JP2720602B2 - Reprocessing of spent nuclear fuel - Google Patents

Reprocessing of spent nuclear fuel

Info

Publication number
JP2720602B2
JP2720602B2 JP33406590A JP33406590A JP2720602B2 JP 2720602 B2 JP2720602 B2 JP 2720602B2 JP 33406590 A JP33406590 A JP 33406590A JP 33406590 A JP33406590 A JP 33406590A JP 2720602 B2 JP2720602 B2 JP 2720602B2
Authority
JP
Japan
Prior art keywords
solution
nuclear fuel
spent nuclear
extraction
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33406590A
Other languages
Japanese (ja)
Other versions
JPH04202019A (en
Inventor
建二 西村
伸一 長谷川
皓 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP33406590A priority Critical patent/JP2720602B2/en
Publication of JPH04202019A publication Critical patent/JPH04202019A/en
Application granted granted Critical
Publication of JP2720602B2 publication Critical patent/JP2720602B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、ピューレックス(Purex)法を用いた使用
済核燃料の再処理方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for reprocessing spent nuclear fuel using the Purex method.

「従来の技術」 ピューレックス法を用いた従来の使用済核燃料の再処
理方法の一例を第4図に示す。
"Prior art" An example of a conventional method for reprocessing spent nuclear fuel using the Purex method is shown in FIG.

この従来法ではまず、使用済核燃料の溶解液を硝酸濃
度3N程度に調整した後、清澄工程で不溶解残渣を分離
し、濾液を分離第1サイクルに送る。この分離第1サイ
クルでは、TBP等の有機溶媒を用いてUとPuを同時に抽
出し、さらにPu,Uを水相に順次逆抽出してU,Puの分配を
行なう。
In this conventional method, first, a dissolved solution of spent nuclear fuel is adjusted to a nitric acid concentration of about 3N, an undissolved residue is separated in a clarification step, and a filtrate is sent to a first cycle of separation. In the first cycle of separation, U and Pu are simultaneously extracted using an organic solvent such as TBP, and then Pu and U are sequentially back-extracted into an aqueous phase to partition U and Pu.

次いで、U,Puのそれぞれについて、溶媒抽出および逆
抽出による精製をそれぞれ2度繰り返し、U製品および
Pu製品を得ている。
Then, for each of U and Pu, purification by solvent extraction and back extraction was repeated twice, respectively, to obtain U product and
Pu products are getting.

「発明が解決しようとする課題」 このように、上記従来の使用済核燃料の再処理方法で
は、全工程に亙って溶媒抽出精製が行われているが、下
記のような、溶媒を使用することによる基本的な問題点
および改良点が存在する。
[Problem to be Solved by the Invention] As described above, in the conventional method for reprocessing spent nuclear fuel, solvent extraction and purification are performed in all steps, but the following solvent is used. There are fundamental problems and improvements.

抽出(共除染)工程では、濾過・清澄液中の不純物
濃度が高いので、有機相との混合接触界面において第3
相の発生等を引き起こしやすく、運転管理が難しい。ま
た、第3相が発生した場合にはU,Puと放射性核分裂生成
物との分離度が悪化するうえ、第3相がさらに蓄積した
場合には、抽出操作ができなくなり、第3相の除去等の
保守操作が必要となってプラント稼働率の低下につなが
る。
In the extraction (co-decontamination) step, since the impurity concentration in the filtered and clarified solution is high, the third
Phases are likely to occur, making operation management difficult. In addition, when the third phase is generated, the degree of separation between U and Pu and the fission products is deteriorated. When the third phase is further accumulated, the extraction operation cannot be performed, and the third phase is removed. And other maintenance operations are required, leading to a reduction in the plant operation rate.

共除染・分配工程では、放射線量が高い溶液と有機
溶媒が接触するため、有機溶媒の劣化が著しく、第3相
の発生を増加させるとともに、抽出溶媒として使用でき
なくなる廃溶媒が発生し、さらに廃溶媒処理のための設
備が必要となる。
In the co-decontamination / distribution process, since the solution having a high radiation dose comes into contact with the organic solvent, the organic solvent is significantly deteriorated, the generation of the third phase is increased, and a waste solvent which cannot be used as the extraction solvent is generated. Further, equipment for waste solvent treatment is required.

いずれの工程においても、抽出・逆抽出された溶媒
には、除染係数を高めるためにも必ず洗浄操作を行なう
必要があり、洗浄廃液が発生する。このため、再処理プ
ロセスにおける廃棄物発生量が多く、洗浄液の処理設備
が必要である。
In any of the steps, it is necessary to perform a washing operation on the extracted and back-extracted solvent in order to increase the decontamination coefficient, and a washing waste liquid is generated. For this reason, a large amount of waste is generated in the reprocessing process, and a cleaning liquid treatment facility is required.

抽出操作は、抽出・洗浄・逆抽出を繰り返すので工
程が複雑であるうえ、洗浄廃液の処理設備および廃溶媒
の処理設備が必要になることなどから、これら機器を配
置するための区画(セル)の寸法・個数が大きく、セル
内の排気設備運転に要するコストが高い。したがって、
コスト低減を図るために、コンパクトな設備で済む精製
法が望まれている。
The extraction operation involves repeated extraction, washing, and back-extraction, which complicates the process and requires equipment for treating washing waste liquid and waste solvent. Therefore, a compartment (cell) for disposing these devices is required. Are large in size and number, and the cost required for operating the exhaust equipment in the cell is high. Therefore,
In order to reduce costs, a purification method that requires only compact equipment is desired.

さらに近年では、原子炉燃料をより長期間使用する、
いわゆる高燃焼度化の計画が検討されており、軽水炉高
燃焼度燃料、FBR燃料、MOX燃料等の使用が考えられてい
るが、これらから生じる使用済核燃料は、核分裂生成物
(FP)の含有量が従来の数倍に増加する。したがって、
特に分離第1サイクルで抽出に用いる有機溶媒の劣化が
早まり、放射性廃棄溶媒の量がさらに増加するととも
に、核分裂生成物(FP)の分離度が悪化し、前記問題
が一層深刻化するおそれを有している。
More recently, the use of nuclear fuel for longer periods,
So-called high burn-up plans are being considered, and the use of high burn-up fuels in light water reactors, FBR fuels, MOX fuels, etc. is considered, but the spent nuclear fuel resulting from these will contain fission products (FP). The amount increases several times compared to the conventional case. Therefore,
In particular, the deterioration of the organic solvent used for extraction in the first cycle of separation is accelerated, the amount of radioactive waste solvent is further increased, and the degree of separation of fission products (FP) is deteriorated. doing.

本発明は、上記事情に鑑みてなされたもので、プロセ
ス全体としての溶媒使用量が低減でき、設備の小形化が
図れる使用済核燃料の再処理方法を提供することを目的
としている。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for reprocessing spent nuclear fuel that can reduce the amount of solvent used in the entire process and can reduce the size of equipment.

「課題を解決するための手段」 以下、本発明に係わる使用済核燃料の再処理方法を具
体的に説明する。
[Means for Solving the Problems] Hereinafter, a method for reprocessing spent nuclear fuel according to the present invention will be specifically described.

第1図は本発明に係わる再処理方法の一例を示す概略
工程図である。この例ではまず、従来法と同様に使用済
核燃料を硝酸で溶解したうえ、この溶解液を一旦清澄さ
せて不溶解残渣を除去する。
FIG. 1 is a schematic process diagram showing an example of a reprocessing method according to the present invention. In this example, first, the spent nuclear fuel is dissolved with nitric acid in the same manner as in the conventional method, and the solution is once clarified to remove insoluble residues.

次に、液調製工程(図示略)において、不溶解残渣を
除去した溶解液に還元剤を添加し、溶液中のPu6+をPu4+
に還元する。この還元剤に要求される特性は、溶解液中
でU6+よりもPu6+と選択的に反応してこれをPu4+に転換
し、還元剤自体が後の精製処理を妨害せず、しかも精製
品中に残留しないことが挙げられる。
Next, in a liquid preparation step (not shown), a reducing agent is added to the dissolved liquid from which insoluble residues have been removed, and Pu 6+ in the solution is converted to Pu 4+.
To be reduced to The properties required for this reducing agent are that it selectively reacts with Pu 6+ over U 6+ in the lysate to convert it to Pu 4+ , and the reducing agent itself does not interfere with the subsequent purification process. In addition, it does not remain in the purified product.

U6+よりもPu6+と選択的に反応するためには、還元剤
の酸化還元電位がPu6+/Pu4+の酸化還元電位1.04Vより低
いことが必須で、さらにその酸化還元電位はU6+/U4+
酸化還元電位0.33Vより高いことが望ましい。
U to selectively react with Pu 6+ than is 6+, oxidation-reduction potential of the reducing agent Pu 6+ / Pu 4+ oxidation-reduction potential 1.04V lower it essential than the further the redox potential Is desirably higher than the redox potential of U 6+ / U 4+ 0.33V.

これらの条件を満たす還元剤として特に好ましい物質
はU4+であるが、その他にもヒドラジン、硝酸ヒドロキ
シルアミン、スルファミン酸鉄等が使用できる可能性を
有する。
A particularly preferable substance as a reducing agent satisfying these conditions is U 4+ , but there is a possibility that hydrazine, hydroxylamine nitrate, iron sulfamate and the like can be used in addition.

U4+を還元剤として使用した場合、Uは元々溶解液中
に存在する物質であるから、後の精製処理を妨害するお
それは全くない。U4+を溶解液に添加するには、硝酸ウ
ラニル溶液を電解還元した硝酸ウラナス溶液および安定
化剤としてヒドラジンを溶解液に添加する方法等が採ら
れる。
When U 4+ is used as a reducing agent, U is a substance originally present in the solution, and therefore has no possibility of interfering with the subsequent purification treatment. In order to add U 4+ to the solution, a method of adding uranyl nitrate solution obtained by electrolytic reduction of the uranyl nitrate solution and hydrazine as a stabilizer to the solution is adopted.

U4+の好ましい添加量は、溶解液中のPu6+の含有量か
ら計算されるモル数の1〜3倍程度、より好ましくは1
〜2倍とされる。1倍未満ではPu6+が完全に還元されな
いおそれを有する。一方、3倍より多いとU4+の残留量
が多くなり、この残留U4+は析出せずに母液に残留する
ため、後段の溶媒抽出工程での負担を増して好ましくな
い。
The preferable addition amount of U 4+ is about 1 to 3 times, more preferably 1 to 3 times the number of moles calculated from the content of Pu 6+ in the solution.
~ 2 times. If it is less than 1, Pu 6+ may not be completely reduced. On the other hand, if it is more than three times, the residual amount of U 4+ will increase, and this residual U 4+ will remain in the mother liquor without being precipitated, which is not preferable because it increases the load in the subsequent solvent extraction step.

液調製工程ではさらに、次段の結晶精製工程1におけ
る析出効率を高めるため、溶解液中の硝酸濃度を3〜6
N、望ましくは4〜6Nに調整するとともに、ウラン濃度
を200〜500g/、望ましくは350〜400g/に調整する。
この調製は還元剤添加の前後のいずれでもよいし、同時
でもよい。調製後の硝酸濃度が3N未満では溶液の凝固点
における母液中のウラン濃度が高く、ウランの十分な回
収率が得られない。逆に硝酸濃度が6Nより濃いと溶液の
取り扱いが困難になる。また、ウラン濃度が200g/未
満では十分な収率が得られず、500g/より大では生成
する結晶量が多く、固液分離が困難となり、除染係数の
悪化を招く。
In the solution preparation step, further, the nitric acid concentration in the solution is adjusted to 3 to 6 in order to increase the precipitation efficiency in the subsequent crystal purification step 1.
N, preferably 4-6N, and the uranium concentration is adjusted to 200-500g /, preferably 350-400g /.
This preparation may be performed before or after the addition of the reducing agent, or simultaneously. If the nitric acid concentration after preparation is less than 3N, the uranium concentration in the mother liquor at the freezing point of the solution is high, and a sufficient uranium recovery cannot be obtained. Conversely, if the nitric acid concentration is higher than 6N, it becomes difficult to handle the solution. On the other hand, if the uranium concentration is less than 200 g /, a sufficient yield cannot be obtained. If the uranium concentration is more than 500 g /, the amount of generated crystals is large, solid-liquid separation becomes difficult, and the decontamination coefficient is deteriorated.

次に、調製した溶解液を結晶精製工程1において析出
槽に移し、溶解液を冷却して結晶化を行なう。冷却方法
としては、析出槽全体を冷却してもよいが、より効率的
に行なうには、溶解液に冷却媒体を浸漬する方法が採ら
れる。さらに、ドライアイス、液体窒素、フロン等の冷
媒を直接液中に入れることにより、冷却する方法も採る
ことができる。
Next, the prepared solution is transferred to a precipitation tank in the crystal purification step 1, and the solution is cooled to perform crystallization. As a cooling method, the entire precipitation tank may be cooled. However, for more efficient operation, a method of immersing a cooling medium in a solution is adopted. Further, a cooling method can also be adopted in which a refrigerant such as dry ice, liquid nitrogen, or chlorofluorocarbon is directly introduced into the liquid.

冷却媒体としては、例えばステンレスパイプ等からな
るU字管を多数本束ねたもの等が使用され、その内部に
形成された冷却液通路にエチレングリコール等の冷却媒
が循環される。なお、冷却媒体はU字管等の管体だけで
なく、平板状や角柱状、円筒状など、必要に応じて形状
を適宜変更してよい。
As the cooling medium, for example, a bundle of a number of U-shaped tubes made of a stainless steel pipe or the like is used, and a cooling medium such as ethylene glycol is circulated through a cooling liquid passage formed therein. The shape of the cooling medium is not limited to a tubular body such as a U-shaped tube, and may be appropriately changed in shape, such as a flat plate, a prism, or a cylinder, as needed.

こうして冷却媒体により溶解液全体を−10〜−30℃、
望ましくは−10〜−20℃まで冷却する。すると、溶解液
中のU6+は硝酸ウラニルとして析出するが、Pu4+の硝酸
塩は硝酸ウラニルより析出しにくいため、析出物中には
含まれない。
In this way, the entire solution is cooled to −10 ° C. to −30 ° C.
Preferably, it is cooled to -10 to -20C. Then, U 6+ in the solution is precipitated as uranyl nitrate, but the nitrate of Pu 4+ is not contained in the precipitate because it is more difficult to precipitate than uranyl nitrate.

結晶精製工程1での最終温度が−30℃より低いと、溶
解液中の水分または/および硝酸3水和物が結晶ととも
に析出し、結晶中に不純物が取り込まれて純度が低下す
るおそれが生じる。また、冷却開始時の溶解液温度は20
〜35℃が望ましく、前記最終温度まで60〜180分、より
好ましくは120〜180分間かけて冷却する。冷却過程での
冷却速度は、析出する結晶中に不純物が取り込まれにく
いように1℃/分以下、より好ましくは0.5℃/分以下
とする。
If the final temperature in the crystal refining step 1 is lower than −30 ° C., water or / and nitric acid trihydrate in the solution may precipitate together with the crystals, and impurities may be taken into the crystals to lower the purity. . The temperature of the solution at the start of cooling is 20
3535 ° C. is desirable, and it is cooled to the final temperature in 60-180 minutes, more preferably 120-180 minutes. The cooling rate in the cooling process is set to 1 ° C./min or less, more preferably 0.5 ° C./min or less, so that impurities are hardly taken into the precipitated crystals.

結晶化が完了したら析出物を回収する。前述した冷却
媒体を使用した場合には、この冷却媒体の表面に硝酸ウ
ラニルが樹枝状結晶として析出するため、回収が容易で
あるうえ、溶解液中に残存していた不溶解残渣が析出槽
の底に沈澱し、母液から除去されるため好都合である。
When the crystallization is completed, the precipitate is recovered. When the above-mentioned cooling medium is used, uranyl nitrate precipitates as dendritic crystals on the surface of the cooling medium, so that it is easy to recover and insoluble residues remaining in the solution are removed from the precipitation tank. Convenient because it precipitates at the bottom and is removed from the mother liquor.

次に、析出槽に残った母液を必要に応じて濾過した
後、従来法における溶媒抽出と同様の硝酸濃度に調整す
るか、あるいはそのまま抽出工程2に送る。この抽出工
程2では、従来法と同様に母液からTBP等の有機相にU,P
uを抽出したうえ、この有機相を洗浄塔を用いて十分に
水相(硝酸水溶液)で洗浄する。なお、抽出工程2で生
じる抽出残液は、高レベル廃液処理工程に送る。
Next, the mother liquor remaining in the precipitation tank is filtered as required, and then adjusted to the same nitric acid concentration as in the conventional solvent extraction, or sent to the extraction step 2 as it is. In this extraction step 2, as in the conventional method, U, P
After extracting u, the organic phase is sufficiently washed with an aqueous phase (aqueous nitric acid solution) using a washing tower. The extraction residue generated in the extraction step 2 is sent to a high-level waste liquid treatment step.

次いで、洗浄された有機相を分配工程3に送り、硝酸
プルトニウムを水相に逆抽出したうえ、再度異なる条件
で逆抽出を行ない、有機相中に残ったUを硝酸ウラニル
として水相に逆抽出し、U,Puを分離する。
Next, the washed organic phase is sent to the partitioning step 3, in which plutonium nitrate is back-extracted into the aqueous phase and then back-extracted again under different conditions, and U remaining in the organic phase is back-extracted into the aqueous phase as uranyl nitrate. Then, U and Pu are separated.

一方、結晶精製工程1で回収された硝酸ウラニルは、
分配工程3で得られた硝酸ウラニル溶液と合わせてU精
製工程4に送る。このU精製工程4では、硝酸ウラニル
溶液からUを有機相に抽出し、有機相を硝酸水溶液で洗
浄したうえ製品となる硝酸ウラニルを逆抽出する。
On the other hand, uranyl nitrate recovered in the crystal purification step 1 is
It is sent to the U purification step 4 together with the uranyl nitrate solution obtained in the distribution step 3. In this U purification step 4, U is extracted from the uranyl nitrate solution into an organic phase, the organic phase is washed with an aqueous nitric acid solution, and uranyl nitrate as a product is back-extracted.

一方、分配工程3で得られた硝酸プルトニウムは、Pu
精製第1工程5およびPu精製第2工程6へ送って抽出・
逆抽出を2回繰り返し、硝酸プルトニウム製品に転換す
る。
On the other hand, plutonium nitrate obtained in the distribution step 3 is Pu
Send to the first purification step 5 and the second Pu purification step 6 to extract
The back extraction is repeated twice to convert to plutonium nitrate product.

上記構成からなる使用済核燃料の再処理方法によれ
ば、結晶精製工程1により、使用済燃料溶解液中の大部
分(95%程度)のUを硝酸ウラニル結晶として回収する
ため、抽出工程2に送られるU,Puの総量が大幅に低下で
き、抽出工程2および分配工程3での溶媒使用量を従来
法の1/10〜1/20にまで低減することが可能である。同一
規模の処理量で比較した場合、溶媒抽出に要する設備に
比べて、結晶精製に要する設備の方が小形化できるた
め、上記の方法ではプロセス全体としての設備を小形化
することも可能である。
According to the spent nuclear fuel reprocessing method having the above-described configuration, most (about 95%) of U in the spent fuel solution is recovered as uranyl nitrate crystals in the crystal refining step 1. The total amount of U and Pu to be sent can be greatly reduced, and the amount of solvent used in the extraction step 2 and the distribution step 3 can be reduced to 1/10 to 1/20 of the conventional method. When compared at the same scale of throughput, the equipment required for crystal purification can be downsized compared to the equipment required for solvent extraction, so the above method can also downsize the equipment as a whole process. .

また、結晶精製工程1で回収される硝酸ウラニル結晶
は高純度であるため、1段階のみのU精製工程4を経た
時点で既に製品規格を満たすことが可能であり、従来は
必要とされていた2段階目のU精製工程を省くことがで
きる。したがって、分配工程3以降の溶媒使用量も約1/
2に低減することができ、この点からも溶媒使用量を低
減することが可能であるうえ、溶媒に係わる廃棄物量も
低減できる。
Further, since the uranyl nitrate crystal recovered in the crystal purification step 1 is of high purity, it can already meet the product specifications at the time of passing through only one U-purification step 4, which has been conventionally required. The second U purification step can be omitted. Therefore, the amount of solvent used after the distribution step 3 is also about 1 /
2, the amount of solvent used can be reduced from this point, and the amount of waste related to the solvent can also be reduced.

次に第2図は、上記方法の抽出工程2〜分配工程3ま
でを変更した例を示している。この例では、抽出工程2
と分配工程3の間に、精製度を高めるために逆抽出工程
10および抽出工程11を設けたことを特徴とする。
Next, FIG. 2 shows an example in which the extraction step 2 to the distribution step 3 of the above method are changed. In this example, extraction step 2
Back-extraction step to increase the degree of purification between
10 and an extraction step 11 are provided.

この方法によれば、抽出工程2〜分配工程3における
精製度を高めることが可能であるから、前述の例では2
段階必要だったPu精製工程5が1段階で済む。同時に最
終的なUの精製度も向上する。
According to this method, the degree of purification in the extraction step 2 to the distribution step 3 can be increased.
The Pu purification step 5 which was required in one step can be completed in one step. At the same time, the final purity of U is also improved.

次に、第3図は本発明の第3例を示し、この例では、
第1例における溶媒抽出・逆抽出を用いたU精製工程4
の代わりに、結晶精製工程1と同様の結晶精製工程20を
設けたことを特徴とする。この結晶精製工程20における
精製条件は、第1段目の結晶精製工程1と同様でよい。
Next, FIG. 3 shows a third embodiment of the present invention.
U purification step 4 using solvent extraction and back extraction in the first example
, A crystal refining step 20 similar to the crystal refining step 1 is provided. The purification conditions in this crystal purification step 20 may be the same as in the first crystal purification step 1.

この方法によれば、U精製工程4が無くなる分、第1
例の方法に比してさらに溶媒使用量を低減することがで
きる。
According to this method, since the U purification step 4 is eliminated, the first
The amount of solvent used can be further reduced as compared with the method of the example.

第1図のプロセスを通常の燃料処理に適用した場合の
モデルを以下に示す。これは、処理速度でU量が680kg/
日、Pu量が8.0kg/日の使用済核燃料溶解液を処理する場
合を想定している。
A model when the process of FIG. 1 is applied to ordinary fuel processing is shown below. This is because the U amount is 680kg /
It is assumed that a spent nuclear fuel solution with a Pu amount of 8.0 kg / day is treated.

還元剤種類:U4+ 調液後の濃度:400gU/ 4.5gPu/ 硝酸濃度:3N 還元剤添加量:4.0gU/ 結晶精製工程1でのU回収率:95% 結晶精製工程1での回収量U:645kg/日 母液中のU残量:35kg/日 Pu残量 :8.0kg/日 抽出工程2での溶媒使用量:20/hr(従来法では300/
hr) 分配工程3の溶媒使用量:22/hr(従来法では340/h
r) 上記のように、第1図のプロセスによれば、従来法に
比して高放射線濃度の溶液と接触する溶媒の使用量が低
減でき、溶媒にかかわる廃棄物量を低減できる。
Reducing agent type: U 4+ Concentration after preparation: 400 gU / 4.5 g Pu / Nitric acid concentration: 3 N Reductant addition amount: 4.0 gU / U recovery rate in crystal purification step 1: 95% Recovery amount in crystal purification step 1 U: 645 kg / day U remaining amount in mother liquor: 35 kg / day Pu remaining amount: 8.0 kg / day Solvent usage in extraction step 2: 20 / hr (300 /
hr) Solvent usage in distribution step 3: 22 / hr (340 / h in conventional method)
r) As described above, according to the process of FIG. 1, the amount of the solvent that comes into contact with the solution having a high radiation concentration can be reduced as compared with the conventional method, and the amount of waste related to the solvent can be reduced.

なお、本発明は使用済核燃料からUを分離するための
結晶精製工程1を設けたことを主たる特徴としており、
分配工程3以降の処理条件やプロセスに関しては、必要
に応じて適宜構成を変更してよい。
The main feature of the present invention is to provide a crystal refining step 1 for separating U from spent nuclear fuel,
Regarding the processing conditions and processes after the distribution step 3, the configuration may be appropriately changed as necessary.

「実施例」 硝酸ウラニルを400gU/、硝酸ネプツニウムを10μCi
/(約14ppm)、その他の核分裂生成物(Cs,Sr,Y,Zr,P
d,Fe,Ce,Eu,Ru)の硝酸塩をそれぞれ数g/含有し、硝
酸濃度が6Nである核燃料溶解模擬液を調整した。
"Example" Uranyl nitrate 400gU /, Neptunium nitrate 10μCi
/ (About 14ppm), other fission products (Cs, Sr, Y, Zr, P
d, Fe, Ce, Eu, and Ru) were prepared, each containing several g / nitrate and having a nitric acid concentration of 6N.

硝酸ネプツニウムは、硝酸プルトニウムの代替であ
る。ネプツニウムとプルトニウムは極めて近い化学特性
を有し、両者とも水溶液中で+3〜+6の原子価をと
り、いずれもウランより低原子価で安定な傾向を有す
る。なお、模擬液中におけるネプツニウムの原子価は5
価または6価、ウランの原子価は6価である。
Neptunium nitrate is an alternative to plutonium nitrate. Neptunium and plutonium have very similar chemical properties, both have a valence of +3 to +6 in aqueous solution, and both tend to be lower valence and more stable than uranium. The valence of neptunium in the simulated liquid is 5
The valence of uranium is hexavalent, and uranium is hexavalent.

まず、上記模擬液にU4+を0.03gU/、ヒドラジンを0.
1mol/となるようにそれぞれ添加した。この添加量
は、前記ネプツニウムの全量をNp4+へ還元しうる当量の
2倍である。添加時は模擬液温度は33℃であった。
First, 0.04 gU / U4 + and 0 hydrazine were added to the above simulated liquid.
Each was added to be 1 mol /. This addition amount is twice the equivalent amount capable of reducing the entire amount of neptunium to Np 4+ . At the time of addition, the simulated liquid temperature was 33 ° C.

次に、模擬液を析出槽内に移し、冷媒を通した冷却管
をこの模擬液に浸し、180分かけて溶液全体を−20℃ま
で冷却した。すると、硝酸ウラニルが冷却管上に析出
し、液中のウラン濃度は約20gU/となった。この時の
結晶化工程によるウラン回収率は95%であった。
Next, the simulation liquid was transferred into the precipitation tank, and a cooling pipe through which a cooling medium was passed was immersed in the simulation liquid, and the entire solution was cooled to −20 ° C. over 180 minutes. Then, uranyl nitrate was deposited on the cooling tube, and the uranium concentration in the liquid became about 20 gU /. At this time, the uranium recovery in the crystallization step was 95%.

また、回収した硝酸ウラニル結晶中の核分裂生成物の
含有量を測定し、分離係数を算出した。その結果を第1
表に示す。
Further, the content of fission products in the recovered uranyl nitrate crystals was measured, and the separation coefficient was calculated. The result is
It is shown in the table.

「発明の効果」 以上説明したように、本発明に係わる使用済核燃料の
再処理方法によれば、次のような優れた効果が得られ
る。
[Effects of the Invention] As described above, according to the method for reprocessing spent nuclear fuel according to the present invention, the following excellent effects can be obtained.

晶析法を用いた結晶精製工程により、使用済燃料溶
解液中の大部分(95%程度)のUを硝酸ウラニル結晶と
して回収するため、抽出工程に送られるU,Puの総量が大
幅に低下できる。したがって、抽出工程および分配工程
での溶媒使用量が1/10〜1/20に低減でき、同時に廃溶媒
量も低減される。
The crystal purification process using the crystallization method recovers most (about 95%) of U in the spent fuel solution as uranyl nitrate crystals, so the total amount of U and Pu sent to the extraction process is greatly reduced. it can. Therefore, the amount of solvent used in the extraction step and the distribution step can be reduced to 1/10 to 1/20, and at the same time, the amount of waste solvent is reduced.

同一規模の処理量で比較した場合、冷媒抽出に要す
る設備に比して、結晶精製に要する設備の方が小形化で
きるため、本発明ではプロセス全体としての設備を小形
化することが可能である。
When compared at the same throughput, the equipment required for crystal refining can be downsized compared to the equipment required for refrigerant extraction, so that the present invention allows the equipment as a whole process to be downsized. .

結晶精製工程から供給される硝酸ウラニルは高純度
であるため、その後のウラン精製工程は1段階行なうの
みで製品規格を満たすことが可能であり、従来は必要だ
った第2のウラン精製工程が不要となり、プロセス全体
で使用される溶媒量が低減できる。
Since the uranyl nitrate supplied from the crystal purification process is of high purity, the subsequent uranium purification process can be performed in a single step to meet product specifications, eliminating the need for the second uranium purification process that was conventionally required. And the amount of solvent used in the entire process can be reduced.

結晶化精製後の母液の溶媒抽出処理においては、U,
Pu含有率,処理量等の観点から、高速増殖炉(FBR)の
再処理設備をそのまま使用することも可能である。
In the solvent extraction treatment of the mother liquor after crystallization purification, U,
From the viewpoints of Pu content, throughput, etc., it is possible to use the reprocessing equipment of the fast breeder reactor (FBR) as it is.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第3図は、本発明に係わる使用済核燃料の
再処理方法のそれぞれ異なる例の概略を示す工程図、第
4図は従来の使用済核燃料の再処理方法の工程図であ
る。
1 to 3 are process diagrams schematically showing different examples of a method for reprocessing spent nuclear fuel according to the present invention, and FIG. 4 is a process diagram of a conventional method for reprocessing spent nuclear fuel.

フロントページの続き (72)発明者 田中 皓 茨城県那珂郡那珂町大字向山字六人頭 1002番地14 三菱金属株式会社那珂原子 力開発センター内 (56)参考文献 特開 昭60−205398(JP,A) 特公 昭39−19950(JP,B1)Continuation of the front page (72) Inventor Akira Tanaka 1002--14, Mukaiyama character, Nakamachi, Naka-gun, Naka-gun, Ibaraki Pref. A) Tokiko 39-9950 (JP, B1)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】使用済核燃料の溶解液に還元剤を添加し
て、前記溶解液中のPu6+をPu4+に還元した後、この溶液
を冷却して硝酸ウラニルを析出させる一方、残った母液
にピューレックス法を用いた溶媒抽出処理を施して硝酸
ウラニルと硝酸プルトニウムをそれぞれ分離精製し、さ
らに前記析出物と前記溶媒抽出処理により得られた硝酸
ウラニルとを合わせてウランの精製を行なうことを特徴
とする使用済核燃料の再処理方法。
1. A reducing agent is added to a solution of spent nuclear fuel to reduce Pu 6+ in the solution to Pu 4+ , and the solution is cooled to precipitate uranyl nitrate while remaining The mother liquor is subjected to a solvent extraction treatment using the Purex method to separate and purify uranyl nitrate and plutonium nitrate, respectively, and further to purify uranium by combining the precipitate and uranyl nitrate obtained by the solvent extraction treatment. A method for reprocessing spent nuclear fuel, characterized in that:
【請求項2】前記還元剤は、Pu6+/Pu4+の酸化還元電位
1.04Vより低い酸化還元電位を有する物質であることを
特徴とする請求項1記載の使用済核燃料の再処理方法。
2. The oxidation-reduction potential of Pu 6+ / Pu 4+ as the reducing agent.
The method for reprocessing spent nuclear fuel according to claim 1, wherein the substance has a redox potential lower than 1.04V.
JP33406590A 1990-11-30 1990-11-30 Reprocessing of spent nuclear fuel Expired - Lifetime JP2720602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33406590A JP2720602B2 (en) 1990-11-30 1990-11-30 Reprocessing of spent nuclear fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33406590A JP2720602B2 (en) 1990-11-30 1990-11-30 Reprocessing of spent nuclear fuel

Publications (2)

Publication Number Publication Date
JPH04202019A JPH04202019A (en) 1992-07-22
JP2720602B2 true JP2720602B2 (en) 1998-03-04

Family

ID=18273118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33406590A Expired - Lifetime JP2720602B2 (en) 1990-11-30 1990-11-30 Reprocessing of spent nuclear fuel

Country Status (1)

Country Link
JP (1) JP2720602B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552026B2 (en) * 2006-07-19 2010-09-29 独立行政法人 日本原子力研究開発機構 Reduction of hexavalent uranium by ultrasonic irradiation
CN111863301B (en) * 2020-06-10 2022-08-19 中国原子能科学研究院 Method for eluting plutonium reserved in PUREX process waste organic phase
CN112986113B (en) * 2020-12-07 2022-11-11 中国核电工程有限公司 Feed liquid for simulating nuclear fuel post-treatment corrosive dissolving liquid and using method thereof
CN112763396B (en) * 2020-12-07 2022-09-20 中国核电工程有限公司 Feed liquid for simulating post-treatment corrosive high-level radioactive waste liquid of nuclear fuel and method for carrying out corrosion test

Also Published As

Publication number Publication date
JPH04202019A (en) 1992-07-22

Similar Documents

Publication Publication Date Title
US20120152059A1 (en) Method for selectively recovering americium from a nitric aqueous phase
Persson et al. Hot test of a TALSPEAK procedure for separation of actinides and lanthanides using recirculating DTPA-lactic acid solution
US3987145A (en) Ferric ion as a scavenging agent in a solvent extraction process
US4659551A (en) Process for separation of neptunium from an organic phase in the recovery of irradiated fuel and/or fertile materials
US4059671A (en) Method for increasing the lifetime of an extraction medium used for reprocessing spent nuclear fuel and/or breeder materials
US6033636A (en) Method of recovering uranium and transuranic elements from spent nuclear fuel
JP2720602B2 (en) Reprocessing of spent nuclear fuel
GB2157276A (en) Process for the batch fine purification of uranium or plutonium recovered in a reprocessing process for irradiated nuclear fuel and/or fertile materials
RU2454742C1 (en) Method for processing of spent nuclear fuel of nuclear power plants
Del Cul et al. Citrate-based “TALSPEAK” actindide-lanthandide separation process
King et al. Experience in the separation and purification of transplutonium elements in the transuranium processing plant at the Oak Ridge National Laboratory
US6413482B1 (en) Method for reprocessing nuclear fuel by employing oximes
JP2743505B2 (en) Reprocessing of spent nuclear fuel
GB2118759A (en) Process for the recovery of plutonium from aqueous nitric solutions
US3836625A (en) Reprocessing of spent nuclear fuel
JP4338898B2 (en) Spent fuel reprocessing method and Purex reprocessing method
US6444182B1 (en) Nuclear fuel reprocessing using hydrophilic substituted hydroxylamines
JP3159220B2 (en) Method for recovering uranium, plutonium and neptunium from spent nuclear fuel
JP3310765B2 (en) High-level waste liquid treatment method in reprocessing facility
JPH04218797A (en) Reprocessing method of spent nuclear fuel
JP2858640B2 (en) Reprocessing of spent nuclear fuel under mild conditions
Collins et al. Chemical process engineering in the transuranium processing plant
JP2019015533A (en) Method for separating minor actinoid
RU2152651C1 (en) Reactor zirconium cleaning and decontamination method
Schaefer et al. Reprocessing of spent nuclear fuel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 14