5によってノズル4に送
り、ノズル4で水を凝縮器の放熱部2に散布する方法が
ある。この方法では放熱部2に散布された水は、放熱部
において蒸発し、蒸発する時の潜熱を放熱部から奪うこ
とで、凝縮器体の冷媒が冷却される。この蒸発は一定温
度で起こり、ノズル4から放熱部2までの間に、送風機
3から送られた空気と混合し、その部分での蒸発によっ
て空気の温度を下げる効果もあることから、放熱部の温
度の低下にも有効である。さらに、蒸発による伝熱係数
は空気に比べて大幅に大きいことから、凝縮器内の冷媒
の冷却効果は高い。
The refrigerant A is condensed in the condenser 1, sent to the evaporator 9 via the expansion valve 8, and vaporized. In general, the air-cooled type has a low heat exchange capacity between air and a refrigerant. Therefore, a method has been adopted in which fins are attached to the heat radiating section 2 and the capacity of the blower 3 is further increased to increase the amount of air. In this case, the capacity of the condenser including the blower becomes large, and in addition, when the air temperature rises, the amount of heat exchange in the heat radiating portion is greatly reduced. As an improvement method, there is a method in which the water filled in the tank 6 is sent to the nozzle 4 by the pump 5, and the water is sprayed to the heat radiating portion 2 of the condenser by the nozzle 4. In this method, the water sprayed to the heat radiating section 2 evaporates in the heat radiating section, and the latent heat at the time of evaporation is removed from the heat radiating section, whereby the refrigerant in the condenser body is cooled. This evaporation occurs at a constant temperature and is mixed with the air sent from the blower 3 between the nozzle 4 and the heat radiating portion 2, and has an effect of lowering the temperature of the air by evaporation at that portion. It is also effective in lowering the temperature. Furthermore, since the heat transfer coefficient by evaporation is much larger than that of air, the cooling effect of the refrigerant in the condenser is high.

しかしながら、水の噴霧は放熱部での空気との熱交換
の不足分を補うもので、冷媒の液化に必要とする熱量以
上の過剰な量の水を供給した場合、蒸発しきれない水が
放熱部表面に残存し、それが厚い液膜を形成することに
伴う熱交換の阻害作用が発生する。したがって、本発明
では、ポンプ5による水の供給をタイマー7を用いて所
定量の水を散布後いったん停止し、散布した水が蒸発す
ると同時に再び水を散布するように、水が常に蒸発状態
を維持しうる時間間隔で行うことで水の蒸発が円滑に行
われることを特徴としている。これによって、放熱部か
らの伝熱が最良の状態で行われる。
However, the spray of water compensates for the shortage of heat exchange with air in the radiator, and if an excess amount of water is supplied that is more than the amount of heat required for liquefaction of the refrigerant, water that cannot be evaporated will radiate heat. It remains on the surface of the part and causes an action of inhibiting heat exchange due to the formation of a thick liquid film. Therefore, in the present invention, the supply of water by the pump 5 is stopped once after spraying a predetermined amount of water using the timer 7, and the water is constantly evaporated so that the sprayed water evaporates and water is sprayed again at the same time. It is characterized in that the water is smoothly evaporated by performing it at a time interval that can be maintained. Thereby, the heat transfer from the heat radiating portion is performed in the best condition.

また、ここで蒸発に用いる水は貯水タンク6に封入さ
れていることから、前記したようなアルコール等の蒸発
や伝熱の容易な物質や水の散布による汚れ、錆を防止す
るための洗浄剤、防錆剤等を添加して使うこともでき
る。
In addition, since the water used for evaporation is sealed in the water storage tank 6, a cleaning agent for preventing substances such as alcohol and the like which are easy to evaporate and heat transfer and dirt and rust due to spraying of water as described above. Rust preventives and the like can be added for use.

