JP2719537B2 - Lightning arrester withstand pressure insulation - Google Patents

Lightning arrester withstand pressure insulation

Info

Publication number
JP2719537B2
JP2719537B2 JP29720587A JP29720587A JP2719537B2 JP 2719537 B2 JP2719537 B2 JP 2719537B2 JP 29720587 A JP29720587 A JP 29720587A JP 29720587 A JP29720587 A JP 29720587A JP 2719537 B2 JP2719537 B2 JP 2719537B2
Authority
JP
Japan
Prior art keywords
pressure
resistant insulating
insulating cylinder
reinforcing material
lightning arrester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29720587A
Other languages
Japanese (ja)
Other versions
JPH01137603A (en
Inventor
順一 木村
勉 計良
亨 高山
詳二 笹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otowa Electric Co Ltd
Original Assignee
Otowa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otowa Electric Co Ltd filed Critical Otowa Electric Co Ltd
Priority to JP29720587A priority Critical patent/JP2719537B2/en
Publication of JPH01137603A publication Critical patent/JPH01137603A/en
Application granted granted Critical
Publication of JP2719537B2 publication Critical patent/JP2719537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、両端に開口部を有する碍管の内部に、単数
もしくは複数の避雷素子を収容した耐圧絶縁筒を収容す
るとともに、前記開口部に接地側電極並びに線路側電極
を配設した避雷器の耐圧絶縁筒に係り、詳しくは避雷器
の耐圧絶縁筒を構成する補強材の配向を特定したもので
ある。 (従来の避雷器) 従来、避雷素子を収容した避雷器としては特開昭61−
151913号公報に開示されている通り、筒状をなす耐圧絶
縁筒の両端開口部に対しキャップ金具を嵌合固着し、耐
圧絶縁筒内には電圧電流特性が非直線性の材料からなる
避雷素子を収容して前記キャップ金具に電気的に接続
し、又前記耐圧絶縁筒には少なくともキャップ金具の端
部近傍に1以上の放圧孔を透設し、更に、前記避雷素子
及び耐圧絶縁筒を有機絶縁材料により被覆してなる構成
の避雷器が提案されている。 そして、上記避雷器は碍管の大型化、機密保持用のパ
ッキンの劣化等により避雷素子が吸湿劣化すること、並
びに放圧時に発生する高圧ガスと熱によって避雷素子及
び耐圧絶縁筒が破壊され、電線の支持が不安定となり、
ひいては電線の落下や断線の恐れがある等の問題点を解
決したものである。 また、避雷器の耐圧絶縁筒自体については、特開昭62
−195811号公報に開示されて公知の通り、機械的強度に
優れたFRP材等により形成された耐圧絶縁筒、具体的に
は耐圧絶縁筒を籠状に形成してその側面に複数個の開口
部を設けたものが提案されている。 ところが、特開昭61−151913号公報に開示されている
避雷器ではキャップ金具と耐圧絶縁筒との間に設けた放
出間隙から高圧ガスを放圧する様にしているが放圧時に
瞬時放圧が充分でないこと、このため耐圧絶縁筒の破損
飛散が強大となること。更に、特開昭62−195811号公報
に開示された耐圧絶縁筒においては、耐圧絶縁筒を篭状
に形成してその側面に複数個の開口部を設けたことによ
り、当該耐圧絶縁筒の両端の開口部に線路側ならびに接
地側の電極を嵌合固定した場合に耐圧絶縁筒内部が密閉
状態とならざるを得ないことから派生する放圧時のトラ
ブルは解決した反面、耐圧絶縁筒が篭状に構成されてい
る関係上製作加工数が増大し、その結果、製作費用が嵩
むと言った問題がある。 (発明が解決しようとする問題点) 前掲の通り、従来の避雷器では送電線路の運転電圧も
しくは対地電圧が避雷素子部で短絡される放圧時の高圧
ガスの放出を耐圧絶縁筒の一部に設けた放圧口或いは耐
圧絶縁筒とキャップ金具との間に形成した間隙から放出
するとの技術思想乃至構成に基づくものであるから耐圧
絶縁筒或いは同耐圧絶縁筒とキャップ金具との結合部に
高圧ガスの放出用の放圧口を加工する必要があること、
更には、放圧時には高圧のガスが狭小の放圧口或いは間
隙から放圧されるのでその圧力が非常に高くなり、耐圧
絶縁筒の破損飛散が強大となり、その結果、避雷器の碍
管、送電線路、碍子等の周辺機器を損壊すること、ま
た、碍管の構成材料も放圧時にキャップ金具との間に間
隙を形成できる程度の弾性を有する材料を選定しなけれ
ばならないこと、又製作加工数の増大と共に派生する費
用が高騰する等の重要な解決しなければならない問題点
が残っている。 (問題点を解決するための手段) (構成) 本発明は、前掲の問題点を解決するために、両端に開
口部を有する碍管の内部に、単数もしくは複数の避雷素
子を収容した耐圧絶縁筒を収容するとともに、前記開口
部に接地側電極並びに線路側電極を配設した避雷器の耐
圧絶縁筒に於いて、前記耐圧絶縁筒は熱硬化性樹脂にガ
ラス繊維等の補強材を混合した熱硬化性材料で成形され
ると共に、ガラス繊維等の補強材の配向は放圧時の高
圧、高温のガスにより一定の方向へ引き裂かれる方向に
配向されてなる構成を採用している。 (作用) 本発明に係る避雷器の耐圧絶縁筒は、前掲の通りの構
成を採用しているので、送電線路の運転電圧もしくは対
地電圧が避雷素子部で短絡し高温、高圧のアークにより
耐圧絶縁筒の内圧が上昇しても、その高圧ガスは、耐圧
絶縁筒が熱により軟化ないし溶解するので、その軟化な
いし溶解と相まって耐圧絶縁筒を構成する補強材のガラ
ス繊維の配向方向に沿って耐圧絶縁筒全体を引き裂くよ
うにして耐圧絶縁筒の外に放散されるので、従来の避雷
器にあるようにな耐圧絶縁筒の狭小な放圧口或いは耐圧
絶縁筒とキャップ金具の結合部の間隙からの一気の放出
と違い、ガス圧が緩和されて放出されることになる。こ
のように、耐圧絶縁筒はただ単に補強材に沿って裂ける
だけで碍管内で破損飛散することはなく、また耐圧絶縁
筒の内圧が緩和されて放圧されることから、耐圧絶縁筒
より放出されたガスは、従来同様に碍管が磁器製のもの
ではシーマ金具(巻締金具)を壊して、或いは樹脂製の
ものでは強度の弱い部分を突き破るなどして放出される
が、碍管への被害を僅少とすることができる。また、構
成も簡単であって製作工数も少ないので、製作費用も廉
価である。 他方、上述の作用効果を得るには、ガラス繊維等の補
強材の配向は、耐圧絶縁筒の軸方向に統一して配向する
構成にしてもよく、又耐圧絶縁筒の両端を除く部分を軸
方向或いは半径方向(円周方向)に統一して配向するよ
うな構成にしてもよい。また更には、軸方向にはガラス
繊維を、半径方向(円周方向)には前記ガラス繊維より
強度の低い繊維材を配向するような構成にしてもよい。 (実施例) 本発明の実施例を第1図乃至第4図に基づき詳述す
る。 第1図は、本発明の実施例に係る避雷器を示す正面断
面図、第2図は本発明の第1実施例に係る避雷器に使用
する耐圧絶縁筒の構成を示す一部を切欠いて示す展開
図、第3図は本発明の第2実施例に係る避雷器に使用す
る他の耐圧絶縁筒の構成を示す一部を切欠いて示す展開
図、第4図A、Bは本発明の第3実施例に係る避雷器に
使用する他の耐圧絶縁筒の構成を示す一部を切欠いて示
す展開図である。 (第1実施例) 第1図に於いて、本発明に係る避雷器の構成を説明す
ると、外周に傘部(1)を複数条有し、且つ両端部に開
口部を有する全体円筒状に形成された碍管(2)の線路
側開口部に、線路側電極端子(4)を線路側電極(3)
と電気的に接続できる様に先端を突出させて装設してな
り、他方、該碍管(2)の底面開口部(接地側)には接
地側電極端子(6)と電気的に接続されている接地側電
極(5)を耐圧絶縁筒(7)内に装設するが、前記耐圧
絶縁筒(7)は、シリコン系樹脂、フッ化樹脂、架橋ポ
リエチレン、エポキシ樹脂等の合成樹脂にガラス繊維等
の補強材を混練混合した熱硬化性樹脂(FRP)等の熱硬
化性材料で形成され、前記ガラス繊維等の補強材の配向
は第2図にある通り、前記耐圧絶縁筒(7)の軸方向に
全てのガラス繊維等の補強材Rが同じ方向に向く様に配
向し、その配向の方向に沿う箇所の機械的強度が他の箇
所に比べて低く、換言すれば、前記耐圧絶縁筒(7)内
に発生する高圧ガスと熱とにより耐圧絶縁筒(7)がガ
ラス繊維等の補強材Rの配向方向に沿って引き裂かれ易
くなる様に形成している。 更に、前記碍管(2)内の耐圧絶縁筒(7)には、複
数個の避雷素子(8)が直列に配設され、最上位の避雷
素子(8)には前記線路側電極(3)が、また、最下位
に配設された避雷素子(8)には前記接地側電極(5)
が各々電気的に接続した状態で配設してある。 前記複数個の避雷素子(8)(8)……は、前記碍管
(2)内に装設された線路側電極(3)と接地側電極
(5)との間で保持固定されるが、前述の通りFRPの耐
圧絶縁筒(7)内に収容している。 そして、線路側電極(3)と最上位に配置した避雷素
子(8)との間に、弾性ばね(9)と保持体(10)とで
構成される圧支器Pを配設し、当該圧支器Pの弾性力で
附勢保持している。 符号(11)は、線路側カバー金具であって、前記碍管
(2)の線路側開口部に突出した線路側電極端子(4)
を内蔵する様にシール剤(12)並びに密封リング(13)
を内在して嵌着してあり、碍管(2)内への雨水、塵埃
等の侵入を阻止する機能を果たす他、前記線路側電極端
子(4)と電気的に接続し、且つ線路側電線(14)と接
続する様にしている。 符号(15)は、安全キャップであって前記線路側カバ
ー金具(11)を内包して嵌着されている。 符号(16)は、前記碍管(2)の接地側開口部(底
面)を密封する金具であって、密封リング(17)を内在
して当該碍管(2)の接地側開口部からの雨水、塵埃等
の有害物の侵入を阻止する他、碍管(2)に配装された
接地側電極(5)と接地側端子(6)とを電気的に接続
する様にしている。 符号(18)は、碍管(2)を架空送電線等へ取りつけ
るための支持バンドである。 本発明の避雷器は、以上の通りの構成であるが、その
作用を次に説明する。 架空電線に配設されて使用される場合では、電線に雷
サージが発生すると、この電圧は架空装置に印加される
が、この際電流は通常、把持金具→アーキングホーン→
避雷器の線路側のキャップ金具→避雷素子→接地側のキ
ッャプ金具→取付金具→吊下金具→鉄塔を経て大地へア
ースされる。 そして、碍管(2)内に内蔵された避雷素子(8)が
電圧電流特性の非直線性により抵抗値を減じて雷サージ
の大電流を放電させ、線路の雷サージ電圧を低減させ
る。 ところが、過大な雷サージを受け、避雷素子(8)の
設計耐量を上回る過大な雷サージを吸収すると、避雷素
子(8)の貫通或いは避雷素子(8)外表面の閃路を生
じ、送配電線路の運転電圧もしくは対地電圧が避雷素子
(8)部で短絡する。 送配電線路の運転電圧もしくは対地電圧の短絡による
放圧時に発生する高温、高圧のアークにより内圧が上昇
し、耐圧絶縁筒(7)を熱により軟化ないしは溶解さ
せ、圧力により当該耐圧絶縁筒(7)は補強材の配向方
向に沿って引き裂かれる。このため、前記耐圧絶縁筒
(7)内に充満していた高圧のガスは、従来のように一
