JP2726218B2 - 3D magnetic field detection coil - Google Patents

3D magnetic field detection coil

Info

Publication number
JP2726218B2
JP2726218B2 JP5161147A JP16114793A JP2726218B2 JP 2726218 B2 JP2726218 B2 JP 2726218B2 JP 5161147 A JP5161147 A JP 5161147A JP 16114793 A JP16114793 A JP 16114793A JP 2726218 B2 JP2726218 B2 JP 2726218B2
Authority
JP
Japan
Prior art keywords
coil
magnetic field
bobbin
axis
field detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5161147A
Other languages
Japanese (ja)
Other versions
JPH0777564A (en
Inventor
光博 高畑
義則 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimazu Seisakusho KK
Original Assignee
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimazu Seisakusho KK filed Critical Shimazu Seisakusho KK
Priority to JP5161147A priority Critical patent/JP2726218B2/en
Publication of JPH0777564A publication Critical patent/JPH0777564A/en
Application granted granted Critical
Publication of JP2726218B2 publication Critical patent/JP2726218B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、SQUID磁力計等の
極微弱磁界の計測装置におけるピックアップコイル等と
して使用される磁界検出コイルに関し、特に生体磁気計
測において刺激等で誘発される脳磁界の計測等に適した
磁界検出コイルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic field detecting coil used as a pick-up coil or the like in a device for measuring a very weak magnetic field such as a SQUID magnetometer, and more particularly to a measurement of a cerebral magnetic field induced by a stimulus or the like in biomagnetic measurement. The present invention relates to a magnetic field detection coil suitable for, for example, the present invention.

【0002】[0002]

【従来の技術】極微弱磁界を計測するSQUID磁力計
においては、一般に、被計測磁界をSQUIDリングで
拾わずに、ピックアップコイルおよび入力コイルとから
なる超伝導閉ループである磁束トランス等と称される入
力回路を介して拾うことが多用されている。
2. Description of the Related Art In a SQUID magnetometer for measuring an extremely weak magnetic field, a magnetic field to be measured is not picked up by a SQUID ring, but is called a magnetic flux transformer or the like which is a superconducting closed loop including a pickup coil and an input coil. It is often used to pick up through an input circuit.

【0003】このような入力回路におけるピックアップ
コイルとしては、図5(A)に例示するモノコイル(マ
グネトメータ)のほか、同図(B)に示す1次微分型コ
イル(グラジオメータ)、あるいは同図(C)に示す2
次微分型コイル(2次のグラジオメータ)などがある。
1次微分型コイルは2巻きのコイルを互いに逆巻きにし
たもので、また、2次微分型コイルは逆巻きのコイルを
2対、つまり+,−,−,+の順でフロントコイルF、
2巻きのミッドコイルM、およびリアコイルRの合計4
巻きのコイルを巻回した構造を持つ。微分型のコイルは
雑音をキャンセルする効果が高く、また、微分の次数が
高くなるほどその効果は大きくなる。
As a pickup coil in such an input circuit, a monocoil (magnetometer) illustrated in FIG. 5A, a first-order differential coil (gradiometer) illustrated in FIG. 2 shown in (C)
There are secondary differential coils (secondary gradiometers) and the like.
The primary differential coil has two windings wound in opposite directions, and the secondary differential coil has two pairs of reverse windings, ie, front coil F, in the order of +,-,-, +.
A total of 4 of the 2-turn mid coil M and the rear coil R
It has a structure in which a wound coil is wound. A differential coil has a high effect of canceling noise, and the effect increases as the order of differentiation increases.

【0004】以上のようなコイルのうち、モノコイルや
1次微分型コイルについては、図5(A)または(B)
のようなコイルを、互いに直交する軸を中心として配置
した3次元検出型のものが実用化されているが、2次微
分型のコイルについては、従来、鉛直方向成分(図5
(C)におけるφinの方向)のみを測定するようにした
1次元のものが殆どで、3軸化(3次元化)については
実質的に実用化されてはいない。これは、水平成分につ
いてはクロストークの問題が生じたり、あるいはワイヤ
が巻きにくいといったこともあるが、微分型のコイルで
は一般に、図5(C)に例示するようにフロントコイル
Fに被測定物を置き、ベースラインの方向に測定する考
え方が主流であって、それ以外の測定方法については考
えられていないためでもある。
[0004] Of the above coils, monocoils and first-order differential coils are shown in FIG. 5 (A) or (B).
The three-dimensional detection type in which such coils are arranged around axes orthogonal to each other has been put to practical use, but the coil of the second derivative type has conventionally been provided with a vertical component (FIG. 5).
In most cases, only the one-dimensional type that measures only the direction of φ in (C) is not practically used. This may cause a problem of crosstalk with respect to the horizontal component, or the winding of the wire may be difficult. However, in the case of the differential type coil, the measured object is generally placed on the front coil F as illustrated in FIG. This is because the idea of measuring in the direction of the baseline is the mainstream, and other measurement methods are not considered.

【0005】[0005]

【発明が解決しようとする課題】ところで、1次微分型
の3次元ピックアップコイルや、鉛直方向のみを測定す
る2次微分型ピックアップコイルは、上述したように雑
音を除去する効果によって検出信号のS/Nは良好とな
るが、誘発脳磁のように複数個の電流ダイポールが存在
するような場合、その個数や位置を特定することが困難
であるという問題がある。
However, the three-dimensional pickup coil of the first-order differential type and the second-order type of the pickup coil measuring only in the vertical direction have the effect of eliminating the noise as described above, thereby reducing the S signal of the detection signal. Although / N is good, there is a problem that it is difficult to specify the number and position of a plurality of current dipoles such as induced brain magnetic fields.

【0006】すなわち、図6(A)に例示するように、
2次微分型のコイルを用いてその鉛直の測定方向に単一
の電流ダイポールを置いたときには、その電流ダイポー
ルの直上で検出信号が0となってその位置の特定は可能
であるが、同図(B)に例示するように、測定方向に2
つの電流ダイポールを置いたとき、検出信号はこれらに
よるものを合計したものとなり、その個数および各位置
の特定は極めて困難となる。
That is, as exemplified in FIG.
When a single current dipole is placed in the vertical measurement direction using a second-order differential coil, the detection signal becomes 0 immediately above the current dipole, and the position can be specified. As shown in FIG.
When two current dipoles are placed, the detection signal is the sum of those signals, and it is extremely difficult to specify the number and each position.

【0007】本発明はこのような実情に鑑みてなされた
もので、複数個の電流ダイポールが存在しても、その個
数および各電流ダイポールの位置を高精度に特定するこ
とのできるピックアップコイルの提供を目的としてい
る。
The present invention has been made in view of such circumstances, and provides a pickup coil capable of specifying the number and the position of each current dipole with high accuracy even if a plurality of current dipoles exist. It is an object.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの構成を、実施例図面である図1〜図3を参照しつつ
説明すると、本発明の3次元磁界検出コイルは、耐低温
性材料からなるボビン1の外周に、当該ボビン1の中心
を通り、かつ、互いに直交する3本の軸Bγ,Bθ,B
φのそれぞれに対応して、個々の軸Bγ,Bθ,Bφを
中心とするループ状で、かつ、互いに平行な4本ずつの
溝11γ〜14γ,11θ〜14θ,11φ〜14φが
刻設されているとともに、その各溝11γ〜14γ、1
1θ〜14θおよび11φ〜14φをガイドとしてその
内部に、超伝導ワイヤ2γ、2θおよび2φがそれぞれ
各軸ごとに+,−,−,+の順で、4巻きずつ巻回され
ていることによって特徴づけられる。
A structure for achieving the above object will be described with reference to FIGS. 1 to 3 which are drawings of an embodiment. The three-dimensional magnetic field detecting coil of the present invention has a low temperature resistance. Three axes Bγ, Bθ, B passing through the center of the bobbin 1 and orthogonal to each other are provided on the outer periphery of the bobbin 1 made of a material.
For each of φ, four grooves 11γ to 14γ, 11θ to 14θ, 11φ to 14φ are engraved in a loop shape around each axis Bγ, Bθ, Bφ and parallel to each other. And each of the grooves 11γ to 14γ, 1
Superconducting wires 2γ, 2θ, and 2φ are wound in four turns in the order of +,-,-, + for each axis, respectively, using 1θ to 14θ and 11φ to 14φ as guides. Attached.

【0009】[0009]

【作用】本発明の構成は、2次微分型のコイルを鉛直方
向(Bγ軸方向)のみならず水平2軸方向(Bθおよび
Bφ軸方向)にも配置した、いわゆる3次元の2次微分
型コイルであり、このようなコイルを用いて、Bγ軸方
向に被測定物を配置して磁界を検出すると、図4(A)
に例示するように、水平の2方向(Bθ軸方向、Bφ軸
方向)の各コイルからの信号は、電流ダイポールの直上
で信号レベルが最大または最小となる特性がある。
The structure of the present invention is a so-called three-dimensional secondary differential type in which coils of the secondary differential type are arranged not only in the vertical direction (Bγ axis direction) but also in the horizontal two axis directions (Bθ and Bφ axis directions). When a magnetic field is detected by arranging an object to be measured in the Bγ-axis direction using such a coil, FIG.
As shown in the example, the signal from each coil in two horizontal directions (Bθ axis direction, Bφ axis direction) has a characteristic that the signal level becomes maximum or minimum immediately above the current dipole.

【0010】従って、同図(B)または(C)に示すよ
うにBγ方向に複数個の電流ダイポールが存在していた
としても、BθおよびBφ軸方向のコイルからの信号に
着目することによって、その個数および各位置の特定が
可能となる。
Therefore, even if a plurality of current dipoles exist in the Bγ direction as shown in FIG. 1B or FIG. 1C, by focusing on the signals from the coils in the Bθ and Bφ axis directions, The number and each position can be specified.

【0011】[0011]

【実施例】図1は本発明実施例の全体構成を示す斜視図
で、図2はそのボビン1の表面近傍の部分拡大断面図で
ある。
FIG. 1 is a perspective view showing the entire structure of an embodiment of the present invention, and FIG. 2 is a partially enlarged sectional view of the vicinity of the surface of a bobbin 1. As shown in FIG.

【0012】直方体形状を有するボビン1の外周には、
そのボビン1の中心を通り、かつ、互いに直交する3本
の軸Bγ,BθおよびBφの各軸を中心として、互いに
平行な4本の溝11γ〜14γ,11θ〜14θ、およ
び11φ〜14φが形成されている。
On the outer periphery of the bobbin 1 having a rectangular parallelepiped shape,
Four grooves 11γ to 14γ, 11θ to 14θ, and 11φ to 14φ parallel to each other are formed around three axes Bγ, Bθ, and Bφ passing through the center of the bobbin 1 and orthogonal to each other. Have been.

【0013】この各溝11γ〜14γ,11θ〜14
θ、および11φ〜14φは、図2にその11θ〜14
θを例にとって拡大断面図を示すように、その全てがU
字形の断面形状を有しており、その各溝11γ〜14
γ、11θ〜14θ、および11φ〜14φに沿ってそ
の内部には、それぞれNb−Tiからなる超伝導ワイヤ2
γ、2θ、および2φが埋め込まれるように巻回されて
いる。
The grooves 11γ to 14γ, 11θ to 14
θ and 11φ to 14φ are shown in FIG.
As shown in the enlarged sectional view taking θ as an example,
And each of the grooves 11γ to 14
Along each of γ, 11θ to 14θ, and 11φ to 14φ, a superconducting wire 2 made of Nb-Ti is provided.
It is wound so that γ, 2θ, and 2φ are embedded.

【0014】超伝導ワイヤ2γ、2θおよび2φの巻か
れている向きは、各軸Bγ,BθおよびBφのそれぞれ
について、その一端側から+,−,−,+の順であり、
これによってボビン1の外周に沿って各軸Bγ,Bθお
よびBφ方向への2次元微分型コイルが形成されること
になる。
The winding directions of the superconducting wires 2γ, 2θ, and 2φ are in the order of +,-,-, + from one end of each of the axes Bγ, Bθ, and Bφ.
Thus, a two-dimensional differential coil is formed along the outer circumference of the bobbin 1 in the directions of the axes Bγ, Bθ, and Bφ.

【0015】この実施例においては、Bγ方向が磁気信
号レベル的に重要であるため、そのBγ方向のコイルの
ベースラインを他の方向に比して長くとれるようなボビ
ン形状が採用され、幅×奥行き×高さを30mm×30
mm×60mmとしてる。これに、Bγ方向については
28.6mm、BθおよびBφ方向は14.0mmのベ
ースラインになるように各溝11γ〜14γ、11θ〜
14θおよび11φ〜14φを形成している。
In this embodiment, since the Bγ direction is important in terms of the magnetic signal level, a bobbin shape is adopted such that the base line of the coil in the Bγ direction can be made longer than the other directions. 30mm x 30 depth x height
mm × 60 mm. In addition, each of the grooves 11γ to 14γ and 11θ to have a baseline of 28.6 mm in the Bγ direction and 14.0 mm in the Bθ and Bφ directions.
14θ and 11φ to 14φ are formed.

【0016】ここで、ボビン1の材質は、加工性が良好
で、使用している超伝導ワイヤの超伝導性が得られる液
体ヘリウム温度に耐え、しかもそのような低温でも変形
の少ないセラミック材(例えば商品名マコール等)がよ
い。また、ボビン1には例えば4箇所程度の取り付け穴
を設けて、ボビン自体の熱容量の軽減、低温による歪み
の吸収等を行うようにすることが好ましい。
Here, the material of the bobbin 1 is a ceramic material which has good workability, withstands the liquid helium temperature at which the superconductivity of the superconducting wire used can be obtained, and has little deformation even at such a low temperature. For example, the product name is McCall). Preferably, the bobbin 1 is provided with, for example, about four mounting holes to reduce the heat capacity of the bobbin itself, absorb distortion due to low temperature, and the like.

【0017】なお、各軸Bγ,BθおよびBφ方向にお
けるミッドコイルに相当する超伝導ワイヤの巻き方につ
いては、図3にBθ方向を例にとって要部拡大図を示す
ような巻き線をすることにより、上記した巻き方向が得
られる。
The way of winding the superconducting wire corresponding to the mid-coil in each of the axes Bγ, Bθ and Bφ directions is as shown in FIG. The above-mentioned winding direction is obtained.

【0018】また、以上の本発明実施例の使用方法につ
いて説明すると、各軸Bγ,BθおよびBφ方向のコイ
ルのそれぞれの両端は、図示しないが、各軸方向に対応
して設けられた超伝導体からなる入力コイルの両端に接
続される。そして、このような各超伝導閉ループを通じ
て、各軸方向のコイルで拾った磁気信号が各軸ごとに設
けられたSQUIDに伝達され、その各SQUIDから
各軸方向の磁気測定信号を得る。
The use of the embodiment of the present invention described above will be described. Both ends of the coils in the directions of the axes Bγ, Bθ and Bφ are not shown, but superconducting coils provided corresponding to the respective axes are provided. It is connected to both ends of a body input coil. Then, the magnetic signal picked up by the coil in each axis direction is transmitted to the SQUID provided for each axis through each superconducting closed loop, and a magnetic measurement signal in each axis direction is obtained from each SQUID.

【0019】さて、以上のような本発明実施例を用いた
磁気計測装置を用いることにより、脳磁界をはじめとす
る高感度磁界測定を行う際、例えば右手首と右親指の2
つの刺激に対する誘発脳磁のように複数の電流ダイポー
ルが生じても、容易にその個数と各位置の特定を行うこ
とができる。
By using the magnetic measuring apparatus according to the embodiment of the present invention as described above, when performing high-sensitivity magnetic field measurement including cerebral magnetic field, for example, the right wrist and the right thumb
Even if a plurality of current dipoles are generated as in the case of an induced brain magnetic field for one stimulus, the number and positions of the current dipoles can be easily specified.

【0020】図4は本発明実施例のBγ方向に電流ダイ
ポールが存在しているときの、BθおよびBφ方向コイ
ルによる磁界検出特性を示すグラフであり、各電流ダイ
ポールの直上において、ダイポールの向きに応じて信号
レベルが最大または最小となり、これによって電流ダイ
ポールの数と位置を特定できる。
FIG. 4 is a graph showing the magnetic field detection characteristics of the Bθ and Bφ direction coils when a current dipole exists in the Bγ direction according to the embodiment of the present invention. The signal level will be maximum or minimum accordingly, and the number and location of the current dipole can be determined.

【0021】このような本発明の3次元2次微分型検出
コイルを用いた測定方法は、SQUID磁力計のみなら
ず、フラックスゲート型などの磁力計についても、その
位置および個数特定のノウハウを活かすことが可能であ
り、地中埋設物の探査等の分野に対しても有効である。
The measuring method using the three-dimensional second-order differential detection coil of the present invention utilizes the know-how for specifying the position and number of not only SQUID magnetometers but also fluxgate magnetometers. It is also effective for fields such as exploration of underground buried objects.

【0022】なお、本発明の3次元2次微分型磁界検出
コイルにおけるボビン形状は、前記した実施例のように
直方体に限らず、立方体あるいは球とすることができ
る。
The shape of the bobbin in the three-dimensional secondary differential magnetic field detecting coil of the present invention is not limited to a rectangular parallelepiped as in the above-described embodiment, but may be a cube or a sphere.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
2次微分型コイルを直交3軸方向の全てに施しているた
め、被測定磁界に対して鉛直でない水平2軸のコイルか
らの信号を着目することにより、複数個の電流ダイポー
ルの存在下でその個数並びに各位置を容易に特定するこ
とが可能となり、特に誘発脳磁等の計測分野において、
2つの刺激に対する誘発脳磁の測定データの解析に有効
であることが確認されている。
As described above, according to the present invention,
Since the secondary differential coil is applied in all three orthogonal directions, the signal from the horizontal two-axis coil which is not perpendicular to the magnetic field to be measured is focused on in the presence of a plurality of current dipoles. It is possible to easily specify the number and each position, especially in the measurement field such as induced brain magnetic field,
It has been confirmed that the method is effective for analyzing measured data of evoked magnetoencephalograms for two stimuli.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例の全体構成を示す斜視図FIG. 1 is a perspective view showing the overall configuration of an embodiment of the present invention.

【図2】そのボビン1の表面近傍の部分拡大断面図FIG. 2 is a partially enlarged sectional view of the vicinity of the surface of the bobbin 1.

【図3】本発明実施例の要部拡大図FIG. 3 is an enlarged view of a main part of the embodiment of the present invention.

【図4】本発明実施例の水平2軸方向のコイルによる磁
界検出特性の例を示すグラフ
FIG. 4 is a graph showing an example of a magnetic field detection characteristic of a coil in two horizontal axis directions according to the embodiment of the present invention.

【図5】SQUID用の磁界検出コイルの各タイプの説
明図
FIG. 5 is an explanatory diagram of each type of a magnetic field detection coil for SQUID.

【図6】従来の1次元2次微分型コイルによる磁界検出
特性の例を示すグラフ
FIG. 6 is a graph showing an example of a magnetic field detection characteristic of a conventional one-dimensional secondary differential coil.

【符号の説明】[Explanation of symbols]

1 ボビン11γ〜14γ,11θ〜14θ,11φ〜
14φ 溝 2γ,2θ,2φ 超伝導ワイヤ Bγ,Bθ,Bφ 直交3軸
1 bobbins 11γ to 14γ, 11θ to 14θ, 11φ to
14φ groove 2γ, 2θ, 2φ superconducting wire Bγ, Bθ, Bφ orthogonal 3 axes

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超伝導ワイヤを所定のベースラインをも
って+,−,−,+の順で各向きに巻いた2次微分型の
ピックアップであって、耐低温性材料からなるボビンの
外周に、当該ボビンの中心を通り、かつ、互いに直交す
る3本の軸のそれぞれに対応して、個々の軸を中心と
るループ状で、かつ、互いに平行な4本ずつの溝が刻設
されているとともに、その各溝をガイドとしてその内部
に、超伝導ワイヤがそれぞれ各軸ごとに上記順で4巻き
ずつ巻回されていることを特徴とする3次元磁界検出コ
イル。
1. A second-order differential pickup in which a superconducting wire is wound in each direction in the order of +,-,-, + with a predetermined baseline, wherein a superconducting wire is wound around a bobbin made of a low temperature resistant material. Each axis is centered on each of three axes passing through the center of the bobbin and orthogonal to each other .
Four grooves are formed in a loop shape and are parallel to each other , and the superconducting wire is wound inside each of the four grooves for each axis in the above order using each groove as a guide. A three-dimensional magnetic field detection coil, characterized in that it is made.
JP5161147A 1993-06-30 1993-06-30 3D magnetic field detection coil Expired - Lifetime JP2726218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5161147A JP2726218B2 (en) 1993-06-30 1993-06-30 3D magnetic field detection coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5161147A JP2726218B2 (en) 1993-06-30 1993-06-30 3D magnetic field detection coil

Publications (2)

Publication Number Publication Date
JPH0777564A JPH0777564A (en) 1995-03-20
JP2726218B2 true JP2726218B2 (en) 1998-03-11

Family

ID=15729492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5161147A Expired - Lifetime JP2726218B2 (en) 1993-06-30 1993-06-30 3D magnetic field detection coil

Country Status (1)

Country Link
JP (1) JP2726218B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5686176B2 (en) * 2009-03-19 2015-03-18 セイコーエプソン株式会社 Magnetic field measuring device, measuring method of magnetic field measuring device
JP5447002B2 (en) 2009-03-19 2014-03-19 セイコーエプソン株式会社 Magnetic field measuring device
JP2013124873A (en) 2011-12-13 2013-06-24 Seiko Epson Corp Magnetic field measuring system and cell array

Also Published As

Publication number Publication date
JPH0777564A (en) 1995-03-20

Similar Documents

Publication Publication Date Title
JP3204542B2 (en) Magnetic field source measurement device
US4613817A (en) Superconducting gradiometer coil system for an apparatus for the multi-channel measurement of weak nonstationary magnetic fields
JP4571570B2 (en) Magnetic detection coil and magnetic field measuring device
US5199178A (en) Thin film compass and method for manufacturing the same
CN105785286B (en) A kind of fetus heart Magnetic testi probe, system and method
JPS6347684A (en) Squid magnetometer for feeble magnetic-field measuring device
US5744960A (en) Planar open magnet MRI system
JP5376394B2 (en) SQUID magnetometer
US20200018803A1 (en) Magnetic flux pickup and electronic device for sensing magnetic fields
JP2726218B2 (en) 3D magnetic field detection coil
US5825183A (en) Radial differential squid magnetic flux meter
US5914600A (en) Planar open solenoidal magnet MRI system
US5289121A (en) Composite pickup coil for measurement of magnetic field components in a superconducting quantum interference device
US5053706A (en) Compact low-distortion squid magnetometer
CN106154187B (en) Three rank gradient coils of one kind and detector
GB2171523A (en) Magnetic gradient detection
US6650107B2 (en) Calibrating SQUID channels
JP3018540B2 (en) 3-axis gradiometer
US5329229A (en) Magnetic field detection coils with superconducting wiring pattern on flexible film
JP3042148B2 (en) Orthogonal 3-axis pickup coil
GB2258314A (en) Determining magnetic field gradient tensors
CN218350480U (en) Gradiometer and weak magnetic detection device
Bruno et al. A symmetric third order gradiometer without external balancing or magnetocardiography
Odehnal et al. Low-level SQUID magnetometry of the human heart in a small ferromagnetic enclosure
JPS62187267A (en) Measuring instrument for superconducting magnetic field

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 16

EXPY Cancellation because of completion of term