第1図においては、貯水タンク6内の水をポンプ5に
よって加圧して散布したが、ポンプが使えない場合、別
途空気圧縮機を用いて貯水タンク6内を加圧し、その圧
力で水を散布する方法もある。その場合、ポンプ5は不
要となるが、適切な間隔での水の散布には水配管中に電
磁弁等を設けて行うことができる。さらに、流体を加圧
する空気の流れのもつ静圧を利用して水を空気と同伴さ
せ、重力液体の表面張力を利用する方法、あるいはこれ
らを複合したものであることも可能である。
In FIG. 1, the water in the water storage tank 6 is sprayed by being pressurized by the pump 5, but when the pump cannot be used, the water in the water storage tank 6 is separately pressurized by using an air compressor, and the water is sprayed by the pressure. There is also a way to do it. In that case, the pump 5 is not required, but water can be sprayed at appropriate intervals by providing an electromagnetic valve or the like in the water pipe. Furthermore, it is also possible to use a static pressure of the flow of air for pressurizing the fluid, entrain water with air, and use the surface tension of the gravitational liquid, or a combination of these methods.

最適散布量は冷凍機の作動条件によって変化するが、
その場合凝縮器内に温度計または圧力計等の検出器を設
け、凝縮器内の冷媒の作動条件を観測し、それに応じて
水の散布間隔を調節する方法が有効である。この場合検
出器より得られた信号を制御器を介してポンプの起動信
号に変換し、それによって散布間隔を調節する方法を用
いることができる。この場合もポンプを用いない時は水
の供給系に電磁弁等を設け、これによって散布間隔を調
節することができる。また、検出器は蒸発器側に取り付
け、冷却出力側で感知することも可能である。さらに蒸
発による水の消費量も補給方法として、空気の冷却に伴
い蒸発器において凝縮した水分をタンクに導き、これを
利用することも可能である。
The optimal amount of spray varies depending on the operating conditions of the refrigerator,
In this case, it is effective to provide a detector such as a thermometer or a pressure gauge in the condenser, observe the operating conditions of the refrigerant in the condenser, and adjust the water spray interval accordingly. In this case, it is possible to use a method in which the signal obtained from the detector is converted into a start signal of the pump via the controller, and thereby the spraying interval is adjusted. Also in this case, when the pump is not used, an electromagnetic valve or the like is provided in the water supply system, whereby the spraying interval can be adjusted. Further, the detector can be attached to the evaporator side and can be detected at the cooling output side. Furthermore, as a replenishment method, the amount of water consumed by evaporation can be used as a method of supplying water condensed in the evaporator with cooling of the air to a tank.

また、移動式の装置に搭載された冷凍機や連続した水
の供給が不可能な場合はタンクを設けて、必要に応じて
タンク内の水を補給する方法もあるが、静置式で水の供
給が十分に行える場合、水の供給装置と併用することで
常時水の供給を行うこともでき、凝縮器の小型化と冷凍
能力の向上に有効となる。
There is also a method of installing a refrigerator mounted on a mobile device or a tank if continuous water supply is not possible, and replenishing water in the tank as necessary. When the supply can be sufficiently performed, water can be constantly supplied by using the apparatus together with a water supply device, which is effective in reducing the size of the condenser and improving the refrigerating capacity.

これらの方法は、冷凍機の凝縮器における外部放熱を
目的としたものであるが、被冷却媒体が凝縮を伴わない
媒体であり、これを空気を利用して冷却する場合にも、
冷却能力を向上させる方法として有効である。この冷却
における水の散布量の最適値はは水の蒸発によって空気
が飽和する値よりも若干低いものが好ましい。
These methods are intended for external heat radiation in the condenser of the refrigerator, but also when the medium to be cooled is a medium that does not accompany condensation and is cooled using air,
This is effective as a method for improving the cooling capacity. The optimum value of the amount of water sprayed in this cooling is preferably slightly lower than the value at which air is saturated by evaporation of water.

適用例1 車載置の既存冷房装置を用いて冷却能力の向上実験を
行った。用いた冷房装置は設計能力3,300kcal/hrのもの
で、第1図の4〜7に示したような冷却能力向上機構を
設けた。ノズルは噴霧量25cc/minのプラスチック製のも
のを2基使用し、これを自動車の直流12Vの電源で作動
する最大流量50cc/minのポンプと容量5のプラスチッ
ク製タンクに接続し、ノズル手前にフィルターを設けて
ノズルの目詰りを防止した。また、噴霧間隔については
1秒間水を噴霧し、2秒間停止させて水を蒸発させ、こ
れをタイマーによって連続的に繰り返した。
Application Example 1 An experiment for improving the cooling capacity was performed using an existing cooling device mounted on a vehicle. The cooling device used had a design capacity of 3,300 kcal / hr, and was provided with a cooling capacity improving mechanism as shown in 4 to 7 in FIG. Two nozzles made of plastic with a spray rate of 25 cc / min are used, connected to a pump with a maximum flow rate of 50 cc / min operated by a 12 VDC power supply of a car and a plastic tank with a capacity of 5, and in front of the nozzle. A filter was provided to prevent nozzle clogging. As for the spray interval, water was sprayed for 1 second, stopped for 2 seconds to evaporate the water, and this was continuously repeated by a timer.

第2図は上記装置の実験結果を示すグラフである。室
内空気温度が40℃、外気温度が40℃の時点で圧縮式冷凍
機の運転を開始したところ、室内が28℃まで低下し、冷
房出力は2,100kcal/hrが得られた。しかしながら、外気
温度が高いためこれ以上の冷房出力の発生は不可能であ
った。次に上記の方法で断続的にノズルより冷凍機の凝
縮器の放熱部に水を散布したところ、冷凍機の蒸発器部
分で8℃の空気が得られ、室内空気温度が15℃まで低下
することが明らかとなった。この時の冷房出力は3,400k
cal/hrで、1時間あたりの水の消費量は1,000ccであっ
た。なお、鎖線は水の噴霧を行わない場合の例である。
FIG. 2 is a graph showing experimental results of the above apparatus. When the operation of the compression refrigerator started when the indoor air temperature was 40 ° C and the outside air temperature was 40 ° C, the room temperature dropped to 28 ° C and the cooling output was 2,100 kcal / hr. However, since the outside air temperature is high, it is not possible to generate any more cooling output. Next, when water is sprayed intermittently from the nozzle to the radiator of the condenser of the refrigerator according to the above method, air at 8 ° C. is obtained at the evaporator portion of the refrigerator, and the indoor air temperature drops to 15 ° C. It became clear. The cooling output at this time is 3,400k
At cal / hr, the water consumption per hour was 1,000 cc. In addition, the chain line is an example in the case of not spraying water.

適用例2 適用例1と同様の方法で水を散布し、冷房性能の向上
実験を行ったが、水の散布を凝縮器からの放熱用空気の
出口温度を検出し、その温度条件に対応して、第1図の
ポンプ4を作動させ水を散布する方法を実施した。な
お、噴霧方法、量及び間隔については実施例1と同じで
ある。制御の基準は放熱用空気の出口温度が40℃以上に
なった場合に水の散布を行い、40℃以下となった場合に
空気のみの放熱とした。この結果、定常時に室内空気温
度で20℃以下が確保することができることが明らかとな
り、水の消費量は500ccであった。
Application Example 2 Water was sprayed in the same manner as in Application Example 1, and an experiment for improving the cooling performance was performed. However, the spraying of water was performed by detecting the outlet temperature of the radiating air from the condenser and responding to the temperature condition. Then, the method of spraying water by operating the pump 4 of FIG. 1 was implemented. The spray method, amount and interval are the same as those in the first embodiment. As a control standard, water was sprayed when the outlet temperature of the radiating air became 40 ° C or higher, and when the outlet temperature of the radiating air became 40 ° C or lower, only the air was released. As a result, it became clear that a room air temperature of 20 ° C. or less could be ensured in a steady state, and the water consumption was 500 cc.

発明の効果 本発明方法によれば、少量の水を微細液滴状で空気に
同伴させ、凝縮器の放熱器に供給するという非常に簡単
な操作で、凝縮器内の冷却媒体の凝縮を著しく促進しう
るので、自動車、電車等の移動体で用いる冷凍機に好適
に利用しうる。また、従来のように放熱部、送風機を大
型にする必要がないので、冷凍機全体を小型化しうると
いう利点もある。
Effect of the Invention According to the method of the present invention, the condensation of the cooling medium in the condenser is significantly reduced by a very simple operation of entraining a small amount of water into the air in the form of fine droplets and supplying the air to the radiator of the condenser. Since it can be promoted, it can be suitably used for refrigerators used in mobile bodies such as automobiles and trains. In addition, there is no need to increase the size of the heat radiating section and the blower as in the related art, so that there is an advantage that the entire refrigerator can be reduced in size.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法の1例を示す説明図、第2図は、本
発明により凝縮器内の温度が経時的に変化する状態を示
すグラフである。 1……凝縮器、2……放熱部 3……送風機、4……ノズル 5……ポンプ、6……貯水タンク 7……タイマー、8……膨張弁 9……蒸発器
FIG. 1 is an explanatory view showing one example of the method of the present invention, and FIG. 2 is a graph showing a state in which the temperature inside the condenser changes with time according to the present invention. DESCRIPTION OF SYMBOLS 1 ... Condenser, 2 ... Radiator 3 ... Blower 4, ... Nozzle 5 ... Pump, 6 ... Water storage tank 7 ... Timer, 8 ... Expansion valve 9 ... Evaporator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−250296(JP,A) 特開 昭55−105162(JP,A) 実開 昭61−165213(JP,U) 実開 昭56−149869(JP,U) 実開 昭62−148412(JP,U) 実開 昭55−108366(JP,U) 熱交換器ハンドブック編集委員会編 「熱交換器ハンドブック」 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-250296 (JP, A) JP-A-55-105162 (JP, A) Fully open Showa 61-165213 (JP, U) Really open Showa 56- 149869 (JP, U) Shokai Sho 62-148412 (JP, U) Shokai Sho 55-108366 (JP, U) "Heat Exchanger Handbook"

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】放熱部を有する冷凍機の空冷式凝縮器を作
動するに際し、凝縮器内の温度が冷媒の液化限界温度に
達したとき、該放熱部表面に対し、液膜を形成せず、か
つ0.1〜2秒間で蒸発しうる量の水を微細液滴として空
気に同伴させて供給することにより、水の蒸発潜熱と空
気の顕熱を利用して、凝縮器内の温度を冷媒の液化温度
以下に低下させる処理を行うこと及びこの処理を供給し
た水が放熱部表面において常に蒸発状態を維持しうる時
間間隔で行うことを特徴とする冷却媒体の凝縮促進方
法。
When operating the air-cooled condenser of a refrigerator having a radiator, when the temperature in the condenser reaches the liquefaction limit temperature of the refrigerant, no liquid film is formed on the surface of the radiator. And by supplying an amount of water that can evaporate in 0.1 to 2 seconds as fine droplets with the air, thereby utilizing the latent heat of evaporation of water and the sensible heat of the air to reduce the temperature in the condenser. A method for accelerating condensation of a cooling medium, comprising: performing a process of lowering the temperature to a temperature equal to or lower than a liquefaction temperature;
【請求項2】供給される水が伝熱促進剤、蒸発促進剤、
洗浄剤及び防錆剤の中から選ばれた少なくとも1種の添
加剤を含有する請求項1記載の方法。
2. The method according to claim 1, wherein the supplied water is a heat transfer promoter, an evaporation promoter,
The method according to claim 1, further comprising at least one additive selected from a detergent and a rust inhibitor.
【請求項3】冷凍機の発生出力又は作動温度条件の変化
に応じて水の供給量を制御する請求項1又は2記載の方
法。
3. The method according to claim 1, wherein the supply amount of water is controlled according to a change in the output of the refrigerator or the operating temperature condition.
【請求項4】放熱部に水を供給するに際し、水を加圧す
る空気の流れの持つ静圧を利用して空気と同伴させる請
求項1、2又は3記載の方法。
4. The method according to claim 1, wherein the water is supplied to the heat radiating portion by using a static pressure of an air flow for pressurizing the water to entrain the water.
【請求項5】供給する水に冷凍機の冷却によって発生す
る凝縮水の一部又は全部を再利用する請求項1ないし4
のいずれかに記載の方法。
5. A method according to claim 1, wherein part or all of the condensed water generated by cooling the refrigerator is reused as water to be supplied.
The method according to any of the above.
JP63152136A 1988-06-22 1988-06-22 Cooling medium condensation promotion method Expired - Fee Related JP2728207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63152136A JP2728207B2 (en) 1988-06-22 1988-06-22 Cooling medium condensation promotion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63152136A JP2728207B2 (en) 1988-06-22 1988-06-22 Cooling medium condensation promotion method

Publications (2)

Publication Number Publication Date
JPH024181A JPH024181A (en) 1990-01-09
JP2728207B2 true JP2728207B2 (en) 1998-03-18

Family

ID=15533832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63152136A Expired - Fee Related JP2728207B2 (en) 1988-06-22 1988-06-22 Cooling medium condensation promotion method

Country Status (1)

Country Link
JP (1) JP2728207B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188010A1 (en) * 2022-03-29 2023-10-05 三菱電機株式会社 Refrigeration cycle device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198617A (en) * 2006-01-24 2007-08-09 Fuji Koki Corp Water supply control method in auxiliary cooling device
WO2012063277A1 (en) * 2010-11-08 2012-05-18 Nagahiro Tsuyoshi Cooling device for air-conditioning outdoor unit and heat exchanging system
JP5829847B2 (en) * 2011-07-04 2015-12-09 株式会社いけうち Outdoor unit cooling system
ITMI20120465A1 (en) * 2012-03-23 2013-09-24 Eurochiller S R L PROCESS FLUID CONTROL SYSTEM
JP6690067B1 (en) * 2019-03-28 2020-04-28 三菱電機株式会社 Sprinkler, air conditioner, and sprinkling method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55108366U (en) * 1979-01-24 1980-07-29
JPS56149869U (en) * 1980-04-09 1981-11-10
JPS61165213U (en) * 1985-04-02 1986-10-14
US4689895A (en) * 1986-02-28 1987-09-01 Thermo Electron-Web Systems, Inc. Evaporative-cooling apparatus and method for the control of web or web-production machine component surface temperatures
JPS62148412U (en) * 1986-03-13 1987-09-19

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
熱交換器ハンドブック編集委員会編 「熱交換器ハンドブック」

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188010A1 (en) * 2022-03-29 2023-10-05 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JPH024181A (en) 1990-01-09

Similar Documents

Publication Publication Date Title
US5113668A (en) Refrigeration system with evaporative subcooling
US4974422A (en) Evaporative condenser with fogging nozzle
US8474276B2 (en) Direct expansion ammonia refrigeration system and a method of direct expansion ammonia refrigeration
US6748759B2 (en) High efficiency heat exchanger
JP2728207B2 (en) Cooling medium condensation promotion method
US5069043A (en) Refrigeration system with evaporative subcooling
US3435631A (en) Two-stage evaporative condenser
US3257818A (en) Cooling system
CN115802698A (en) Heat dissipation system, control method thereof and high-altitude high-speed aircraft
CN207991017U (en) Atomizing sprayer and refrigeration unit
JPH11142022A (en) Auxiliary cooler of air-cooled condenser for air conditioning apparatus
JP4436223B2 (en) Air conditioner and operation method thereof
JP2005241204A (en) Evaporator, heat pump, and heat utilization device
JPH0355489A (en) Method and apparatus for precooling dry cooling and cooling of the same type
US6715312B1 (en) De-superheater for evaporative air conditioning
KR101111293B1 (en) Apparatus for cooling condenser of airconditioner
JPH0783539A (en) Turbo refrigerating machine
JP3094781B2 (en) Vacuum ice making equipment
JP3277786B2 (en) Cooling device and ice heat storage device
JP2724201B2 (en) Direct contact ice storage method and equipment
JPH02187585A (en) Cooling device
JPH03291430A (en) Air conditioning unit
KR20110093059A (en) Condenser to air conditioner equipment for truck of cooling efficiency
JPH08285423A (en) Rapid cooling device
JPS6325489Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees