JP2726210B2 - Method and apparatus for evaluating thermophysical properties of sample - Google Patents

Method and apparatus for evaluating thermophysical properties of sample

Info

Publication number
JP2726210B2
JP2726210B2 JP5001558A JP155893A JP2726210B2 JP 2726210 B2 JP2726210 B2 JP 2726210B2 JP 5001558 A JP5001558 A JP 5001558A JP 155893 A JP155893 A JP 155893A JP 2726210 B2 JP2726210 B2 JP 2726210B2
Authority
JP
Japan
Prior art keywords
sample
measured
photothermal displacement
thermal expansion
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5001558A
Other languages
Japanese (ja)
Other versions
JPH06201619A (en
Inventor
伸吾 住江
弘行 高松
勉 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5001558A priority Critical patent/JP2726210B2/en
Publication of JPH06201619A publication Critical patent/JPH06201619A/en
Application granted granted Critical
Publication of JP2726210B2 publication Critical patent/JP2726210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/16Investigating or analyzing materials by the use of thermal means by investigating thermal coefficient of expansion

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,試料の熱物性評価方法
及びその装置に係り,詳しくは試料の熱物性定数の測定
および熱物性定数から得られる試料の物理的な状態の評
価を行う試料の熱物性評価方法及びその装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for evaluating the thermophysical properties of a sample, and more particularly to a sample for measuring the thermophysical constant of the sample and evaluating the physical state of the sample obtained from the thermophysical constant. And a thermophysical property evaluation method.

【0002】[0002]

【従来の技術】試料に周期的に強度変調した励起光を照
射すると,試料はこの光の吸収により発熱し,これによ
り熱膨張する。照射光は周期的に強度変調しているた
め,発熱による試料の温度変化は周期的となり,試料は
熱膨張振動をおこす。これらの熱応答を計測することに
より試料を評価する手法は,光音響法ないしは光熱変位
法として知られている。図4は,上記光熱変位法による
従来の試料の熱物性評価装置Aoの一例における概略構
成を示す模式図である。図4に示す如く,従来の試料の
熱物性評価装置Aoに適用される評価方法では,まずポ
ンプレーザ1から出た励起光(ポンプ光)はチョッパ2
により断続した光束になり,レンズ3によって測定試料
4の表面に照射される。このとき試料4がポンプ光を吸
収する材質の場合,上記したように試料4は,ポンプ光
のエネルギを断続的に吸収してその温度が周期的に変化
するため,試料4の表面に熱膨張振動が生じる。一般
に,熱膨張振動の振幅は10-11 m程度と非常に小さい
ので,光学的な干渉技術を利用して測定される。ここで
は,プローブレーザ5としてHe−Neレーザを用いた
マイケルソン型の干渉計が用いられている。プローブレ
ーザ5から出た光(プローブ光)はビームスプリッタ6
により2方向に分けられる。一方のプローブ光は測定試
料4に向かい,試料4の表面で反射される。反射された
プローブ光は試料4の表面の熱膨張による周期的な位相
変化の影響を受け,再度ビームスプリッタ6で反射さ
れ,光検出器7に入射する。他方のプローブ光は参照ミ
ラー8に向かい,この参照ミラー8で反射されてビーム
スプリッタ6を通過し,光検出器7に入射する。そし
て,試料4から戻ってきた上記一方のプローブ光と干渉
を起こす。ここで,プローブレーザ5の周波数が1種類
であるホモダイン干渉の場合は,干渉信号の強度は熱膨
張振動振幅の余弦関数で与えられ,またプローブレーザ
5の周波数が2種類であるヘテロダイン干渉の場合に
は,干渉信号のビート(うなり)波形の位相が熱膨張振
動振幅に従って変化することになる。これらの干渉信号
をロックインアンプ等により位相検波すれば,微小な熱
膨張量を求めることができる。熱膨張量は試料4の熱伝
導率,熱膨張率などの熱物性定数と密接に関連してい
て,またそれらは試料4の結晶欠陥密度などの物理的な
状態を反映している。ところで,光熱変位法では,チョ
ッパ2の断続(変調)周波数を高くするとポンプ光の熱
エネルギを試料4の表面に閉じこめることができる。従
って,光熱変位法を用いて熱膨張量を求めることによ
り,試料4の表層の熱物性定数の測定および熱物性定数
から得られる試料4の物理的な状態(例えば結晶欠陥,
イオン注入量など)の評価を行うことができた。
2. Description of the Related Art When a sample is irradiated with an excitation light whose intensity is periodically modulated, the sample generates heat due to absorption of the light, thereby expanding thermally. Since the intensity of the irradiation light is periodically modulated, the temperature change of the sample due to heat generation becomes periodic, and the sample causes thermal expansion vibration. The method of evaluating a sample by measuring its thermal response is known as a photoacoustic method or a photothermal displacement method. FIG. 4 is a schematic diagram showing a schematic configuration of an example of a conventional sample thermophysical property evaluation apparatus Ao using the photothermal displacement method. As shown in FIG. 4, in the evaluation method applied to the conventional sample thermophysical property evaluation apparatus Ao, first, the excitation light (pump light) emitted from the pump laser 1 is chopper 2.
As a result, the light beam becomes an intermittent light beam, and is irradiated on the surface of the measurement sample 4 by the lens 3. At this time, when the sample 4 is made of a material that absorbs the pump light, the sample 4 intermittently absorbs the energy of the pump light and periodically changes its temperature as described above. Vibration occurs. Generally, the amplitude of the thermal expansion vibration is very small, about 10 −11 m, and is measured using an optical interference technique. Here, a Michelson-type interferometer using a He-Ne laser as the probe laser 5 is used. Light (probe light) emitted from the probe laser 5 is applied to the beam splitter 6.
And is divided into two directions. One probe light is directed to the measurement sample 4 and is reflected on the surface of the sample 4. The reflected probe light is affected by a periodic phase change due to thermal expansion of the surface of the sample 4, is reflected again by the beam splitter 6, and enters the photodetector 7. The other probe light travels toward the reference mirror 8, is reflected by the reference mirror 8, passes through the beam splitter 6, and enters the photodetector 7. Then, interference occurs with the one probe light returned from the sample 4. Here, in the case of homodyne interference in which the frequency of the probe laser 5 is one type, the intensity of the interference signal is given by the cosine function of the thermal expansion oscillation amplitude, and in the case of heterodyne interference in which the frequency of the probe laser 5 is two types. In this case, the phase of the beat (beat) waveform of the interference signal changes according to the thermal expansion vibration amplitude. If these interference signals are phase-detected by a lock-in amplifier or the like, a small amount of thermal expansion can be obtained. The amount of thermal expansion is closely related to the thermophysical constants of the sample 4, such as the thermal conductivity and the coefficient of thermal expansion, and they reflect the physical state of the sample 4, such as the crystal defect density. In the photothermal displacement method, when the intermittent (modulation) frequency of the chopper 2 is increased, the thermal energy of the pump light can be confined on the surface of the sample 4. Therefore, by measuring the thermal expansion amount using the photothermal displacement method, the thermophysical constant of the surface layer of the sample 4 is measured and the physical state of the sample 4 obtained from the thermophysical constant (for example, crystal defects,
(E.g., the amount of ion implantation).

【0003】[0003]

【発明が解決しようとする課題】上記従来の試料の熱物
性評価装置Ao に適用される評価方法では,以下の問題
点があった。 (1)干渉計による熱膨張の計測は,上述したように反
射光の位相変化の検出に基づいている。しかし,反射光
の位相は熱膨張だけでなく試料4に接する媒質(一般に
は気体)の屈折率の変化によっても影響を受ける。試料
4がポンプ光のエネルギを断続的に吸収すると,試料4
の温度が周期的に変化し,そのため試料4の表面に熱膨
張振動が生じる。同時に試料4の周期的な温度上昇によ
り,試料4に接した気体の温度が上昇し,その結果気体
の屈折率が下がる。これにより,反射光の位相が真空中
より遅れ,見かけ上熱膨張量が大きく測定される(図5
(a)〜(d)参照)。すなわち,干渉計による熱膨張
の計測は極めて気圧の変化の影響を受け易いものであ
る。 (2)また,熱膨張の測定感度を向上させるためにはポ
ンプ光・プローブ光とも回折限界近くのスポットサイズ
にまで絞り込む必要がある。このようにすると感度は上
がるが,スポットサイズが一般には直径で1ミクロン以
下と小さいため,お互いが僅かにずれても測定される熱
膨張量は変化してしまう(図6参照)。ポンプ光・プロ
ーブ光の数ミクロン程度の相対的なずれは,レンズ3,
ビームスプリッタ6等光学素子のホルダや光学素子を固
定するためのベースなどの温度などによるたわみによっ
て,容易に生じてしまう。このため,従来装置Aoでは
長期的に安定して熱膨張を高感度に計測することが極め
て困難である。 (3)さらに,試料4の熱伝導率や熱膨張率は一般に温
度によって変化する(表1参照)。このため,従来装置
Aoで測定される熱膨張量は試料4の温度が変化すると
敏感に影響を受ける。 従って,半導体ウエハの結晶欠陥を評価する場合には,
試料4の温度変化は0.2℃以内であることが望まし
い。しかし,近年多用されている直径8インチという大
きな半導体ウエハの全域を0.2℃以内に制御すること
は非常に難しい。また,測定箇所の温度をモニタして測
定値を補正する方法も考えられるが,上記の精度で温度
を測るためには試料4に測温センサを接触させなければ
ならないので,試料4が汚染されるなどの問題があるた
め現実的な方法とはいえない。 表1 ある試料の熱膨張率と熱伝導率の温度依存性
The evaluation method applied to the conventional sample thermophysical property evaluation apparatus Ao has the following problems. (1) The measurement of the thermal expansion by the interferometer is based on the detection of the phase change of the reflected light as described above. However, the phase of the reflected light is affected not only by the thermal expansion but also by the change in the refractive index of a medium (generally a gas) in contact with the sample 4. When the sample 4 intermittently absorbs the energy of the pump light, the sample 4
Of the sample 4 periodically changes, and thermal expansion vibration occurs on the surface of the sample 4. At the same time, due to the periodic temperature rise of the sample 4, the temperature of the gas in contact with the sample 4 increases, and as a result, the refractive index of the gas decreases. As a result, the phase of the reflected light lags behind in vacuum, and the apparent thermal expansion is measured to be large (see FIG. 5).
(See (a) to (d)). That is, the measurement of thermal expansion by an interferometer is extremely susceptible to changes in atmospheric pressure. (2) In order to improve the measurement sensitivity of thermal expansion, it is necessary to narrow down both the pump light and the probe light to a spot size near the diffraction limit. This increases sensitivity, but the spot size is generally as small as 1 micron or less in diameter, so that even if they are slightly shifted from each other, the measured thermal expansion changes (see FIG. 6). The relative displacement of the pump light and probe light of about several microns
This is easily caused by bending of a holder of an optical element such as the beam splitter 6 or a base for fixing the optical element due to a temperature or the like. For this reason, it is extremely difficult to measure the thermal expansion with high sensitivity stably for a long time in the conventional apparatus Ao. (3) Furthermore, the thermal conductivity and the coefficient of thermal expansion of the sample 4 generally change with temperature (see Table 1). Therefore, the amount of thermal expansion measured by the conventional apparatus Ao is sensitively affected when the temperature of the sample 4 changes. Therefore, when evaluating the crystal defects of a semiconductor wafer,
It is desirable that the temperature change of the sample 4 be within 0.2 ° C. However, it is very difficult to control the entire area of a large semiconductor wafer having a diameter of 8 inches, which is frequently used in recent years, within 0.2 ° C. A method of monitoring the temperature at the measurement point and correcting the measured value is also conceivable. However, in order to measure the temperature with the above accuracy, the temperature measurement sensor must be brought into contact with the sample 4, so that the sample 4 is contaminated. It is not a practical method due to problems such as Table 1 Temperature dependence of thermal expansion coefficient and thermal conductivity of a sample

【表1】 本発明はこのような従来の技術における課題を解決する
ために,試料の熱物性評価方法及びその装置を改良し,
測定状態のいかんに拘らず被測定試料の熱物性を常に正
確に評価しうる試料の熱物性評価方法及びその装置を提
供することを目的とするものである。
[Table 1] In order to solve the problems in the prior art, the present invention has improved a method and apparatus for evaluating the thermophysical properties of a sample,
An object of the present invention is to provide a method and apparatus for evaluating the thermophysical properties of a sample, which can always accurately evaluate the thermophysical properties of the sample to be measured regardless of the measurement state.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に,本発明は試料に励起光を照射し,該励起光の照射に
よる上記試料の光熱変位を光干渉法を用いて測定する試
料の熱物性評価方法において,基準状態での光熱変位が
既知である少なくとも1つの基準試料の上記基準状態で
の光熱変位を予めメモリに記憶しておき,上記基準試料
と被測定試料との各光熱変位を略同一の測定状態下で測
定し,上記測定された基準試料の光熱変位の上記メモリ
に記憶された基準状態での光熱変位からの変化に基づい
て上記測定された被測定試料の光熱変位を補正すること
により,該被測定試料の熱物性を示す基準状態での光熱
変位を演算してなることを特徴とする試料の熱物性評価
方法として構成されている。また,試料に励起光を照射
し,該励起光の照射による上記試料の光熱変位を光干渉
法を用いて測定する試料の熱物性評価装置において,基
準状態での光熱変位が既知である少なくとも1つの基準
試料の上記基準状態での光熱変位を予め記憶しておくメ
モリと,上記基準試料と被測定試料との各光熱変位を略
同一の測定状態下で測定する測定手段と,上記測定手段
により測定された基準試料の光熱変位の上記メモリに記
憶された基準状態での光熱変位からの変化に基づいて上
記測定手段により測定された被測定試料の光熱変位を補
正することにより,該被測定試料の熱物性を示す基準状
態での光熱変位を演算する演算手段とを具備してなるこ
とを特徴とする試料の熱物性評価装置である。
In order to achieve the above object, the present invention provides a method of irradiating a sample with excitation light, and measuring the photothermal displacement of the sample by the irradiation of the excitation light using an optical interference method. In the thermophysical property evaluation method, the photothermal displacement of at least one reference sample in the reference state whose photothermal displacement in the reference state is known is stored in a memory in advance, and the photothermal displacement of the reference sample and the sample to be measured is stored. Is measured under substantially the same measurement condition, and the photothermal displacement of the measured sample is measured based on the change of the measured photothermal displacement of the reference sample from the photothermal displacement in the reference condition stored in the memory. The method is configured as a method for evaluating the thermophysical properties of a sample, wherein the correction is performed to calculate the photothermal displacement in a reference state indicating the thermophysical properties of the sample to be measured. In a thermophysical property evaluation apparatus for a sample, which irradiates a sample with excitation light and measures the photothermal displacement of the sample by the irradiation of the excitation light using an optical interference method, at least one photothermal displacement in a reference state is known. A memory for previously storing the photothermal displacement of the two reference samples in the reference state, measuring means for measuring each photothermal displacement of the reference sample and the sample under measurement under substantially the same measuring condition, and By correcting the photothermal displacement of the sample measured by the measuring means based on the change in the measured photothermal displacement of the reference sample from the photothermal displacement in the reference state stored in the memory, the sample to be measured is corrected. And a calculating means for calculating a photothermal displacement in a reference state indicating the thermophysical property of the sample.

【0005】[0005]

【作用】本発明によれば,試料に励起光を照射し,該励
起光の照射による上記試料の光熱変位を光干渉法を用い
て測定するに際し,基準状態での光熱変位が既知である
少なくとも1つの基準試料の上記基準状態での光熱変位
が予めメモリに記憶されており,上記基準試料と被測定
試料との各光熱変位が略同一の測定状態下で測定され
る。上記測定された基準試料の光熱変位の上記メモリに
記憶された基準状態での光熱変位からの変化に基づいて
上記測定された被測定試料の光熱変位を補正することに
より,該被測定試料の熱物性を示す基準状態での光熱変
位が演算される。従って,上記被測定試料のおかれた環
境雰囲気の変動や光干渉系の経年変化等の影響を該試料
の測定値から確実に取り除くことができる。その結果,
測定状態のいかんに拘らず,被測定試料の熱物性を常に
正確に評価することができる。
According to the present invention, when a sample is irradiated with excitation light and the photothermal displacement of the sample caused by the irradiation of the excitation light is measured using an optical interference method, at least the photothermal displacement in the reference state is known. The photothermal displacement of one reference sample in the reference state is stored in a memory in advance, and each photothermal displacement of the reference sample and the sample to be measured is measured under substantially the same measurement condition. By correcting the measured photothermal displacement of the measured sample based on a change in the measured photothermal displacement of the reference sample from the photothermal displacement in the reference state stored in the memory, the heat of the measured sample is corrected. Photothermal displacement in a reference state indicating physical properties is calculated. Therefore, it is possible to reliably remove the influence of the change in the environmental atmosphere of the sample to be measured and the aging of the optical interference system from the measured values of the sample. as a result,
Regardless of the measurement state, the thermophysical properties of the sample to be measured can always be accurately evaluated.

【0006】[0006]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係る試料の熱物性評価装
置A1の概略構成を示す模式図,図2は基準試料を2個
用いた時の被測定試料の熱膨張量の補正方法を示すグラ
フ,図3は基準試料をn個用いた時の被測定試料の熱膨
張量の補正方法を示すグラフである。尚,前記図4に示
した従来の試料の熱物性評価装置Aoの一例における概
略構成を示す模式図と共通する要素には同一符号を使用
する。図1に示す如く,本実施例に係る試料の熱物性評
価装置A1に適用される評価方法では,ポンプレーザ1
からのポンプ光(励起光)をチョッパ2及びレンズ3を
介して試料4に照射し,このポンプ光の照射による試料
4の光熱変位である熱膨張量を光干渉法を用いて測定す
るように構成されている点で従来例と同様である。この
光干渉法は,プローブレーザ5からのプローブ光をビー
ムスプリッタ6で2分割し,一方のプローブ光の試料4
での反射光と他方のプローブ光の参照ミラー8での反射
光との干渉光を光検知器7により検出する方法であり,
この点でも従来例と同様である。しかし,本実施例では
試料4として被測定試料Uの他に基準状態Sでの熱膨張
量PKi(S)が既知である少なくとも1つの基準試料
Kiを用いる(i=1,2,…)。そして,基準試料K
iの熱膨張量PKi(S)を予めメモリ9に記憶してお
き(S1),基準試料Kiと被測定試料Uとの各熱膨張
量を略同一の測定状態Mの下で測定し(S2),S2で
測定された基準試料Kiの熱膨張量PKi(M)のメモ
リ9に記憶された基準状態Sでの熱膨張量PKi(S)
からの変化に基づいて,S2で測定された被測定試料U
の熱膨張量PU(M)を補正することにより被測定試料
Uの熱物性を示す基準状態Sでの熱膨張量PU(S)を
演算する(S3)ように構成されている点で従来例と異
なる。上記各過程S1〜S3は,装置A1によって順次
実行される。即ち,過程S1はメモリ9により,過程S
2は測定器10(測定手段に相当)により,過程S3は
演算器11(演算手段に相当)によりそれぞれ実行され
る。ここで,測定器10は,例えば,基準試料Ki及び
被測定試料UをX−Yテーブル等の自動移動台12に載
せて,順次ポンプ光及びプローブ光のスポット位置に運
ぶと共に,各熱膨張量PKi(M),PU(M)を測定
するものである(図1の下段にその様子を示した)。ま
た,基準状態Sとは温度・気圧・光学系の調整など熱膨
張量を変動させる全ての要因が定まった状態をいう。以
下,この装置A1の動作手順について説明する(図1及
び図2参照)。まず,基準試料を2個(K1,K2)を
用いた時を例にとって説明する。この時は基準状態Sに
おいて,基準試料K1,K2の熱膨張量はそれぞれPK
1(S),PK2(S)として予め測定されてメモリ9
に記憶されているものとする。ここで,温度・気圧など
が変化して測定状態Mに変化したと考えられる。この状
態Mにおいて測定器10により状態Sにおける熱膨張量
の未知な被測定試料Uを測定する。この時測定される熱
膨張量PU(M)は状態Sにおける熱膨張量PU(S)
とは,前述の理由により異なっている。
Embodiments of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiment is an example embodying the present invention and is not intended to limit the technical scope of the present invention. Here, FIG. 1 is a schematic view showing a schematic configuration of a sample thermophysical property evaluation apparatus A1 according to one embodiment of the present invention, and FIG. 2 is a diagram showing correction of a thermal expansion amount of a sample to be measured when two reference samples are used. FIG. 3 is a graph showing a method for correcting the thermal expansion of a sample to be measured when n reference samples are used. Note that the same reference numerals are used for the same elements as those in the schematic diagram showing the schematic configuration of an example of the conventional sample thermophysical property evaluation apparatus Ao shown in FIG. As shown in FIG. 1, in the evaluation method applied to the sample thermophysical property evaluation apparatus A1 according to the present embodiment, a pump laser 1 is used.
The sample 4 is irradiated with the pump light (excitation light) from the sample 4 via the chopper 2 and the lens 3, and the amount of thermal expansion, which is the photothermal displacement of the sample 4 due to the irradiation of the pump light, is measured using the optical interference method. The configuration is the same as the conventional example. In this optical interferometry, a probe light from a probe laser 5 is split into two by a beam splitter 6, and one of the sample 4
A method in which an interference light between the reflected light from the light source and the reflected light from the other probe light from the reference mirror 8 is detected by the photodetector 7.
This point is the same as the conventional example. However, in this embodiment, at least one reference sample Ki whose thermal expansion amount PKi (S) in the reference state S is known is used as the sample 4 in addition to the sample U to be measured (i = 1, 2,...). And the reference sample K
The thermal expansion amount PKi (S) of i is stored in the memory 9 in advance (S1), and the thermal expansion amounts of the reference sample Ki and the sample U are measured under substantially the same measurement state M (S2). ), The thermal expansion amount PKi (S) in the reference state S stored in the memory 9 of the thermal expansion amount PKi (M) of the reference sample Ki measured in S2.
Sample U measured in S2 based on the change from
The conventional example in which the thermal expansion amount PU (S) in the reference state S indicating the thermophysical properties of the sample U to be measured is corrected (S3) by correcting the thermal expansion amount PU (M) of the sample U. And different. The above steps S1 to S3 are sequentially executed by the device A1. That is, the process S1 is performed by the memory
2 is executed by a measuring device 10 (corresponding to measuring means), and step S3 is executed by a computing device 11 (corresponding to computing means). Here, the measuring device 10 puts, for example, the reference sample Ki and the sample U to be measured on an automatic moving table 12 such as an XY table, and sequentially transports the samples to the spot positions of the pump light and the probe light, and each thermal expansion amount. PKi (M) and PU (M) are measured (the state is shown in the lower part of FIG. 1). The reference state S is a state in which all factors that change the amount of thermal expansion, such as adjustment of temperature, pressure, and optical system, are determined. Hereinafter, the operation procedure of the device A1 will be described (see FIGS. 1 and 2). First, a case where two reference samples (K1, K2) are used will be described as an example. At this time, in the reference state S, the thermal expansion amounts of the reference samples K1 and K2 are PK
1 (S) and PK2 (S) are measured in advance in the memory 9
Is stored. Here, it is considered that the temperature, the atmospheric pressure, and the like have changed to the measurement state M. In this state M, the measuring device 10 measures the sample U whose thermal expansion amount is unknown in the state S. The thermal expansion amount PU (M) measured at this time is the thermal expansion amount PU (S) in the state S.
Is different for the reasons described above.

【0007】しかし,温度や気圧,ポンプ光・プローブ
光の数ミクロンの相対的なずれによって生じる熱膨張量
の変化は,一般的に図2に示すような直線関係を保つと
考えられる。そこで,状態Sにおける被測定試料Uの熱
膨張量PU(S)は,状態Sにおける基準試料K1,K
2の熱膨張量PK1(S),PK2(S)と状態Mでの
熱膨張量PK1(M),PK2(M)及び被測定試料U
の熱膨張量PU(M)とを用いて,以下の(1)式で示
すような補正式で与えることができる。この補正式によ
る演算を演算器11により実行する。
However, it is generally considered that changes in the amount of thermal expansion caused by a relative displacement of several microns between the temperature, the atmospheric pressure, and the pump light / probe light maintain a linear relationship as shown in FIG. Thus, the thermal expansion amount PU (S) of the sample U to be measured in the state S is determined by the reference samples K1 and K in the state S.
2, the thermal expansion amounts PK1 (S) and PK2 (S), the thermal expansion amounts PK1 (M) and PK2 (M) in the state M, and the sample U to be measured.
The thermal expansion amount PU (M) can be given by a correction equation as shown in the following equation (1). The calculation based on this correction formula is executed by the calculator 11.

【数1】 演算器11により演算された補正値PU(S)は被測定
試料Uの温度・気圧・光学系の調整など熱膨張量を変動
させるすべての要因が定まった基準状態Sでの熱膨張量
である。このため,温度・気圧などによる状態の変化を
受けていないので上記補正値PU(S)を用いることに
より,長期的に安定した熱膨張量を得ることが可能にな
る。引き続いて,基準試料をn個(K1,k2,…,K
n)用いた時について説明する(図3参照)。この時も
基準試料を2個(K1,K2)とした時と概ね同様の動
作手順となるが,この場合は補正式が次の(2)式で示
されるように(n−1)個となる点が異なる。
(Equation 1) The correction value PU (S) calculated by the calculator 11 is the amount of thermal expansion in the reference state S in which all factors that change the amount of thermal expansion such as adjustment of the temperature, pressure, and optical system of the sample U to be measured are determined. . For this reason, since there is no change in state due to temperature, pressure, etc., it is possible to obtain a stable amount of thermal expansion over a long period of time by using the correction value PU (S). Subsequently, n reference samples (K1, k2,..., K
n) A description will be given of the case of using (see FIG. 3). At this time, the operation procedure is almost the same as when the number of reference samples is two (K1, K2). In this case, however, the correction equation is (n-1) as shown in the following equation (2). Is different.

【数2】 この例では,上記(2)式により,(n−1)個の補正
値PU(S−2),PU(S−3),…PU(S−n)
が与えられるため次の(3)式で示される平均値PU
(S)を求める。
(Equation 2) In this example, (n-1) correction values PU (S-2), PU (S-3),... PU (S-n)
Is given, the average value PU represented by the following equation (3) is obtained.
(S) is obtained.

【数3】 つまり,上記(2),(3)式による一連の演算を演算
器11により実行する。このようにして得られた平均値
PU(S)が被測定試料Uの状態Sでの熱膨張量に相当
する。このように多くの基準試料を用いれば,測定の精
度が向上するので,更に高精度かつ安定性の優れた熱膨
張量を得ることができる。以上のように,本実施例によ
れば,被測定試料のおかれた環境雰囲気の変動や光干渉
系の経年変化等の影響を該試料の測定値から確実に取り
除くことができる。その結果,測定状態のいかんに拘ら
ず,被測定試料の熱物性を常に正確に評価することがで
きる。尚,上記実施例では基準試料を複数個用いた場合
を例示したが,実使用に際しては基準試料を1個だけ用
いても同様にして被測定試料の熱膨張量を補正できる。
即ち,この時は基準試料の熱膨張量の状態Sから状態M
への変化量を直接被測定試料の熱膨張量に加えることに
より補正する。この場合は基準試料を複数個用いた場合
に比べて評価の正確さは若干低下する場合があるもの
の,基準試料の測定が1個だけとなり,また演算もより
簡略化されるため,試料のより迅速な評価が可能となる
という利点を有する。従って本発明で用いられる基準試
料は少なくとも1つあればよいといえる。尚,上記実施
例では単一の励起・干渉系を用いているが,実使用に際
しては複数の励起・干渉系を構成してそれぞれが基準試
料および被測定試料を専用に測定するようにしてもよ
い。
(Equation 3) That is, the arithmetic unit 11 executes a series of calculations based on the above equations (2) and (3). The average value PU (S) thus obtained corresponds to the amount of thermal expansion in the state S of the sample U to be measured. If a large number of reference samples are used, the accuracy of measurement is improved, so that a more accurate and stable thermal expansion amount can be obtained. As described above, according to the present embodiment, it is possible to reliably remove the influence of the change in the environmental atmosphere in which the sample to be measured is placed and the aging of the optical interference system from the measured values of the sample. As a result, it is possible to always accurately evaluate the thermophysical properties of the sample to be measured, regardless of the measurement state. In the above embodiment, the case where a plurality of reference samples are used is exemplified. However, in actual use, even when only one reference sample is used, the amount of thermal expansion of the sample to be measured can be similarly corrected.
That is, at this time, from the state S of the thermal expansion amount of the reference sample to the state M
Is corrected by directly adding the change amount to the thermal expansion amount of the sample to be measured. In this case, although the accuracy of the evaluation may be slightly lower than the case where a plurality of reference samples are used, only one measurement of the reference sample is required, and the calculation is further simplified. This has the advantage that quick evaluation is possible. Therefore, it can be said that at least one reference sample used in the present invention may be used. In the above embodiment, a single excitation / interference system is used. However, in actual use, a plurality of excitation / interference systems may be configured so that each of them exclusively measures the reference sample and the sample to be measured. Good.

【0008】[0008]

【発明の効果】本発明に係る試料の熱物性評価方法及び
その装置は上記したように構成されているため,被測定
試料のおかれた環境雰囲気や光干渉系の経年変化等の影
響を該試料の測定値から確実に取り除くことができる。
その結果,測定状態のいかんに拘らず,被測定試料の熱
物性を常に正確に評価することができる。
Since the method and apparatus for evaluating the thermophysical properties of a sample according to the present invention are constructed as described above, the effects of the environmental atmosphere in which the sample to be measured is placed and the secular change of the optical interference system are taken into consideration. It can be reliably removed from the measured value of the sample.
As a result, it is possible to always accurately evaluate the thermophysical properties of the sample to be measured, regardless of the measurement state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係る試料の熱物性評価装
置A1の概略構成を示す模式図。
FIG. 1 is a schematic diagram showing a schematic configuration of a sample thermophysical property evaluation apparatus A1 according to one embodiment of the present invention.

【図2】 基準試料を2個用いた時の被測定試料の熱膨
張量の補正方法を示すグラフ。
FIG. 2 is a graph showing a method of correcting the amount of thermal expansion of a sample to be measured when two reference samples are used.

【図3】 基準試料をn個用いた時の被測定試料の熱膨
張量の補正方法を示すグラフ。
FIG. 3 is a graph showing a method for correcting a thermal expansion amount of a measured sample when n reference samples are used.

【図4】 従来の試料の熱物性評価装置Aoの一例にお
ける概略構成を示す模式図。
FIG. 4 is a schematic diagram showing a schematic configuration of an example of a conventional sample thermophysical property evaluation apparatus Ao.

【図5】 真空中と空気中の反射光の位相変化を示す説
明図。
FIG. 5 is an explanatory diagram showing a phase change of reflected light in vacuum and in air.

【図6】 ポンプ光とプローブ光との照射位置のずれを
示す説明図。
FIG. 6 is an explanatory diagram showing a shift in irradiation position between pump light and probe light.

【符号の説明】[Explanation of symbols]

A1…試料の熱物性評価装置 1…ポンプレー
ザ 4…試料 5…プローブレ
ーザ 7…光検出器 9メモリ 10…測定器(測定手段に相当) 11…演算器
(演算手段に相当) K1,K2…基準試料 U…被測定試料 S…基準状態 M…測定状態 PK1(S),PK2(S),PK1(M),PK2
(M)…基準試料の状態S,Mでの熱膨張量(光熱変
位) PU(S),PU(M)…被測定試料の状態S,Mでの
熱膨張量(光熱変位)
A1: Thermophysical property evaluation device for sample 1 ... Pump laser 4 ... Sample 5 ... Probe laser 7 ... Photodetector 9 Memory 10 ... Measuring device (corresponding to measuring means) 11 ... Computing device (corresponding to computing means) K1, K2 ... Reference sample U: Sample to be measured S: Reference state M: Measurement state PK1 (S), PK2 (S), PK1 (M), PK2
(M): Thermal expansion amount (photothermal displacement) in reference sample states S, M PU (S), PU (M): Thermal expansion amount (photothermal displacement) in states S, M of sample to be measured

フロントページの続き (72)発明者 森本 勉 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (56)参考文献 特開 平3−269346(JP,A) 特開 平4−273048(JP,A) 特開 平3−137550(JP,A)Continued on the front page (72) Inventor Tsutomu Morimoto 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel, Ltd. Kobe Research Institute (56) References JP-A-3-269346 (JP, A JP-A-4-273048 (JP, A) JP-A-3-137550 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料に励起光を照射し,該励起光の照射
による上記試料の光熱変位を光干渉法を用いて測定する
試料の熱物性評価方法において,基準状態での光熱変位
が既知である少なくとも1つの基準試料の上記基準状態
での光熱変位を予めメモリに記憶しておき,上記基準試
料と被測定試料との各光熱変位を略同一の測定状態下で
測定し,上記測定された基準試料の光熱変位の上記メモ
リに記憶された基準状態での光熱変位からの変化に基づ
いて上記測定された被測定試料の光熱変位を補正するこ
とにより,該被測定試料の熱物性を示す基準状態での光
熱変位を演算してなることを特徴とする試料の熱物性評
価方法。
1. A method for evaluating the thermophysical properties of a sample, comprising irradiating the sample with excitation light and measuring the photothermal displacement of the sample by the irradiation of the excitation light using an optical interference method, wherein the photothermal displacement in a reference state is known. The photothermal displacement of at least one reference sample in the reference state is stored in a memory in advance, and each photothermal displacement of the reference sample and the sample to be measured is measured under substantially the same measurement condition. A reference indicating the thermophysical properties of the measured sample by correcting the measured photothermal displacement of the measured sample based on the change of the photothermal displacement of the reference sample from the photothermal displacement in the reference state stored in the memory. A method for evaluating thermophysical properties of a sample, characterized by calculating a photothermal displacement in a state.
【請求項2】 試料に励起光を照射し,該励起光の照射
による上記試料の光熱変位を光干渉法を用いて測定する
試料の熱物性評価装置において,基準状態での光熱変位
が既知である少なくとも1つの基準試料の上記基準状態
での光熱変位を予め記憶しておくメモリと,上記基準試
料と被測定試料との各光熱変位を略同一の測定状態下で
測定する測定手段と,上記測定手段により測定された基
準試料の光熱変位の上記メモリに記憶された基準状態で
の光熱変位からの変化に基づいて上記測定手段により測
定された被測定試料の光熱変位を補正することにより,
該被測定試料の熱物性を示す基準状態での光熱変位を演
算する演算手段とを具備してなることを特徴とする試料
の熱物性評価装置。
2. A thermophysical property evaluation device for a sample, which irradiates a sample with excitation light and measures the photothermal displacement of the sample by the irradiation of the excitation light using an optical interference method, wherein the photothermal displacement in a reference state is known. A memory for storing in advance the photothermal displacement of at least one reference sample in the reference state, measuring means for measuring each photothermal displacement of the reference sample and the sample under measurement under substantially the same measurement condition, By correcting the photothermal displacement of the sample measured by the measuring means based on the change of the photothermal displacement of the reference sample measured by the measuring means from the photothermal displacement in the reference state stored in the memory,
A device for evaluating thermophysical properties of a sample, comprising: arithmetic means for calculating photothermal displacement in a reference state indicating thermophysical properties of the sample to be measured.
JP5001558A 1993-01-08 1993-01-08 Method and apparatus for evaluating thermophysical properties of sample Expired - Fee Related JP2726210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5001558A JP2726210B2 (en) 1993-01-08 1993-01-08 Method and apparatus for evaluating thermophysical properties of sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5001558A JP2726210B2 (en) 1993-01-08 1993-01-08 Method and apparatus for evaluating thermophysical properties of sample

Publications (2)

Publication Number Publication Date
JPH06201619A JPH06201619A (en) 1994-07-22
JP2726210B2 true JP2726210B2 (en) 1998-03-11

Family

ID=11504860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5001558A Expired - Fee Related JP2726210B2 (en) 1993-01-08 1993-01-08 Method and apparatus for evaluating thermophysical properties of sample

Country Status (1)

Country Link
JP (1) JP2726210B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3079216B2 (en) * 1996-02-19 2000-08-21 工業技術院長 Specific heat capacity measurement method
JP2009085795A (en) * 2007-09-28 2009-04-23 Nichias Corp Measuring method of reflectivity or transmittance of electromagnetic wave at high temperature
JP2016095196A (en) * 2014-11-13 2016-05-26 サムソン エレクトロ−メカニックス カンパニーリミテッド. Thermal expansion coefficient measurement method and thermomechanical analysis apparatus
DE102015223923A1 (en) * 2015-12-01 2017-06-01 Carl Zeiss Smt Gmbh Determining at least one dependent on the temperature-dependent thermal expansion coefficient of a material thermal property

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137550A (en) * 1989-10-23 1991-06-12 Brother Ind Ltd Light wave interference type apparatus for measuring microscopic thermal displacement
JP2735348B2 (en) * 1990-03-20 1998-04-02 株式会社神戸製鋼所 Sample evaluation method with a single light source using thermal expansion vibration
JPH0743354B2 (en) * 1991-02-28 1995-05-15 株式会社神戸製鋼所 Sample evaluation method using thermal expansion vibration

Also Published As

Publication number Publication date
JPH06201619A (en) 1994-07-22

Similar Documents

Publication Publication Date Title
JP5983779B2 (en) Gas absorption spectroscopy apparatus and gas absorption spectroscopy method
JP3273500B2 (en) Apparatus and method for measuring variation in refractive index of gas in measurement path
KR100328007B1 (en) Superheterodyne method and apparatus for measuring the refractive index of air using multiple-pass interferometry
Yamaguchi et al. Active phase-shifting interferometers for shape and deformation measurements
US6894788B2 (en) Interferometric system for automated radius of curvature measurements
JPH08304315A (en) Measuring method of thermal diffusivity
US20220146443A1 (en) Steady-state thermo-reflectance method & system to measure thermal conductivity
JP2726210B2 (en) Method and apparatus for evaluating thermophysical properties of sample
JPS60256079A (en) Minute displacement measuring apparatus using semiconductor laser
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
JP5704897B2 (en) Interference measurement method and interference measurement apparatus
Yoshioka et al. A method for measuring the frequency response of photodetector modules using twice-modulated light
Li et al. Numerical investigation of multi-beam laser heterodyne measurement with ultra-precision for linear expansion coefficient of metal based on oscillating mirror modulation
JP3621994B2 (en) Disturbance measuring device and high-precision optical interference measuring device in optical interferometer
JPH06201620A (en) Method and apparatus for evaluating thermophysical properties of sample
CN115628710A (en) Thermal wave imaging coating detection device and method
Trolinger Ultrahigh resolution interferometry
Tiziani et al. Scanning differential-heterodyne-interferometer with acousto-optic deflectors
Sokolov et al. Femtosecond laser-based absolute rangefinder with the possibility of traceability to the time and frequency standard
Suddendorf et al. Noncontacting measurement of opaque thin films using a dual beam thermal wave probe
JPH06265496A (en) Defective evaluation method of sample
CN211576103U (en) Photo-thermal surface deformation detection calibration device based on wavelength phase-shift interference
US20060250619A1 (en) Method and system for interferometric height measurment
JP2529901B2 (en) Phase shift Fize-interferometer error correction method
JP2018105833A (en) Moisture density measurement method, and moisture density measurement device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees