JP2727365B2 - Motor control device - Google Patents

Motor control device

Info

Publication number
JP2727365B2
JP2727365B2 JP1256718A JP25671889A JP2727365B2 JP 2727365 B2 JP2727365 B2 JP 2727365B2 JP 1256718 A JP1256718 A JP 1256718A JP 25671889 A JP25671889 A JP 25671889A JP 2727365 B2 JP2727365 B2 JP 2727365B2
Authority
JP
Japan
Prior art keywords
control
contactor
series
current
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1256718A
Other languages
Japanese (ja)
Other versions
JPH03118788A (en
Inventor
芳男 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Denki Seizo KK
Original Assignee
Toyo Denki Seizo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Denki Seizo KK filed Critical Toyo Denki Seizo KK
Priority to JP1256718A priority Critical patent/JP2727365B2/en
Publication of JPH03118788A publication Critical patent/JPH03118788A/en
Application granted granted Critical
Publication of JP2727365B2 publication Critical patent/JP2727365B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は直流電動機を用いて速度制御を行う装置に関
するものである。
Description: TECHNICAL FIELD The present invention relates to an apparatus for controlling a speed using a DC motor.

〔従来の技術〕[Conventional technology]

従来の電動機制御装置は第3図に示される。 A conventional motor control device is shown in FIG.

すなわち、第3図はその主回路接続図、第4図はブロ
ック図、第5図は特性図であり、第3図,第4図におい
て、1は直流電源、2は直流直巻電動機の電機子巻線、
3は電機子電流検出器、4は直巻界磁巻線、5は界磁電
流検出器、6は制御整流回路で、フリーホイーリングダ
イオードに持つ三相混合ブリッジ整流回路6aの例を示し
ている。7は他励制御電源で、三相交流の例を示してい
る。8は主抵抗器で、図示していないがカム軸接触器に
より順次短絡制御される。9は分路リアクトル、10は接
触器、11は電機子電流パターン発生器(以下単にパター
ン発生器という)、12は電機子電流制御ループ用の演算
増幅器、13は界磁電流制御ループ用の演算増幅器であっ
て界磁電流制御をマイナーループとし、電機子電流制御
をメジャーループとして構成し制御している。
3 is a main circuit connection diagram, FIG. 4 is a block diagram, and FIG. 5 is a characteristic diagram. In FIGS. 3 and 4, 1 is a DC power supply and 2 is an electric motor of a DC series motor. Child winding,
3 is an armature current detector, 4 is a series winding field winding, 5 is a field current detector, 6 is a control rectifier circuit, and shows an example of a three-phase mixed bridge rectifier circuit 6a included in a freewheeling diode. I have. Reference numeral 7 denotes a separately-excited control power supply, which shows an example of three-phase alternating current. Reference numeral 8 denotes a main resistor, which is not shown, and is short-circuited sequentially controlled by a camshaft contactor. 9 is a shunt reactor, 10 is a contactor, 11 is an armature current pattern generator (hereinafter simply referred to as a pattern generator), 12 is an operational amplifier for an armature current control loop, and 13 is an operation for a field current control loop. In the amplifier, the field current control is configured as a minor loop, and the armature current control is configured and controlled as a major loop.

その作用は、電動機の起動時、接触器10は開いてお
き、制御整流回路6のゲートを停止したまま主抵抗器8
を最大の抵抗値の状態としておき、電動機に直巻電動機
として全界磁状態で起動電流を流し起動する。電機子電
流をほぼ一定値に保つように設定し、ある限流値に従い
主抵抗器8を順次短絡しながら電動機は加速する。主抵
抗器8を総て短絡すると、接触器10を閉じて制御整流回
路6のゲートを開き、位相制御を開始する。この際、パ
ターン発生器11は抵抗進段中と同じ限流値をパターン値
として発生しており、接触器10が閉じた瞬間から演算増
幅器12,13も動き始める。演算増幅器12,13が活性化する
時には電機子電流パターンの値と電機子電流の検出値
(電機子電流検出器3の出力)とが等しい状態から活性
化するため、活性化した当初は制御整流回路6の出力電
圧は最も低い値から制御を開始する。したがって、接触
器10が閉じると直巻界磁巻線4に流れていた電流は急速
に分路リアクトル9に向って分流し始めるために弱め界
磁状態となる(第5図に示すA点、通常分路リアクトル
9の内部抵抗は界磁巻線4の内部抵抗に比べ非常に小さ
な値として弱界磁制御を可能としている)。このため、
電機子電流は急速に増加し、これにより演算増幅器12の
出力は界磁電流を増加させるように界磁電流パターンと
して出力する。この結果、演算増幅器13の出力は制御整
流回路6の出力電圧を高くするように動作を始める。こ
のような動きで制御整流回路6の出力電圧が充分に高く
なると、ようやく界磁電流の減少が止み、(第5図のB
点)電機子電流も減少を始める。このような経過を経て
電機子電流が電機子電流パターン発生器11の出力に等し
くなると、安定した状態となり(第5図のC点)、これ
以後は電動機速度の上昇に伴ない、電機子電流を電機子
電流パターン発生器11の出力に一致するように制御整流
回路6の出力が調節され、連続的な弱め界磁制御を行
う。
The operation is as follows. When the motor is started, the contactor 10 is kept open, and the main resistor 8 is kept with the gate of the control rectifier circuit 6 stopped.
Is set to the state of the maximum resistance value, and the motor is started as a series-wound motor by passing a starting current in an all-field state. The armature current is set to be maintained at a substantially constant value, and the motor accelerates while sequentially short-circuiting the main resistor 8 according to a certain current limit value. When all the main resistors 8 are short-circuited, the contactor 10 is closed, the gate of the control rectifier circuit 6 is opened, and the phase control is started. At this time, the pattern generator 11 generates the same current-limiting value as that during the resistance advance stage as the pattern value, and the operational amplifiers 12 and 13 start operating from the moment the contactor 10 is closed. When the operational amplifiers 12 and 13 are activated, they are activated from a state where the value of the armature current pattern and the detected value of the armature current (output of the armature current detector 3) are equal. The control of the output voltage of the circuit 6 starts from the lowest value. Therefore, when the contactor 10 is closed, the current flowing through the series-wound field winding 4 rapidly begins to shunt toward the shunt reactor 9 and becomes a weak field state (point A shown in FIG. 5, Normally, the internal resistance of the shunt reactor 9 is set to be much smaller than the internal resistance of the field winding 4 to enable the weak field control.) For this reason,
The armature current increases rapidly, whereby the output of the operational amplifier 12 is output as a field current pattern so as to increase the field current. As a result, the output of the operational amplifier 13 starts operating to increase the output voltage of the control rectifier circuit 6. When the output voltage of the control rectifier circuit 6 becomes sufficiently high by such a movement, the decrease of the field current finally stops (B in FIG. 5).
(Point) The armature current also starts to decrease. When the armature current becomes equal to the output of the armature current pattern generator 11 through such a process, the state becomes stable (point C in FIG. 5), and thereafter, as the motor speed increases, the armature current becomes higher. Is adjusted to match the output of the armature current pattern generator 11 to perform continuous field weakening control.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、主抵抗器8を全て短絡した後に、接触
器10を閉じた際跳び上がる電機子電流の値が大きく、電
動機にとっては過渡整流の悪化の可能性があり、また、
電動機の発生トルクの急変による負荷への悪影響を発生
する恐れがある。
However, after all the main resistors 8 are short-circuited, the value of the armature current that jumps up when the contactor 10 is closed is large, and there is a possibility that the transient rectification may deteriorate for the motor.
An abrupt change in the torque generated by the motor may adversely affect the load.

本発明は上述した点に鑑みて創案したもので、その目
的とするところは、電動機の特性などを改良した電動機
制御装置を提供するものである。
The present invention has been made in view of the above points, and an object of the present invention is to provide a motor control device having improved characteristics and the like of a motor.

〔課題を解決するための手段〕[Means for solving the problem]

つまり、その目的を達成するための手段は、直流電源
の正極側から直流直巻電動機の電機子巻線と,該直流直
巻電動機の直巻界磁巻線と,他の交流電源より供給され
る電力を位相制御して可変直流電圧を出力するバイパス
ダイオード付制御整流回路と,前記直流直巻電動機の速
度の上昇と共に可変制御する主抵抗器とを直列に接続し
前記直流電源の負極に至る速度制御回路を構成し、前記
電機子巻線と直巻界磁巻線との接続点に分路リアクトル
と接触器とを直列に接続した分路リアクトルの一端を接
続し、他方の接触器の一端は前記制御整流回路と前記主
抵抗器との接続点へ接続し、起動時には前記接触器は開
いておき、前記制御整流回路のゲートは停止したままあ
らかじめ設定してある限流値に応じて前記主抵抗器を順
次短絡して加速制御し、主抵抗器が全て短絡された後に
は接触器を閉じると同時に、制御整流回路のゲートを開
き、前記直巻界磁巻線に流れる電流を前記分路リアクト
ル側の電路に分流させて前記電機子電流を一定の電流パ
ターンに一致するように制御して連続的に弱め界磁制御
をするようにした電動機制御装置において、電機子電流
パターン引き下げ量発生器とタイマーによって、前記接
触器を閉じた瞬間から一定時間の間は電機子電流の電流
パターンの値を引き下げるように制御したものである。
In other words, means for achieving the object are supplied from the positive side of the DC power supply to the armature winding of the DC series motor, the series field winding of the DC series motor, and another AC power supply. A rectifier circuit with a bypass diode that outputs a variable DC voltage by phase-controlling the electric power, and a main resistor that variably controls the speed of the DC series motor with an increase in speed are connected in series to reach the negative electrode of the DC power supply. A speed control circuit is configured, and one end of a shunt reactor in which a shunt reactor and a contactor are connected in series is connected to a connection point between the armature winding and the series winding field winding, and the other contactor is connected. One end is connected to the connection point between the control rectifier circuit and the main resistor, the contactor is open at the time of startup, and the gate of the control rectifier circuit is stopped and according to a preset current limit value while the gate is stopped. Acceleration control by sequentially shorting the main resistors The contactor is closed after all the main resistors are short-circuited, and at the same time, the gate of the control rectifier circuit is opened, and the current flowing in the series winding field winding is shunted to the electric circuit on the shunt reactor side, thereby the electric motor is controlled. In a motor control device that controls the armature current to match a constant current pattern and continuously performs field weakening control, an armature current pattern reduction amount generator and a timer are used from the moment when the contactor is closed. The control is performed such that the value of the current pattern of the armature current is reduced during a certain time.

〔作用〕[Action]

その作用は次に述べる実施例において併せて説明す
る。
The operation will be described together with the following embodiment.

〔実施例〕〔Example〕

第1図は本発明の電動機制御装置の一実施例を示すブ
ロック図、第2図はその特性図であり、第4図と同符合
のものは同じ構成,機能を有する部分である。
FIG. 1 is a block diagram showing an embodiment of a motor control device according to the present invention, and FIG. 2 is a characteristic diagram thereof. Those having the same reference numerals as in FIG. 4 are portions having the same configuration and function.

第1図において、本発明の電機子電流パターン引き下
げ量発生器(以下単にパターン引き下げ量発生器とい
う)14とタイマー15は並列接続され、パターン発生器11
からの出力信号が差し引かれるよう接続されている。そ
して、差し引かれたものは電機子電流パターンとして演
算増幅器12に入力されている。
In FIG. 1, an armature current pattern reduction amount generator (hereinafter simply referred to as a pattern reduction amount generator) 14 of the present invention and a timer 15 are connected in parallel.
Are connected so that the output signal from is subtracted. The subtracted result is input to the operational amplifier 12 as an armature current pattern.

次にこれらの作用について第2図を参照しながら説明
する。
Next, these operations will be described with reference to FIG.

本発明による制御手段は、第3図に示すものと同じ主
回路接続であり、従来の制御手段と同じで主抵抗器8を
限流進段しながら短絡して加速制御する。
The control means according to the present invention has the same main circuit connection as that shown in FIG. 3, and performs acceleration control by short-circuiting the main resistor 8 while limiting the current as in the conventional control means.

さて、主抵抗器8を総て短絡した後に接触器10を閉
じ、制御整流回路6が活性化すると同時に演算増幅器1
2,13も活性化する。この時、接触器10の連動接点信号を
入力したパターン引き下げ量発生器14では出力を発生し
始めるため、電機子電流パターンとして演算増幅器12へ
入力する値は、パターン発生器11の出力からパターン引
き下げ量発生器14の出力を差し引いたものとなるため、
小さな値となる。したがって、接触器10が閉じ、界磁電
流が分路リアクトル9へ分流し始めて弱め界磁状態とな
り、(第2図に示すA点)電機子電流は増加し始める
が、同時に電機子電流パターンは前述のようにして引き
下げられるので、演算増幅器12の入力としては電機子電
流パターンに比べ実際の電機子電流検出値が非常に大き
な値となり、偏差が大きいことにより演算増幅器12の出
力は界磁電流パターンとして第4図に示した場合よりも
早く強め界磁電流となるように出力する。
Now, after all the main resistors 8 are short-circuited, the contactor 10 is closed, the control rectifier circuit 6 is activated, and at the same time, the operational amplifier 1 is closed.
2,13 are also activated. At this time, the pattern reduction amount generator 14 to which the interlocking contact signal of the contactor 10 has been input starts to generate an output, so the value input to the operational amplifier 12 as the armature current pattern is the pattern reduction from the output of the pattern generator 11. Since the output of the quantity generator 14 is subtracted,
It will be a small value. Therefore, the contactor 10 closes, the field current starts to shunt to the shunt reactor 9 and becomes a weak field state, and the armature current starts to increase (point A in FIG. 2). As described above, as the input of the operational amplifier 12, the actual armature current detection value becomes much larger than the armature current pattern, and the output of the operational amplifier 12 becomes large due to the large deviation. The pattern is outputted so as to become a stronger field current earlier than the case shown in FIG.

同じく演算増幅器13では、界磁電流パターンが実際の
界磁電流検出値に比べてす早く大きくなるため、やはり
偏差が大きくなり、出力としての制御整流回路6の出力
電圧を第4図の場合に比べてより早く高めるように動作
を始める。このため、界磁電流の弱まり方は純くなるの
で、電機子電流の増え方も遅くなる。したがって、電機
子電流の増加が収まるのも早くなり、(第2図のB点)
電機子電流は減少を始める。この間、接触器10の投入か
ら時間をカウントしたタイマー15の出力が適当な値(第
2図のC点に至る以前まで)としてカウントアップする
と、パターン引き下げ量発生器14の出力は切り離される
ため、電機子電流パターンとしてはパターン発生器11の
出力値に戻る。
Similarly, in the operational amplifier 13, since the field current pattern becomes larger quickly than the actual field current detection value, the deviation also becomes larger, and the output voltage of the control rectifier circuit 6 as an output is changed as shown in FIG. Start the operation to raise faster than compared. For this reason, the weakening of the field current becomes pure, and the increasing of the armature current also becomes slow. Therefore, the increase in the armature current stops quickly (point B in FIG. 2).
The armature current starts to decrease. During this time, if the output of the timer 15 that counts the time from the turning on of the contactor 10 counts up as an appropriate value (until point C in FIG. 2), the output of the pattern reduction amount generator 14 is cut off. The output value of the pattern generator 11 returns to the armature current pattern.

このようにして、電機子電流は電機子電流パターン発
生器11の出力に等しくなると安定した状態となり、(第
2図のC点)これ以後は電動機速度の上昇に伴ない電機
子電流をパターン発生器11の出力に一致するように制御
整流回路6の出力が調節される。
In this way, the armature current becomes stable when it becomes equal to the output of the armature current pattern generator 11 (point C in FIG. 2). The output of the control rectifier circuit 6 is adjusted to match the output of the heater 11.

〔発明の効果〕〔The invention's effect〕

以上のごとく本発明によれば、主抵抗器8を全て短絡
した後に接触器10を閉じた際、跳び上がる電機子電流の
値が低く抑えられ、電動機の整流悪化を起こすこともな
く、負荷へのトルク急変も及ぼさずに制御できる。
As described above, according to the present invention, when the contactor 10 is closed after all of the main resistors 8 are short-circuited, the value of the jumping armature current is suppressed to a low value, and the commutation of the motor does not deteriorate. Can be controlled without the sudden change of torque.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のものの一実施例を示すブロック図、第
2図はその特性図、第3図は主回路図、第4図は従来の
もののブロック図、第5図はその特性図である。 1……直流電源、2……電機子巻線、3……電機子電流
検出器、4……直巻界磁巻線、5……界磁電流検出器、
6……制御整流回路、7……他励制御電源、8……主抵
抗器、9……分路リアクトル、10……接触器、11……パ
ターン発生器、12,13……演算増幅器、14……パターン
引き下げ量発生器、15……タイマー。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a characteristic diagram thereof, FIG. 3 is a main circuit diagram, FIG. 4 is a block diagram of a conventional device, and FIG. is there. 1 ... DC power supply, 2 ... armature winding, 3 ... armature current detector, 4 ... series wound field winding, 5 ... field current detector,
6: Control rectifier circuit, 7: Separately-excited control power supply, 8: Main resistor, 9: Shunt reactor, 10: Contactor, 11: Pattern generator, 12, 13: Operational amplifier, 14… Pattern lowering amount generator, 15… Timer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】直流電源の正極側から直流直巻電動機の電
機子巻線と,該直流直巻電動機の直巻界磁巻線と,他の
交流電源より供給される電力を位相制御して可変直流電
圧を出力するバイパスダイオード付制御整流回路と,前
記直流直巻電動機の速度の上昇と共に可変制御する主抵
抗器とを直列に接続し,前記直流電源の負極に至る速度
制御回路を構成し,前記電機子巻線と直巻界磁巻線との
接続点に分路リアクトルと接触器とを直列に接続した分
路リアクトルの一端を接続し,他方の接触器の一端は前
記制御整流回路と前記主抵抗器との接続点へ接続し,起
動時には前記接触器は開いておき,前記制御整流回路の
ゲートは停止したままあらかじめ設定してある限流値に
応じて前記主抵抗器を順次短絡して加速制御し,主抵抗
器が全て短絡された後には接触器を閉じると同時に,制
御整流回路のゲートを開き,前記直巻界磁巻線に流れる
電流を前記分路リアクトル側の電路に分流させて前記電
機子電流を一定の電流パターンに一致するように制御し
て連続的に弱め界磁制御をするようにした電動機制御装
置において、電機子電流パターン引き下げ量発生器とタ
イマーによって、前記接触器を閉じた瞬間から一定時間
の間は、電機子電流の電流パターンの値を引き下げるよ
うに制御することを特徴とする電動機制御装置。
1. A phase control of an armature winding of a DC series motor, a series winding field winding of the DC series motor, and power supplied from another AC power source from the positive side of the DC power source. A control rectifier circuit with a bypass diode that outputs a variable DC voltage, and a main resistor that variably controls the speed of the DC series motor as the speed increases, constitute a speed control circuit that reaches the negative electrode of the DC power supply. One end of a shunt reactor in which a shunt reactor and a contactor are connected in series is connected to a connection point between the armature winding and the series winding, and one end of the other contactor is connected to the control rectifier circuit. And the main resistor, the contactor is opened at the time of starting, the gate of the control rectifier circuit is stopped, and the main resistor is sequentially turned on according to a preset current limiting value. Short-circuit and accelerate control, all main resistors are short-circuited Later, at the same time as closing the contactor, the gate of the control rectifier circuit is opened, and the current flowing in the series-wound field winding is shunted to the shunt reactor-side electric circuit so that the armature current matches a certain current pattern. In the motor control device, the armature current pattern reduction amount generator and the timer control the armature current for a certain period of time from the moment when the contactor is closed, by controlling the field weakening control so as to continuously perform the field weakening control. A motor control device that controls so as to reduce the value of the current pattern.
JP1256718A 1989-09-29 1989-09-29 Motor control device Expired - Lifetime JP2727365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1256718A JP2727365B2 (en) 1989-09-29 1989-09-29 Motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1256718A JP2727365B2 (en) 1989-09-29 1989-09-29 Motor control device

Publications (2)

Publication Number Publication Date
JPH03118788A JPH03118788A (en) 1991-05-21
JP2727365B2 true JP2727365B2 (en) 1998-03-11

Family

ID=17296492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1256718A Expired - Lifetime JP2727365B2 (en) 1989-09-29 1989-09-29 Motor control device

Country Status (1)

Country Link
JP (1) JP2727365B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744767B2 (en) * 1985-01-11 1995-05-15 財団法人鉄道総合技術研究所 Weak-field injection control device for electric vehicles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
東芝レビュー、13〔3〕(1958)P.186

Also Published As

Publication number Publication date
JPH03118788A (en) 1991-05-21

Similar Documents

Publication Publication Date Title
US4323835A (en) Simplified power factor controller for induction motor
US4369403A (en) Power factor controller for induction motor
JPS6362999B2 (en)
US4162436A (en) Motor speed controller
JP2727365B2 (en) Motor control device
JPH0113314B2 (en)
JP2624524B2 (en) Motor overload detection device
JPH01298993A (en) Inverter device for driving induction motor
US4345190A (en) Chopper control system
JP2843411B2 (en) DC motor constant speed controller
JPH0270284A (en) Control method for induction motor
JPS6146187A (en) Speed controller of dc motor
JPH0746076Y2 (en) Elevator speed control device
JPH0145318B2 (en)
JPS6295982A (en) Inverter for driving motor
JPS6029356Y2 (en) Open loop current source inverter
JPS635438Y2 (en)
JPH0347071B2 (en)
JPH08140284A (en) Voltage controller of generator for vehicle
JPH0630600A (en) Control circuit for exciting device
JPH01157203A (en) Speed controller for electric motor car
SU1287248A1 (en) D.c.electric drive
JPS5836239Y2 (en) Regenerative braking control device for induction motor
JPS6311905Y2 (en)
JPH02119590A (en) Motor controller