気に放出されるのではなく、耐圧絶縁筒(7)を引き裂
くようにして耐圧絶縁筒(7)の外に放散されるためガ
ス圧が緩和され、碍管(2)内での耐圧絶縁筒(7)の
破損飛散がなく、また耐圧絶縁筒(7)から放出された
ガスはさらに碍管(2)の弱い部分を突き破って放出さ
れる。 (第2実施例) 前記第1実施例の耐圧絶縁筒(7)は補強材Rの配向
を当該耐圧絶縁筒(7)の軸方向へ全て同一の方向に配
向する様にしていたが、本実施例は第3図に示す様に耐
圧絶縁筒(7)を構成する熱硬化性樹脂に含浸する補強
材の構成を当該耐圧絶縁筒(7)の軸方向にはガラス繊
維R1を配向する様にし、他方半径方向(円周方向)には
前記ガラス繊維R1よりも機械的強度が低いカーボン繊維
R2等の補強材をその方向に向く様に配向する構成として
いる。 以上の構成によれば、耐圧絶縁筒(7)自体の強度
(特に弾性率)が向上し、又放圧時の高温、高圧ガスに
対して対応力があり、更には、避雷素子(8)の設計耐
量を超えた場合には、第1実施例と同様の作用効果、す
なわち、耐圧絶縁筒(7)を引き裂くようにして耐圧絶
縁筒(7)の外に放散されるためガス圧が緩和され、碍
管(2)内での耐圧絶縁筒(7)の破損飛散がなく、ま
た耐圧絶縁筒(7)から放出されたガスはさらに碍管
(2)の弱い部分を突き破って放出される。 (第3実施例) 前記第1実施例の耐圧絶縁筒(7)は補強材Rの配向
を当該耐圧絶縁筒(7)の軸方向へ全て同一の方向に配
向する様にし、又前記第2実施例の耐圧絶縁筒(7)は
補強材Rの配向を当該耐圧絶縁筒(7)の軸方向と半径
方向(円周方向)とで補強材の機械的強度の異なるもの
を配向した構成としたが、本実施例は第4図A、Bの実
施例では耐圧絶縁筒(7)両端(図では上下端)の一定
範囲は従来のFRP材で形成し、中央部の一部又は全部を
一方向〔軸方向、半径方向(円周方向)の何れか〕とな
る様に補強材を配向する構成にしているものであって、
これにより放圧時のガス放出をより容易にできる。 本発明に係る第1乃至第3の実施例は以上の通りであ
るが、原料樹脂に含浸する補強材Rは、補強効果を上げ
るために避雷素子(8)の設計耐量等の条件と対応させ
て繊維長さ、直径、強さおよび原料樹脂との接着強さ等
の選択をする必要があり、また、補強材の含有率や配向
の程度によりFRP材の強さが影響されるので、この点も
配慮する必要がある。 更に、補強材の種類に於いてもガラス繊維では無アル
カリガラス(Eガラス)、含アルカリガラス(Cガラ
ス)、高強度用のガラス繊維(Sガラス)等の種類があ
ることから、この選択も重要であり、前記第2実施例の
場合に使用するガラス繊維よりも強度が低い補強材とし
てはウイスカ(wisker)等の単結晶繊維が挙げられる。 (発明の効果) 本発明は、両端に開口部を有する碍管の内部に、単数
もしくは複数の避雷素子を収容した耐圧絶縁筒を収容す
るとともに、前記開口部に接地側電極並びに線路側電極
を配設した避雷器の耐圧絶縁筒に於いて、前記耐圧絶縁
筒は熱硬化性樹脂にガラス繊維等の補強材を混合した熱
硬化性材料で成形されると共に、ガラス繊維等の補強材
の配向は放圧時の高圧、高温のガスにより一定の方向へ
引き裂かれる方向に配向されてなる構成を採用したの
で、従来のように耐圧絶縁筒或いは同耐圧絶縁筒とキャ
ップ金具との結合部に高圧ガスの放出用の放圧口を加工
する必要がない。 更に、放圧時には高圧のガスにより耐圧絶縁筒を構成
する補強材の配向方向に沿って当該耐圧絶縁筒が引き裂
かれるように破壊されることより、その破壊された間隙
より放出、放圧される高圧のガスはその圧力が大きく緩
和される。このように、耐圧絶縁筒はただ単に補強材に
沿って裂けるだけなので碍管内で破損飛散することはな
く、また耐圧絶縁筒の内圧が緩和されて放圧されるの
で、その結果避雷器の碍管はもとより送電線路、碍子等
の周辺機器を損壊する影響も小さい。 他方、前記耐圧絶縁筒の成形において、耐圧絶縁筒に
放圧孔を設ける構成と違い、製作加工数が減少する関係
上それらに係る費用も削減できる効果も有する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention accommodates a pressure-resistant insulating cylinder accommodating one or more lightning arresters inside an insulator having openings at both ends, The present invention relates to a pressure-resistant insulating cylinder of a lightning arrester provided with a ground-side electrode and a line-side electrode, and more specifically, specifies the orientation of a reinforcing material constituting a pressure-resistant insulating cylinder of a lightning arrester. (Conventional lightning arrester) Conventionally, a lightning arrester containing a lightning arrester is disclosed in
As disclosed in Japanese Patent Publication No. 151913, a cap metal fitting is fitted and fixed to both ends of a cylindrical pressure-resistant insulating tube, and a lightning arrester made of a material having a non-linear voltage-current characteristic in the pressure-resistant insulating tube. And is electrically connected to the cap fitting, and the pressure-resistant insulating cylinder is provided with at least one pressure-release hole at least near the end of the cap fitting. A lightning arrester configured to be covered with an organic insulating material has been proposed. In the lightning arrester, the lightning arrester absorbs and deteriorates due to the enlargement of the insulator tube, the deterioration of the packing for security, etc., and the lightning arrester and the pressure-resistant insulating cylinder are destroyed by the high-pressure gas and heat generated at the time of pressure release. Support became unstable,
As a result, problems such as the possibility of electric wires falling or disconnection are solved. The pressure-resistant insulating cylinder itself of the surge arrester is disclosed in
As is well known and disclosed in Japanese Patent Publication No. 195811, a pressure-resistant insulating cylinder formed of an FRP material or the like having excellent mechanical strength, specifically, a pressure-resistant insulating cylinder is formed in a cage shape and a plurality of openings are formed on the side surface thereof. One that has a section has been proposed. However, in the lightning arrester disclosed in JP-A-61-151913, high-pressure gas is released from the discharge gap provided between the cap fitting and the pressure-resistant insulating cylinder. That is, the damage and scattering of the pressure-resistant insulating cylinder must be increased. Further, in the pressure-resistant insulating cylinder disclosed in JP-A-62-195811, the pressure-resistant insulating cylinder is formed in a cage shape and a plurality of openings are provided on the side surface thereof, so that both ends of the pressure-resistant insulating cylinder are provided. When the line-side and ground-side electrodes are fitted and fixed in the opening of the tube, the internal pressure-resistant insulating cylinder has to be sealed. There is a problem that the number of manufacturing processes increases due to the configuration in the shape, and as a result, the manufacturing cost increases. (Problems to be Solved by the Invention) As described above, in the conventional lightning arrester, the discharge of the high-pressure gas at the time of depressurization in which the operating voltage of the transmission line or the ground voltage is short-circuited at the lightning arrester element part is part of the pressure-resistant insulating cylinder. It is based on the technical idea or configuration that the pressure is released from the pressure relief port provided or the gap formed between the pressure-resistant insulating cylinder and the cap fitting. Need to process the pressure relief port for gas release,
Furthermore, at the time of pressure release, high pressure gas is released from a narrow pressure release port or a gap, so that the pressure becomes extremely high, and the damage to the pressure-resistant insulating cylinder is greatly scattered. As a result, the arrester insulator, the transmission line, etc. In addition, damage to peripheral devices such as insulators, the material of the insulator tube must be selected to be elastic enough to form a gap with the cap metal when the pressure is released, and the number of manufacturing processes There remain important issues to be resolved, such as the rise in costs associated with the increase. (Means for Solving the Problems) (Constitution) In order to solve the above-mentioned problems, the present invention provides a pressure-resistant insulating cylinder in which one or more lightning arresters are accommodated inside an insulator having openings at both ends. And a ground-side electrode and a line-side electrode are disposed in the opening, and the light-resistant insulating cylinder is provided with a thermosetting resin in which a reinforcing material such as glass fiber is mixed with a thermosetting resin. In addition to being formed from a conductive material, a configuration is adopted in which a reinforcing material such as glass fiber is oriented in a direction in which the reinforcing material is torn in a certain direction by a high-pressure, high-temperature gas during pressure release. (Operation) Since the pressure-resistant insulating cylinder of the lightning arrester according to the present invention employs the configuration described above, the operating voltage or the ground voltage of the power transmission line is short-circuited at the lightning arrester element, and the high-temperature, high-pressure arc causes the pressure-resistant insulating cylinder. Even if the internal pressure rises, the high-pressure gas is softened or melted by heat in the pressure-resistant insulating cylinder. As the entire tube is torn apart and radiated out of the pressure-resistant insulating cylinder, it is blown away from the narrow pressure-release port of the pressure-resistant insulating cylinder or the gap between the joint between the pressure-resistant insulating cylinder and the cap fitting as in a conventional surge arrester. Unlike the release of the gas, the gas is released with a reduced gas pressure. As described above, the pressure-resistant insulating cylinder does not break and scatter in the insulator tube merely by tearing along the reinforcing material, and since the internal pressure of the pressure-resistant insulating cylinder is relieved and released, the discharge from the pressure-resistant insulating cylinder is performed. As before, the gas is released by breaking the seamer fitting (winding fastener) when the porcelain tube is made of porcelain, or by piercing through a weak part when the resin tube is made of resin. Can be minimized. In addition, since the configuration is simple and the number of manufacturing steps is small, the manufacturing cost is low. On the other hand, in order to obtain the above-mentioned operation and effect, the orientation of the reinforcing material such as glass fiber may be unified in the axial direction of the pressure-resistant insulating cylinder. It is also possible to adopt a configuration in which orientation is performed in a uniform direction or radial direction (circumferential direction). Still further, a configuration may be adopted in which glass fibers are oriented in the axial direction, and a fiber material having lower strength than the glass fibers is oriented in the radial direction (circumferential direction). Embodiment An embodiment of the present invention will be described in detail with reference to FIGS. FIG. 1 is a front sectional view showing an arrester according to an embodiment of the present invention, and FIG. 2 is a partially cutaway view showing a configuration of a pressure-resistant insulating cylinder used in the arrester according to the first embodiment of the present invention. FIG. 3 is a partially cutaway development view showing the configuration of another pressure-resistant insulating cylinder used in a lightning arrester according to a second embodiment of the present invention, and FIGS. 4A and 4B are third embodiments of the present invention. It is a development view which cuts out and shows a part of composition of other pressure proof insulation cylinders used for an arrester concerning an example. First Embodiment Referring to FIG. 1, the structure of a lightning arrester according to the present invention will be described. The lightning arrester has a plurality of umbrella portions (1) on the outer periphery and is formed in a generally cylindrical shape having openings at both ends. A line-side electrode terminal (4) is connected to a line-side electrode (3) at the line-side opening of the porcelain tube (2).
The insulator tube (2) is electrically connected to a ground-side electrode terminal (6) at the bottom opening (ground side) of the insulator tube (2). The ground-side electrode (5) is installed in a pressure-resistant insulating cylinder (7). The pressure-resistant insulating cylinder (7) is made of a synthetic resin such as a silicon resin, a fluororesin, a cross-linked polyethylene, or an epoxy resin, and a glass fiber. Is formed of a thermosetting material such as a thermosetting resin (FRP) obtained by kneading and mixing a reinforcing material such as glass fiber, and the orientation of the reinforcing material such as the glass fiber is, as shown in FIG. All the reinforcing materials R such as glass fibers are oriented in the axial direction so as to face in the same direction, and the mechanical strength of a portion along the direction of the orientation is lower than that of other portions. In other words, the pressure-resistant insulating cylinder (7) The pressure-resistant insulating cylinder (7) is made of a reinforcing material such as glass fiber due to the high-pressure gas and heat generated inside. It is formed so as to be easily torn along the direction of orientation. Further, a plurality of lightning arresters (8) are arranged in series on the pressure-resistant insulating cylinder (7) in the insulator tube (2), and the line-side electrode (3) is provided on the uppermost lightning arrester (8). However, the lightning arrester (8) disposed at the lowest position has the ground-side electrode (5).
Are arranged in an electrically connected state. The plurality of lightning arresters (8) (8) are held and fixed between a line-side electrode (3) provided in the insulator tube (2) and a ground-side electrode (5). As described above, it is housed in the pressure-resistant insulating cylinder (7) of the FRP. Then, between the line-side electrode (3) and the lightning arrester (8) arranged at the uppermost position, a pressing device P composed of an elastic spring (9) and a holding body (10) is arranged. It is urged and held by the elastic force of the pressing device P. Reference numeral (11) denotes a line-side cover metal fitting, and the line-side electrode terminal (4) protruding from the line-side opening of the insulator tube (2).
(12) and sealing ring (13)
And has a function of preventing rainwater, dust and the like from entering the insulator tube (2), and is also electrically connected to the line-side electrode terminal (4) and a line-side electric wire. (14) is connected. Reference numeral (15) denotes a safety cap, which is fitted so as to enclose the track-side cover fitting (11). Reference numeral (16) denotes a metal fitting for sealing the ground-side opening (bottom surface) of the insulator tube (2), which includes a sealing ring (17) and rainwater from the ground-side opening of the insulator tube (2). In addition to preventing the entry of harmful substances such as dust, the ground-side electrode (5) provided on the insulator tube (2) and the ground-side terminal (6) are electrically connected. Reference numeral (18) denotes a support band for attaching the insulator tube (2) to an overhead transmission line or the like. The lightning arrester of the present invention is configured as described above, and its operation will be described below. In the case where the electric wire is used by being installed on an overhead electric wire, when a lightning surge occurs in the electric wire, this voltage is applied to the overhead device.
The cap metal on the track side of the arrester → the lightning arrester → the cap metal on the ground side → the mounting bracket → the hanging bracket → grounded to the earth via the tower. Then, the lightning arrester (8) built in the insulator tube (2) reduces the resistance value due to the non-linearity of the voltage-current characteristics, discharges a large lightning surge current, and reduces the lightning surge voltage of the line. However, when an excessive lightning surge is received and an excessive lightning surge exceeding the design withstand capability of the lightning arrester (8) is absorbed, a penetrating lightning arrester (8) or a flash path on the outer surface of the lightning arrester (8) is generated, and power transmission and distribution is performed. The operating voltage or the ground voltage of the line is short-circuited at the lightning arrester (8). The internal pressure rises due to the high-temperature, high-pressure arc generated when the pressure is released due to the short circuit of the operating voltage or the ground voltage of the transmission and distribution line, and the pressure-resistant insulating cylinder (7) is softened or melted by heat, and the pressure causes the pressure-resistant insulating cylinder (7) to melt. ) Tears along the orientation direction of the reinforcement. For this reason, the high-pressure gas filled in the pressure-resistant insulating cylinder (7) is not released at a stroke as in the prior art, but is torn off the pressure-resistant insulating cylinder (7). The gas pressure is relieved because the gas is released to the outside, so that the pressure-resistant insulating tube (7) is not broken and scattered in the insulator tube (2), and the gas released from the pressure-resistant insulating tube (7) is further removed from the insulator tube (2). It is released through the weak part of the. (Second embodiment) In the pressure-resistant insulating cylinder (7) of the first embodiment, the orientation of the reinforcing material R is all oriented in the same direction in the axial direction of the pressure-resistant insulating cylinder (7). In the embodiment, as shown in FIG. 3, the structure of the reinforcing material impregnated in the thermosetting resin constituting the pressure-resistant insulating cylinder (7) is such that the glass fiber R1 is oriented in the axial direction of the pressure-resistant insulating cylinder (7). In the other direction, a carbon fiber having a lower mechanical strength than the glass fiber R1 in the radial direction (circumferential direction).
The reinforcing material such as R2 is oriented so as to face the direction. According to the above configuration, the strength (particularly, the elastic modulus) of the pressure-resistant insulating cylinder (7) itself is improved, and it is responsive to high temperature and high pressure gas during pressure release. When the design tolerance is exceeded, the same operation and effect as in the first embodiment, that is, the gas pressure is relaxed because the pressure-resistant insulating cylinder (7) is radiated out of the pressure-resistant insulating cylinder (7) in a tearing manner. There is no breakage of the pressure-resistant insulating tube (7) in the insulator tube (2), and the gas released from the pressure-resistant insulating tube (7) is further released through the weak portion of the insulator tube (2). (Third Embodiment) In the pressure-resistant insulating cylinder (7) of the first embodiment, the orientation of the reinforcing material R is all oriented in the same direction in the axial direction of the pressure-resistant insulating cylinder (7). The pressure-resistant insulating tube (7) of the embodiment has a configuration in which the orientation of the reinforcing material R is such that the mechanical strength of the reinforcing material differs between the axial direction and the radial direction (circumferential direction) of the pressure-resistant insulating tube (7). However, in this embodiment, in the embodiment of FIGS. 4A and 4B, a certain range of both ends (upper and lower ends in the drawing) of the pressure-resistant insulating cylinder (7) is formed of a conventional FRP material, and a part or all of the central portion is formed. The reinforcing material is oriented so as to be in one direction (either axial direction or radial direction (circumferential direction)).
This makes it easier to release the gas when the pressure is released. Although the first to third embodiments according to the present invention are as described above, the reinforcing material R impregnated in the raw resin is made to correspond to the conditions such as the design resistance of the lightning arrester (8) in order to enhance the reinforcing effect. It is necessary to select fiber length, diameter, strength and adhesive strength with the raw material resin, and the strength of the FRP material is affected by the content of the reinforcing material and the degree of orientation. Points also need to be considered. Further, since there are various types of reinforcing materials such as non-alkali glass (E glass), alkali-containing glass (C glass), and glass fiber (S glass) for high strength, the selection of the glass fiber is also selected. Importantly, as a reinforcing material having a lower strength than the glass fiber used in the case of the second embodiment, a single crystal fiber such as a whisker may be used. (Effects of the Invention) The present invention accommodates a pressure-resistant insulating cylinder accommodating one or more lightning arresters inside an insulator tube having openings at both ends, and arranges a ground electrode and a line electrode in the openings. In the pressure-resistant insulating cylinder of the lightning arrester provided, the pressure-resistant insulating cylinder is formed of a thermosetting material obtained by mixing a reinforcing material such as a glass fiber with a thermosetting resin, and the orientation of the reinforcing material such as a glass fiber is free. High pressure when pressurized, high pressure gas is oriented in a direction that is torn in a certain direction by high temperature gas, so high pressure gas is applied to the pressure-resistant insulating cylinder or the joint between the pressure-resistant insulating cylinder and the cap metal as in the past. There is no need to process the discharge port for discharge. Furthermore, at the time of pressure release, the pressure-resistant insulating cylinder is broken and broken by the high-pressure gas along the orientation direction of the reinforcing material constituting the pressure-resistant insulating cylinder, so that the pressure-resistant insulating cylinder is released and released from the broken gap. The pressure of a high-pressure gas is greatly reduced. As described above, the pressure-resistant insulating cylinder simply tears along the reinforcing material, so that it does not break and scatter in the insulator tube, and the internal pressure of the pressure-resistant insulating tube is relieved and the pressure is released. Of course, the effect of damaging peripheral equipment such as power transmission lines and insulators is also small. On the other hand, in forming the pressure-resistant insulating cylinder, unlike the structure in which the pressure-releasing insulating cylinder is provided with a pressure-releasing hole, there is also an effect that the cost associated therewith can be reduced because the number of manufacturing processes is reduced.

【図面の簡単な説明】 第1図は、本発明の実施例に係る避雷器を示す正面断面
図、第2図は本発明の第1実施例に係る避雷器に使用す
る耐圧絶縁筒の構成を示す一部を切欠いて示す展開図、
第3図は本発明の第2実施例に係る避雷器に使用する他
の耐圧絶縁筒の構成を示す一部を切欠いて示す展開図、
第4図は本発明の第3実施例に係る避雷器に使用する他
の耐圧絶縁筒の構成を示す一部を切欠いて示す展開図で
ある。 符号の名称は以下の通りである。 (2):碍間、(4):線路側電極端子、(6):接地
側電極端子、(3)、(5):電極、(7):耐圧絶縁
筒、(8):避雷素子、P:圧支器、(11):線路側カバ
ー金具、(16):碍管底部密封金具、(15):安全キャ
ップ、
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front sectional view showing a lightning arrester according to an embodiment of the present invention, and FIG. 2 shows a configuration of a pressure-resistant insulating cylinder used in the lightning arrester according to the first embodiment of the present invention. A development view with a part cut away,
FIG. 3 is a partially cutaway development view showing the configuration of another pressure-resistant insulating cylinder used for an arrester according to a second embodiment of the present invention;
FIG. 4 is a partially cutaway development view showing the configuration of another pressure-resistant insulating cylinder used in a lightning arrester according to a third embodiment of the present invention. The names of the symbols are as follows. (2): between insulators, (4): line-side electrode terminal, (6): ground-side electrode terminal, (3), (5): electrode, (7): pressure-resistant insulating cylinder, (8): lightning arrester, P: pressure braces, (11): track side cover fittings, (16): insulator bottom sealing fittings, (15): safety cap,

Claims (1)

(57)【特許請求の範囲】 1.両端に開口部を有する碍管の内部に、単数もしくは
複数の避雷素子を収容した耐圧絶縁筒を収容するととも
に、前記開口部に接地側電極並びに線路側電極を配設し
た避雷器の耐圧絶縁筒に於いて、前記耐圧絶縁筒は熱硬
化性樹脂にガラス繊維等の補強材を混合した熱硬化性材
料で成形されると共に、ガラス繊維等の補強材の配向は
放圧時の高圧、高温のガスにより一定の方向へ引き裂か
れる方向に配向されてなることを特徴とする避雷器の耐
圧絶縁筒。 2.耐圧絶縁筒を構成する補強材は、当該耐圧絶縁筒の
軸方向に統一して配向されてなる特許請求の範囲第1項
に記載の避雷器の耐圧絶縁筒。 3.耐圧絶縁筒を構成する補強材は、当該耐圧絶縁筒の
軸方向にはガラス繊維の補強材を、又半径方向には前記
ガラス繊維より機械的強度が低い補強材を配向する様に
した特許請求の範囲第1項に記載の避雷器の耐圧絶縁
筒。 4.耐圧絶縁筒を構成する補強材は、当該耐圧絶縁筒の
両端を除く箇所にガラス繊維等の補強材を当該耐圧絶縁
筒の軸方向もしくは半径方向の何れか一方に統一して配
向されてなる特許請求の範囲第1項に記載の避雷器の耐
圧絶縁筒。
(57) [Claims] A pressure-resistant insulating cylinder containing one or more lightning arresters is housed inside an insulator tube having openings at both ends, and a lightning-resistant insulator of a lightning arrester having a ground-side electrode and a line-side electrode provided in the opening. The pressure-resistant insulating cylinder is formed of a thermosetting material in which a reinforcing material such as glass fiber is mixed with a thermosetting resin, and the orientation of the reinforcing material such as glass fiber is controlled by a high-pressure, high-temperature gas during pressure release. A pressure-resistant insulating cylinder for a lightning arrester characterized by being oriented in a direction in which it is torn in a certain direction. 2. The pressure-resistant insulating cylinder of a lightning arrester according to claim 1, wherein the reinforcing material constituting the pressure-resistant insulating cylinder is uniformly oriented in an axial direction of the pressure-resistant insulating cylinder. 3. The reinforcing material constituting the pressure-resistant insulating cylinder is such that glass fiber reinforcing material is oriented in the axial direction of the pressure-resistant insulating cylinder, and reinforcing material having lower mechanical strength than the glass fiber is oriented in the radial direction. 2. A pressure-resistant insulating cylinder for an arrester according to item 1. 4. A patent is made of a reinforcing material constituting a pressure-resistant insulating cylinder, in which a reinforcing material such as glass fiber is unified in one of the axial direction and the radial direction of the pressure-resistant insulating cylinder at a position other than both ends of the pressure-resistant insulating cylinder. A pressure-resistant insulating cylinder for an arrester according to claim 1.
JP29720587A 1987-11-24 1987-11-24 Lightning arrester withstand pressure insulation Expired - Fee Related JP2719537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29720587A JP2719537B2 (en) 1987-11-24 1987-11-24 Lightning arrester withstand pressure insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29720587A JP2719537B2 (en) 1987-11-24 1987-11-24 Lightning arrester withstand pressure insulation

Publications (2)

Publication Number Publication Date
JPH01137603A JPH01137603A (en) 1989-05-30
JP2719537B2 true JP2719537B2 (en) 1998-02-25

Family

ID=17843542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29720587A Expired - Fee Related JP2719537B2 (en) 1987-11-24 1987-11-24 Lightning arrester withstand pressure insulation

Country Status (1)

Country Link
JP (1) JP2719537B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2786590C2 (en) * 2014-04-04 2022-12-22 Акционерное общество "НПО "Стример" DIELECTRIC ELEMENT OF A MULTI-ELECTRODE DISPLACER, A LIGHTNING PROTECTION DEVICE AND A POWER LINE WITH SUCH Spark Arrester

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685532B1 (en) * 1991-12-20 1994-12-30 Soule Sa SURGE PROTECTOR WITH IMPROVED MECHANICAL PROPERTIES.
FR2685533B1 (en) * 1991-12-20 1994-04-01 Soule SURGE PROTECTOR COMPRISING AN IMPROVED CONTACT PART.
FR2698736B1 (en) * 1992-11-27 1995-03-17 Soule Sa Improvements to varistor surge arresters especially for high voltage.
CN105023659A (en) * 2014-04-17 2015-11-04 黄璜 Partition-type hollow composite insulation pillar
JP6350611B2 (en) * 2016-08-10 2018-07-04 株式会社明電舎 Lightning arrestor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2786590C2 (en) * 2014-04-04 2022-12-22 Акционерное общество "НПО "Стример" DIELECTRIC ELEMENT OF A MULTI-ELECTRODE DISPLACER, A LIGHTNING PROTECTION DEVICE AND A POWER LINE WITH SUCH Spark Arrester

Also Published As

Publication number Publication date
JPH01137603A (en) 1989-05-30

Similar Documents

Publication Publication Date Title
US4404614A (en) Surge arrester having a non-fragmenting outer housing
US4282557A (en) Surge voltage arrester housing having a fragible section
JP2719537B2 (en) Lightning arrester withstand pressure insulation
JPH023241B2 (en)
JP2506137B2 (en) Withstand voltage insulation tube for lightning protection insulator
EP0493134B1 (en) Lightning arresting insulator
JPH0773084B2 (en) Lightning arrester
JP3116992B2 (en) Lightning arrester
JP2000100544A (en) Lightning arrester
US4495539A (en) Excess voltage arresters
JPH08115625A (en) Lighting arrestor
JPS61151912A (en) Lightning arresting bushing
JPH0254607B2 (en)
KR19990015786U (en) Lightning Arrester
JPH073538Y2 (en) Lightning arrester
JPH03149802A (en) Arrester
KR200229020Y1 (en) a lightning arrest with lead cable
JPH0251230B2 (en)
JPH0935910A (en) Lighting arrester
JPH01163926A (en) Lightening insulator
JPH01163925A (en) Lightening insulator
JP3662992B2 (en) Insulator device with built-in protection device
JPH0828142B2 (en) Lightning arrester
JPH01183014A (en) Voltage resistant insulation cylinder for lightning protective insulator
JPH076572Y2 (en) Lightning conductor for power lines

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees