JP2727444B2 - Optical scanning device - Google Patents

Optical scanning device

Info

Publication number
JP2727444B2
JP2727444B2 JP225789A JP225789A JP2727444B2 JP 2727444 B2 JP2727444 B2 JP 2727444B2 JP 225789 A JP225789 A JP 225789A JP 225789 A JP225789 A JP 225789A JP 2727444 B2 JP2727444 B2 JP 2727444B2
Authority
JP
Japan
Prior art keywords
receiving surface
semiconductor laser
light receiving
light
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP225789A
Other languages
Japanese (ja)
Other versions
JPH02181720A (en
Inventor
小出  純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11524310&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2727444(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP225789A priority Critical patent/JP2727444B2/en
Publication of JPH02181720A publication Critical patent/JPH02181720A/en
Application granted granted Critical
Publication of JP2727444B2 publication Critical patent/JP2727444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子写真プロセスを有し高精細画像出力を
要求されるレーザビームプリンタやレーザビーム複写装
置などに使用される光走査装置、すなわち半導体レーザ
からの光束や結像光学系により受光面上に集光走査する
光走査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical scanning apparatus used in a laser beam printer or a laser beam copying apparatus which has an electrophotographic process and requires high-definition image output, that is, The present invention relates to an optical scanning device that converges and scans a light receiving surface with a light beam from a semiconductor laser or an imaging optical system.

[従来の技術] 従来、上記の様なレーザビームプリンタやレーザビー
ム複写装置などにおいて、半導体レーザから受光面ない
し被照射体面までの光路長を、環境変動、経時ないし時
間変動に対して、極力不変に保とうとする方法として、
次の如きものが知られている。
[Prior Art] Conventionally, in a laser beam printer or a laser beam copying machine as described above, the optical path length from a semiconductor laser to a light receiving surface or an object surface is made as invariant as possible with respect to environmental changes, aging or time variations. As a way to try to keep
The following are known.

1つは、半導体レーザやこのレーザからの光をコリメ
ートするコリメータレンズを支持する支持体を線膨張係
数の小さな金属で形成して、半導体レーザの発光点とコ
リメータレンズ間の距離を環境変動などに対し不変に保
とうとするものである。他の1つは、定期的に半導体レ
ーザ装置の調整を行い画像補正を行なうものである。
One is to form a support that supports the semiconductor laser and the collimator lens that collimates the light from this laser with a metal having a small linear expansion coefficient, and to change the distance between the emission point of the semiconductor laser and the collimator lens to environmental fluctuations. On the other hand, they try to keep them unchanged. The other one is to periodically adjust the semiconductor laser device and perform image correction.

[発明が解決しようとしている課題] しかし、これらの方法においては、部材が高価になる
とか、メンテナンスの手間がかかるとかの不都合が避け
られないのが現状であり、更に受光面での集光ビーム径
ないし光束直径が常に充分に仕様を満足することは完全
に保証できないという難点もある。
[Problems to be Solved by the Invention] However, in these methods, it is unavoidable that the members are expensive and maintenance is troublesome. Another drawback is that it is not possible to completely guarantee that the diameter or the beam diameter always satisfies the specifications.

これに対し、受光面相当の位置で集光ビーム径を検知
し、これに基づいて光走査装置側で、レンズ系をアクチ
ュエートして受光面を集光ビームの集点深度域内に収め
る動作を随時行なうオートフォーカス機構を用いた光走
査装置が提案されている。
On the other hand, the focused beam diameter is detected at a position equivalent to the light receiving surface, and based on this, the optical scanning device actuates the lens system to set the light receiving surface within the focal point depth range of the focused beam. An optical scanning device using an autofocus mechanism that is performed as needed has been proposed.

しかし、こうした従来例においても、装置が必然的に
複雑になり且つ高価になつてしまうという欠点がある。
However, even in such a conventional example, there is a disadvantage that the device is inevitably complicated and expensive.

従って、本発明の目的は、上記の欠点を解決すべく、
環境変動や時間変動により変動する受光面と光学装置の
結像面間の光路差が、要求される高精細画像に対応した
焦点深度域内に含まれるように半導体レーザの波長を選
定し所定の関係式を満たすように構成した光走査装置を
提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned drawbacks,
Select the wavelength of the semiconductor laser so that the optical path difference between the light receiving surface and the imaging surface of the optical device, which fluctuates due to environmental fluctuations and time fluctuations, is included within the depth of focus corresponding to the required high-definition image. An object of the present invention is to provide an optical scanning device configured to satisfy the expression.

[課題を解決するための手段] 上記の目的を達成する為に、半導体レーザからの光束
を結像光学系により受光面上に結像する本発明の光走査
装置においては、以下の関係式を満たすように諸要素を
構成して、組立時一度の調整のみで、メンテナンスの必
要性や装置の複雑化ないし高価格化を回避している。
[Means for Solving the Problems] In order to achieve the above object, in an optical scanning device of the present invention in which a light beam from a semiconductor laser is imaged on a light receiving surface by an imaging optical system, the following relational expression is used. The components are configured so as to satisfy the requirements, and the need for maintenance and the complexity or high price of the device are avoided by performing only one adjustment at the time of assembly.

W:高精細画像として要求される受光面上に集光する光束
直径(点像強度がピーク強度に対して1/e2となる直
径), λ:半導体レーザの波長, k:比較定数2.05, ▲Fef NO▼:受光面上に集光される光束の有効Fナンバ
ー, β:結像光学系による半導体レーザ側の共役点に対する
受光面側の共役点の横倍率, l:結像光学系による半導体レーザ側の共役点の環境・時
間変動による、光軸方向の移動量, α:結像光学系による受光面側の共役点の環境・時間変
動による、光軸方向移動量, γ:結像光学系により受光面上に集光走査されるレーザ
ビームウエストの像面湾曲量。
W: diameter of light beam condensed on the light-receiving surface required for high-definition images (diameter at which point image intensity is 1 / e 2 with respect to peak intensity), λ: wavelength of semiconductor laser, k: comparison constant 2.05, ▲ F ef NO ▼: Effective F number of the light beam condensed on the light receiving surface, β: Lateral magnification of the conjugate point on the light receiving surface side with respect to the conjugate point on the semiconductor laser side by the image forming optical system, l: Imaging optical system Amount of movement in the optical axis direction due to environmental and temporal fluctuations of the conjugate point on the semiconductor laser side due to the fluctuation, α: Amount of movement in the optical axis direction due to environmental and temporal fluctuations of the conjugate point on the light receiving surface side by the imaging optical system, γ: The amount of field curvature of the laser beam waist that is focused and scanned on the light receiving surface by the image optical system.

[作用] 上記の関係式において、2(β2l+α)は環境・時間
変動による光走査面の光軸方向相対移動(受光面それ自
体の変動のみでなく半導体レーザの発光点の変動や、コ
リメータレンズの焦点距離変動をも考慮したもの)の量
を意味し、2▲Fef NO▼W−γは光束の像の像面湾曲を
も考慮した光走査面の焦点深度を意味する。
[Operation] In the above relational expression, 2 (β 2 l + α) represents relative movement in the optical axis direction of the optical scanning surface due to environmental and temporal fluctuations (not only fluctuations of the light receiving surface itself, but also fluctuations of the light emitting point of the semiconductor laser and collimator). 2 ▲ F ef NO WW-γ means the depth of focus of the optical scanning surface in consideration of the curvature of field of the image of the light beam.

従って、本発明の基本的な考えは、 の関係式からわかるように、λ・k・▲Fef NO▼=WO
ある、レーザ波長と光走査光学系の有効▲Fef NO▼によ
り決まる点像強度分布のピーク強度に対する1/e2の直
径、即ち、集光ビーム径の光走査面上の最小値が、高精
細画像として要求される点像強度分布のピーク強度に対
する1/e2の直径Wに対して、環境・時間変動による光走
査像面の光軸方向移動量2(β2l+α)より、光走査面
側の焦点深度2▲Fef NO▼W−γが大きくなるように設
定することで上記関係式を満たすようにすることで、こ
れを行なうためレーザ波長λを選定することである。
(光走査光学系の有効FNOを選定しようとすると2▲F
ef NO▼W−γも同時に変動してしまうため解が存在しな
い場合が生じる) [実施例] 第1図は、本発明の一実施例の概略を示す。同図にお
いて、半導体レーザ1から発振された光束はコリメータ
レンズ2によって平行光束に変換される。この平行光束
は、走査光束の形成する走査面に垂直な副走査方向にの
みパワーを有するシリンドリカルレンズ3により、副走
査方向にのみポリゴンミラー5の反射鏡面5aに集光され
主走査方向(走査面内にあって副走査方向に直角な方
向)においては平行光束のまま、線状光束となって反射
鏡面5aに入射する。ここで、ミラー5の回転に伴って線
状光束は偏向走査される。第1図では、反射鏡面5aの3
つの位置で光束が偏向される様子が示されている。偏向
後、主走査方向にf・θ特性(理想像高が焦点距離fと
光束入射角度θの積で与えられる特性)を有し副走査方
向において受光面10と反射鏡面5a近傍とに共役点を持つ
アナモフィックな集光レンズ6、7、8により、光束は
受光面10上に絞り込まれ受光面10上で光走査する。第1
図中、ポリゴンミラー5と集光レンズ6、7、8の間、
及びこの集光レンズ6、7、8と受光面10の間には、夫
々、平板窓ガラス4、9が配置されている。
Therefore, the basic idea of the present invention is As can be understood from the relational expression, 1 / e with respect to the peak intensity of the point image intensity distribution determined by the laser wavelength and the effective {F ef NO ▼ of the optical scanning optical system, where λ · k · ▲ F ef NO ▼ = W O. second diameter, i.e., focused beam minimum on an optical scanning surface of diameter, relative to 1 / e 2 diameter W to the peak intensity of a point image intensity distribution required as a high-definition image, change the environment and time Is set so that the focal depth 2 ▲ F ef NO W W-γ on the optical scanning surface side is larger than the optical axis direction moving amount 2 (β 2 l + α) of the optical scanning image surface due to Is to select the laser wavelength λ to perform this.
(If you try to select the effective F NO of the optical scanning optical system, 2F
ef NO ▼ W-γ also fluctuates at the same time, and there is a case where no solution exists.) Embodiment FIG. 1 schematically shows an embodiment of the present invention. In FIG. 1, a light beam oscillated from a semiconductor laser 1 is converted into a parallel light beam by a collimator lens 2. The parallel light beam is condensed on the reflecting mirror surface 5a of the polygon mirror 5 only in the sub-scanning direction by the cylindrical lens 3 having power only in the sub-scanning direction perpendicular to the scanning surface formed by the scanning light beam. (In the direction perpendicular to the sub-scanning direction), a parallel light beam remains as a linear light beam and enters the reflecting mirror surface 5a. Here, the linear light beam is deflected and scanned as the mirror 5 rotates. In FIG. 1, 3 of the reflecting mirror surface 5a is shown.
The light beam is deflected at two positions. After the deflection, it has f · θ characteristics in the main scanning direction (a characteristic in which the ideal image height is given by the product of the focal length f and the light beam incident angle θ) and has a conjugate point between the light receiving surface 10 and the vicinity of the reflecting mirror surface 5a in the sub scanning direction. The luminous flux is narrowed down on the light receiving surface 10 by the anamorphic condenser lenses 6, 7, and 8 having the above, and the light is scanned on the light receiving surface 10. First
In the figure, between the polygon mirror 5 and the condenser lenses 6, 7, 8,
Flat glass panes 4 and 9 are arranged between the condenser lenses 6, 7, and 8 and the light receiving surface 10, respectively.

先ず、こうした構成において、半導体レーザ1の波長
に注目してこれが上記の関係式を満たさない場合を、本
発明と対比的な意味で、説明する。
First, in such a configuration, the case where the wavelength of the semiconductor laser 1 does not satisfy the above relational expression will be described in comparison with the present invention.

半導体レーザ1の波長が780nmであるとき、高精細画
像、例えば600dpi(1インチ当たりのドット数)相当の
出力を提供しょうとすると、受光面10上のレーザ光束の
強度分布がピーク強度に対し1/e2である幅を経験則にて
45μm程度に絞り込む必要がある。この光束直径を走査
全域で確保するためには、光束直径を最小値で40μm程
度(1/e2幅)に設定する必要がある。この最小光束直径
から、受光面10に入射するレーザ光束の有効Fナンバー
▲Fef NO▼は平面波にて30程度、半導体レーザ1からの
ガウシアンビームを用いる場合、絞りによる光束規制に
よる通過光束端部の強度により若干変化するが、約28.5
程度である必要がある(前述のようにレーザ波長は780n
mである)。
When the wavelength of the semiconductor laser 1 is 780 nm, to provide a high-definition image, for example, an output equivalent to 600 dpi (dots per inch), the intensity distribution of the laser beam on the light receiving surface 10 is 1 / e 2 width by empirical rule
It is necessary to narrow down to about 45 μm. In order to secure this beam diameter over the entire scanning area, it is necessary to set the beam diameter at a minimum value of about 40 μm (1 / e 2 width). From this minimum beam diameter, the effective F number ▲ F ef NOの of the laser beam entering the light receiving surface 10 is about 30 as a plane wave, and when a Gaussian beam from the semiconductor laser 1 is used, the end of the passing beam due to the beam regulation by the diaphragm About 28.5
(The laser wavelength is 780n as described above.
m).

この有効Fナンバーより、回折によるビームウエスト
の長さが決まってくる。つまり、レーザ波長が780nm
で、有効Fナンバーが28.5であるとき、1/e2幅の光束直
径が45μm以下の焦点深度は1光束(1つの画角)にて
2.2mm程度となり、更にアナモフィック集光レンズ(f
・θレンズ)の像面湾曲が半画角30度にて±0.3mm程度
のレンズ系を用いると走査全域での焦点深度は1.4mmと
なつてしまう。
From this effective F number, the length of the beam waist due to diffraction is determined. In other words, the laser wavelength is 780nm
Then, when the effective F-number is 28.5, the focal depth with a 1 / e 2 width luminous flux diameter of 45 μm or less is one luminous flux (one angle of view).
2.2mm and anamorphic condenser lens (f
When a lens system having a curvature of field of about ± 0.3 mm at a half angle of view of 30 ° is used, the focal depth in the entire scanning area is 1.4 mm.

この様子が第2図に示されている。第2図(a)にお
いて、W1はビームウエストであり、θは光束の有効F
ナンバーに関係する角度である。また、第2図(b)に
おいて、A1は走査面であり、A1′とA1″は走査面の環境
・時間変動による相対変動の範囲を示し、B1は光走査光
学系のベスト像面(像面湾曲を伴う)、B1′とB1″は1/
e2幅の光束直径45μmの焦点深度を示し、更にGは走査
全域の焦点深度を示す。ここで示すように、像面湾曲を
考慮した走査全域での結像面に関する焦点深度C1(1.4m
m)が走査面の環境・時間変動範囲より小さくなってし
まうので、高精細画像の出力を環境・時間変動にして保
障することができない。
This is shown in FIG. In FIG. 2 (a), W 1 is the beam waist, and θ 1 is the effective F of the luminous flux.
This is the angle related to the number. Further, in FIG. 2 (b), A 1 is a scanning surface, A 1 'and A 1 "represents a range of relative variations due to environmental and temporal fluctuations in the scanning plane, B 1 is the best of the optical scanning optical system The image plane (with field curvature), B 1 ′ and B 1 ″ are 1 /
e indicates a depth of focus of a light beam diameter of 45 μm having a width of 2 widths, and G indicates the depth of focus of the entire scanning area. As shown here, the depth of focus C 1 (1.4 m
m) is smaller than the range of the environment / time variation of the scanning plane, so that the output of a high-definition image cannot be guaranteed by the environment / time variation.

これに対し、本実施例では次のように設定されてい
る。
On the other hand, in this embodiment, the following settings are made.

半導体レーザ1の波長を680nm又は670nmとし、この場
合、1/e2幅の光束直径を走査全域で45μm以下とするた
めに光束の有効Fナンバーは33となり(同じ径を実現す
るために、波長が短くなればそれにおよそ反比例してF
ナンバーは大きくてよい)、そのときの焦点深度は1光
束にて2.3mm程度で、前記と同様の理由にて走査全域で
の焦点深度は1.7mmとなる。
The wavelength of the semiconductor laser 1 is 680 nm or 670 nm. In this case, the effective F-number of the light beam is 33 in order to make the light beam diameter of 1 / e 2 width 45 μm or less over the entire scanning area. Becomes shorter in inverse proportion to F
(The number may be large.) At that time, the focal depth for one light beam is about 2.3 mm, and the focal depth over the entire scanning area is 1.7 mm for the same reason as described above.

一方、走査面10の環境・時間による相対変動の範囲は
次のようになる。
On the other hand, the range of the relative variation of the scanning surface 10 depending on the environment and time is as follows.

光走査装置や走査面の架体の熱膨張と受光面の可動変
位により受光面10は約±0.1mmの環境・時間変動を起こ
し、光学部材の環境温度変化(0〜60℃)による焦点距
離変動によりピント(ビームウエスト)の移動が約±0.
2mmとなり、コリメータレンズ2側のレーザ発光部のピ
ント移動が環境温度変化で±0.002mm(l)あるとコリ
メータレンズ2の焦点距離を20mm程度、結像光学系6、
7、8の焦点距離を300mm程度として縦倍率(横倍率β
の2乗)が、225倍(=(300/20)倍)となって受光
面10上でのピントの移動が約±0.45mmとなり、変動要素
を合計すると約±0.75mmとなる。これはレンジで1.5mm
となり、第2図の対比例では焦点深度C1(1.4mm)を越
えてしまうが本実施例では第3図に示すように焦点深度
C2(1.7mm)内に収まる。
Due to the thermal expansion of the optical scanning device and the frame on the scanning surface and the movable displacement of the light receiving surface, the light receiving surface 10 fluctuates in environment and time of about ± 0.1 mm, and the focal length due to the environmental temperature change (0 to 60 ° C.) The focus (beam waist) moves about ± 0 due to fluctuations.
If the focus movement of the laser emitting unit on the collimator lens 2 side is ± 0.002 mm (l) due to the environmental temperature change, the focal length of the collimator lens 2 is about 20 mm, and the imaging optical system 6
Vertical magnification (horizontal magnification β
Is 225 times (= (300/20) × 2 ), and the focus shift on the light receiving surface 10 is about ± 0.45 mm, and the sum of the variation factors is about ± 0.75 mm. This is 1.5mm in range
In the comparative example of FIG. 2, the focal depth exceeds the depth of focus C 1 (1.4 mm), but in this embodiment, as shown in FIG.
Fits within C 2 (1.7mm).

尚、第3図(a)、(b)では、第2図の各符号のサ
フィックス1が2になっているが、各符号は同様なもの
を指示する。
In FIGS. 3A and 3B, the suffix 1 of each code in FIG. 2 is 2, but each code indicates the same one.

この様にして、本実施例では、レーザ波長を短波長化
して、環境・時間変動があっても常に高精細画像出力が
維持できることになる。
In this way, in this embodiment, the laser wavelength is shortened so that high-definition image output can always be maintained even if there are environmental and temporal fluctuations.

[発明の効果] 以上の構成により、本発明においては、メインテナン
スや装置の複雑化を招来することなく、組立時の調整の
みで高精細画像出力が維持される。
[Effects of the Invention] With the configuration described above, in the present invention, high-definition image output is maintained only by adjustment at the time of assembling without causing the maintenance and the apparatus to be complicated.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の概略構成図、第2図(a)
は対比例に関して所定の光束直径を生成したときのビー
ムウエストを示す図、第2図(b)はこの対比例に関し
て像面湾曲、所定光束直径の焦点深度、走査面相対変動
を説明する図、第3図(a)、(b)は本発明の実施例
に関する第2図(a)、(b)と同様な図である。 1……半導体レーザ、2……コリメータレンズ、3……
シリンドリカルレンズ、5……ポリゴンミラー、6、
7、8……アナモフィック集光レンズ、10……走査面
FIG. 1 is a schematic configuration diagram of one embodiment of the present invention, and FIG.
FIG. 2B is a diagram illustrating a beam waist when a predetermined light beam diameter is generated with respect to a comparative example, and FIG. 2B is a diagram illustrating a field curvature, a depth of focus of a predetermined light beam diameter, and a relative change of a scanning surface with respect to the comparative example. FIGS. 3 (a) and 3 (b) are diagrams similar to FIGS. 2 (a) and 2 (b) relating to the embodiment of the present invention. 1 ... Semiconductor laser, 2 ... Collimator lens, 3 ...
Cylindrical lens, 5 ... polygon mirror, 6,
7, 8 anamorphic condenser lens, 10 scanning plane

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体レーザダイオードからの光束を光偏
向器により偏向し結像光学系により受光面上に集光し光
走査する光走査装置において、走査方向の共役点が受光
面上と半導体レーザダイオードの発光点にあり、半導体
レーザダイオードの波長が以下の関係式を満たすことを
特徴とする光走査装置。 W:高精細画像として要求される受光面上に集光する光束
直径(点像強度がピーク強度に対して1/e2となる直
径), λ:半導体レーザの波長, k:比例定数2.05, ▲Fef NO▼:受光面上に集光される光束の有効Fナンバ
ー, β:結像光学系による半導体レーザ側の共役点に対する
受光面側の共役点の横倍率, l:結像光学系による半導体レーザ側の共役点の環境・時
間変動による光軸方向移動量, α:結像光学系による受光面側の共役点の環境・時間変
動による光軸方向移動量, γ:結像光学系により受光面上に集光走査されるレーザ
ビームウエストの像面湾曲量
An optical scanning device for deflecting a light beam from a semiconductor laser diode by an optical deflector, condensing the light beam on a light receiving surface by an imaging optical system, and optically scanning the light beam. An optical scanning device at a light emitting point of a diode, wherein a wavelength of a semiconductor laser diode satisfies the following relational expression. W: diameter of light beam condensed on the light-receiving surface required for high-definition images (diameter at which point image intensity is 1 / e 2 with respect to peak intensity), λ: wavelength of semiconductor laser, k: proportional constant 2.05, ▲ F ef NO ▼: Effective F number of the light beam condensed on the light receiving surface, β: Lateral magnification of the conjugate point on the light receiving surface side with respect to the conjugate point on the semiconductor laser side by the image forming optical system, l: Imaging optical system , The amount of movement of the conjugate point on the semiconductor laser side in the optical axis direction due to environmental and temporal fluctuations, α: the amount of movement of the conjugate point on the light receiving surface side by the imaging optical system in the optical axis direction, γ: the imaging optical system Field curvature of the laser beam waist focused and scanned on the light receiving surface by
JP225789A 1989-01-09 1989-01-09 Optical scanning device Expired - Fee Related JP2727444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP225789A JP2727444B2 (en) 1989-01-09 1989-01-09 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP225789A JP2727444B2 (en) 1989-01-09 1989-01-09 Optical scanning device

Publications (2)

Publication Number Publication Date
JPH02181720A JPH02181720A (en) 1990-07-16
JP2727444B2 true JP2727444B2 (en) 1998-03-11

Family

ID=11524310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP225789A Expired - Fee Related JP2727444B2 (en) 1989-01-09 1989-01-09 Optical scanning device

Country Status (1)

Country Link
JP (1) JP2727444B2 (en)

Also Published As

Publication number Publication date
JPH02181720A (en) 1990-07-16

Similar Documents

Publication Publication Date Title
JPH1068903A (en) Scanning optical device
US20010053014A1 (en) Scanning image forming lens and optical scanning apparatus
JPH0627904B2 (en) Laser beam scanning optics
US5550668A (en) Multispot polygon ROS with maximized line separation depth of focus
US6621593B1 (en) Scan line non-linearity correction using an aspheric element in a ROS system
JP2524567B2 (en) Multiple beam scanning optics
JP2000019444A (en) Optical scanning optical system and image forming device using the same
JPH08248340A (en) Laser beam scanner
JP2727444B2 (en) Optical scanning device
JP3595640B2 (en) Scanning optical system and laser beam printer
JP3448137B2 (en) Image forming device
JP2019028453A (en) Optical scanner
JPH1039243A (en) Laser beam scanning optical device
JPH0254211A (en) Optical scanning device
KR100584553B1 (en) Laser scanning apparatus
JPH0618802A (en) Optical scanning device
US6570696B2 (en) Optical system for scanning and optical scanning apparatus
JPH10282441A (en) Light source device and multibeam scanning optical device provided same
JP2817454B2 (en) Scanning optical device
JP2757308B2 (en) Light beam scanning optical device
JPH08234126A (en) Raster scanning optical system
JP2000066008A (en) Image forming element array
JPH08304722A (en) Multibeam scanning optical device
JPH10246860A (en) Multi-beam scanning optical device
JP2834802B2 (en) Optical scanning device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081212

LAPS Cancellation because of no payment of annual fees