JP2718857B2 - Power converter - Google Patents

Power converter

Info

Publication number
JP2718857B2
JP2718857B2 JP4180919A JP18091992A JP2718857B2 JP 2718857 B2 JP2718857 B2 JP 2718857B2 JP 4180919 A JP4180919 A JP 4180919A JP 18091992 A JP18091992 A JP 18091992A JP 2718857 B2 JP2718857 B2 JP 2718857B2
Authority
JP
Japan
Prior art keywords
voltage
capacitor
phase
converter
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4180919A
Other languages
Japanese (ja)
Other versions
JPH0630568A (en
Inventor
廣 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4180919A priority Critical patent/JP2718857B2/en
Publication of JPH0630568A publication Critical patent/JPH0630568A/en
Application granted granted Critical
Publication of JP2718857B2 publication Critical patent/JP2718857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は逆導通形自己消弧半導体
素子を用いた電力変換装置に係り、特に、電源に進相電
流を供給する運転領域での特性を改善した電力変換装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power converter using a reverse conducting self-extinguishing semiconductor device, and more particularly to a power converter having improved characteristics in an operation region for supplying a leading current to a power supply.

【0002】[0002]

【従来の技術】図7はこの種従来の電力変換装置の一例
を示す構成図である。図に於いて、1は直流電源、2は
直流リアクトル、3は変換器、4は交流リアクトル、5
は交流電源である。7〜18は変換器3を構成する逆導
通形自己消弧半導体素子で、ここでは一例として、逆導
通形ゲートターンオフサイリスタ(以下逆導通形GTO
と記す)を用いて構成する場合について説明する。19
〜30はダイオード、31〜36はコンデンサである。
ここで、GTO7,8とダイオード19,20とコンデ
ンサ31によりU相スイッチユニットを、GTO9,1
0とダイオード21,22とコンデンサ32によりV相
スイッチユニットを、GTO11,12とダイオード2
3,24とコンンデンサ33によりW相スイッチユニッ
トを、GTO13,14とダイオード25,26とコン
デンサ34によりX相スイッチユニットを、GTO1
5,16とダイオード27,28とコンデンサ35によ
りY相スイッチユニットを、GTO17,18とダイオ
ード29,30とコンデンサ36によりZ相スイッチユ
ニットを構成する。
2. Description of the Related Art FIG. 7 is a block diagram showing an example of such a conventional power converter. In the figure, 1 is a DC power supply, 2 is a DC reactor, 3 is a converter, 4 is an AC reactor, 5
Is an AC power supply. Reference numerals 7 to 18 denote reverse conducting self-turn-off quenching thyristors (hereinafter referred to as reverse conducting GTOs), which constitute the converter 3.
) Will be described. 19
Reference numerals 30 to 30 denote diodes, and reference numerals 31 to 36 denote capacitors.
Here, the U-phase switch unit is formed by the GTOs 7, 8 and the diodes 19, 20 and the capacitor 31, and the GTOs 9, 1
0, diodes 21 and 22 and a capacitor 32 to form a V-phase switch unit.
The G-phase switch unit is constituted by the GTOs 3 and 24 and the capacitor 33, the X-phase switch unit is constituted by the GTOs 13 and 14, the diodes 25 and 26 and the capacitor 34, and the GTO 1
The Y-phase switch unit is constituted by 5, 16, the diodes 27, 28 and the capacitor 35, and the Z-phase switch unit is constituted by the GTOs 17, 18, the diodes 29, 30 and the capacitor 36.

【0003】以上の構成に於て、交流電源5に進相電流
を供給する場合の動作について説明する。図に於て、
(P)(N)は変換器3の直流端子、(U)(V)
(W)は変換器3の交流端子、VDは変換器3の直流電
圧、IDは変換器3の直流電源、VCUはU相コンデン
サ31の電圧、VCVはV相コンデンサ32の電圧、V
UVは電源5のU相V相線間電圧、IUは変換器3のU
相出力電流、IVは変換器3のV相出力電流、VUは交
流電源5のU相電圧である。
The operation of the above configuration for supplying a leading current to the AC power supply 5 will be described. In the figure,
(P) and (N) are DC terminals of the converter 3, (U) and (V)
(W) is the AC terminal of the converter 3, VD is the DC voltage of the converter 3, ID is the DC power supply of the converter 3, VCU is the voltage of the U-phase capacitor 31, VCV is the voltage of the V-phase capacitor 32, V
UV is the U-phase V-phase line voltage of the power supply 5, and IU is the U-phase voltage of the converter 3.
The phase output current, IV, is the V-phase output current of converter 3 and VU is the U-phase voltage of AC power supply 5.

【0004】図8は図7の従来の電力変換装置が、制御
遅れ角90°で交流電源5に進相電流を供給していると
きの動作を示す波形図である。図8(a)に於て、IU
は変換器3のU相出力電流であり、IVは変換器3のV
相出力電流であり、VUは交流電源5のU相電圧であ
る。図8(b)に於て、VCUはU相コンデンサ31の
電圧であり、VCVはV相コンデンサ32の電圧であ
り、VUVは電源5のU相V相線間電圧でる。図8
(c)に於て、ICUは、逆導通GTO7および8が逆
方向に導通してU相コンデンサ31に流入する充電電流
であり、IDは変換器3の直流電流である。図8(d)
に於て、VDは変換器3の直流電圧であり、VGUはU
相逆導通形GTO7および8にかかる電圧であり、VD
UはU相ダイオード19および20にかかる電圧であ
る。
FIG. 8 is a waveform diagram showing the operation when the conventional power converter of FIG. 7 supplies a leading current to the AC power supply 5 at a control delay angle of 90 °. In FIG. 8A, the IU
Is the U-phase output current of converter 3, and IV is the V
VU is a U-phase voltage of the AC power supply 5. In FIG. 8B, VCU is the voltage of the U-phase capacitor 31, VCV is the voltage of the V-phase capacitor 32, and VUV is the U-phase V-phase line voltage of the power supply 5. FIG.
In (c), ICU is a charging current flowing into the U-phase capacitor 31 when the reverse conducting GTOs 7 and 8 are conducting in the reverse direction, and ID is a DC current of the converter 3. FIG. 8 (d)
Where VD is the DC voltage of converter 3 and VGU is U
VD is the voltage applied to the reverse conducting GTOs 7 and 8,
U is a voltage applied to the U-phase diodes 19 and 20.

【0005】以下、図7および図8を参照して従来の電
力変換装置の転流動作を説明する。U相からV相への転
流が開始される時刻t1の以前は、逆導通形GTO7,
8,17,18とダイオード19,20,29,30が
オンしており、U相電流IUは、逆導通形GTO7とダ
イオード19の直列回路と、ダイオード20と逆導通形
GTO8の直列回路に分流して流れる。またW相電流
は、逆導通形GTO17とダイオード29の直列回路と
ダイオード30と逆導通形GTO18の直列回路に分流
して流れる。このときIUとIDは等しい。時刻t1に
於て逆導通形GTO7および8をオフし、逆導通形GT
O9および10をオンすると、コンデンサ32の電圧V
CVがIVを増加し、かつ、IUを減少する方向に加わ
る。このためIVが流れ電流値が増加し、一方IUは減
少する。コンデンサ31はIUにより充電されその電圧
VCUが増加する。VCUもVCVと同様にIVを増加
しかつIUを減少する方向に加わる。IUは時刻t2に
おいて零になり逆導通形GTO7および8はオフとな
る。
Hereinafter, a commutation operation of the conventional power converter will be described with reference to FIG. 7 and FIG. Before time t1 when commutation from the U-phase to the V-phase starts, the reverse conducting GTO 7,
8, 17, 18 and the diodes 19, 20, 29, and 30 are on, and the U-phase current IU is divided into a series circuit of the reverse conducting GTO 7 and the diode 19 and a series circuit of the diode 20 and the reverse conducting GTO 8. Flow and flow. The W-phase current is divided and flows into a series circuit of the reverse conducting GTO 17 and the diode 29 and a series circuit of the diode 30 and the reverse conducting GTO 18. At this time, IU and ID are equal. At time t1, reverse conduction type GTOs 7 and 8 are turned off, and reverse conduction type GTOs 7 and 8 are turned off.
When O9 and O9 are turned on, the voltage V
CV joins increasing IV and decreasing IU. As a result, IV flows and the current value increases, while IU decreases. Capacitor 31 is charged by IU and its voltage VCU increases. The VCU, like the VCV, increases in the IV and decreases in the IU. IU becomes zero at time t2, and reverse conducting GTOs 7 and 8 are turned off.

【0006】しかしこのとき、交流電源5のU相V相線
間電圧VUVとコンデンサ32の電圧VCVの和の電圧
が逆導通形GTO7および8に対して逆方向に加わり、
逆導通形GTO7および8は逆方向に通電し、コンデン
サ31に充電電流ICUが流入する。そのため、コンデ
ンサ31の電圧VCUが増加する。時刻t3に於てIC
Uが零になりコンデンサ31への充電が完了する。
However, at this time, the sum of the voltage VUV between the U-phase and V-phase lines of the AC power supply 5 and the voltage VCV of the capacitor 32 is applied in the opposite direction to the reverse conducting GTOs 7 and 8,
The reverse conducting GTOs 7 and 8 are energized in the reverse direction, and the charging current ICU flows into the capacitor 31. Therefore, voltage VCU of capacitor 31 increases. IC at time t3
U becomes zero, and the charging of the capacitor 31 is completed.

【0007】以上述べたように、交流電源5のU相V相
線間電圧VUVとコンデンサ32の電圧VCVの和の電
圧によりコンデンサ31が充電されて、その電荷が徐々
に蓄積し電圧VCUが増加してゆく。そのため、U相逆
導通形GTO7および8にかかる電圧VGUと、U相ダ
イオード19および20にかかる電圧VDUは徐々に増
加し過大な電圧となってゆくことになる。他の相につい
ても同様である。
As described above, the capacitor 31 is charged by the sum of the U-phase V-phase line voltage VUV of the AC power supply 5 and the voltage VCV of the capacitor 32, and the charge is gradually accumulated to increase the voltage VCU. I will do it. Therefore, voltage VGU applied to U-phase reverse conducting GTOs 7 and 8 and voltage VDU applied to U-phase diodes 19 and 20 gradually increase and become excessive. The same applies to other phases.

【0008】[0008]

【発明が解決しようとする課題】以上述べたように従来
の変換装置は、電源5に進み電流を供給する運転領域で
コンデンサ31〜36の電圧が徐々に増加し、逆導通形
GTO7〜18およびダイオード19〜30にかかる電
圧が過大になってゆく現象があるため、この領域での運
転ができない。
As described above, in the conventional converter, the voltage of the capacitors 31 to 36 gradually increases in the operation region in which the power is supplied to the power supply 5 and the current is supplied, and the reverse conducting GTOs 7 to 18 and Since there is a phenomenon that the voltage applied to the diodes 19 to 30 becomes excessive, operation in this region cannot be performed.

【0009】本発明は以上述べた従来の変換装置の欠点
を除去するためになされたものであり、コンデンサの電
圧の増加を抑制して、電源に進み電流を供給する運転領
域でも運転できる電力変換装置を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made to eliminate the above-mentioned drawbacks of the conventional conversion device, and suppresses an increase in the voltage of a capacitor so as to operate even in an operation region in which a current is supplied to a power supply. It is intended to provide a device.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するた
め、請求項1に対応する発明は、第1の逆導通形自己消
弧半導体素子のカソードと第1のダイオードのアノード
を接続して第1の共通接続点とし、第2のダイオードの
カソードと第2の逆導通形自己消弧半導体素子のアノー
ドを接続して第2の共通接続点とし、前記第1の共通接
続点にコンデンサの一端を接続し、前記第2の共通接続
点に前記コンデンサの他端を接続し、前記第1の逆導通
形自己消弧半導体素子のアノードと前記第2のダイオー
ドのアノードを共通に接続した第3の共通接続点とし、
前記第1のダイオードのカソードと前記第2の逆導通形
自己消弧半導体素子のカソードを共通に接続して第4の
共通接続点とし、前記第3の共通接続点と前記第4の共
通接続点を端子とするスイッチユニットを最小構成要素
として成る電力変換装置において、
According to a first aspect of the present invention, a cathode of a first reverse conducting self-extinguishing semiconductor device and an anode of a first diode are connected. One common connection point, the cathode of the second diode and the anode of the second reverse conducting self-extinguishing semiconductor device are connected to form a second common connection point, and one end of a capacitor is connected to the first common connection point. And the other end of the capacitor is connected to the second common connection point, and the anode of the first reverse conducting self-extinguishing semiconductor device and the anode of the second diode are connected in common. As a common connection point for
The cathode of the first diode and the cathode of the second reverse conducting self-extinguishing semiconductor element are commonly connected to form a fourth common connection point, and the third common connection point and the fourth common connection In a power converter including a switch unit having a point as a terminal as a minimum component,

【0011】前記コンデンサの電圧が所定の値を超えた
とき、該コンデンサに流入する電流をバイパスし、前記
コンデンサの電圧の上昇を抑制する電圧抑制手段を備え
たことを特徴とする電力変換装置である。
[0011] The power conversion apparatus according to the present invention, further comprising voltage suppression means for bypassing a current flowing into the capacitor when the voltage of the capacitor exceeds a predetermined value, and suppressing a rise in the voltage of the capacitor. is there.

【0012】[0012]

【作用】請求項1に対応する発明によれば、コンデンサ
の電圧が所定の値を超えないように抑制する電圧抑制手
段を備えることにより、電源に進み電流を供給する運転
領域でも電力変換装置を運転できる。
According to the first aspect of the present invention, the power converter is provided even in an operation region in which the power is supplied to the power supply by providing voltage suppressing means for suppressing the voltage of the capacitor from exceeding a predetermined value. Can drive.

【0013】[0013]

【実施例】図1は本発明の一実施例を示す構成図であ
る。図に於いて、1は直流電源、2は直流リアクトル、
3は変換器、4は交流リアクトル、5は交流電源、6は
電圧抑制回路である。7〜18は変換器3を構成する逆
導通形GTO、19〜30はダイオード、31〜36は
コンデンサである。ここで、GTO7,8とダイオード
19,20とコンデンサ31によりU相スイッチユニッ
トを、GTO9,10とダイオード21,22とコンデ
ンサ32によりV相スイッチユニットを、GTO11,
12とダイオード23,24とコンンデンサ33により
W相スイッチユニットを、GTO13,14とダイオー
ド25,26とコンデンサ34によりX相スイッチユニ
ットを、GTO15,16とダイオード27,28とコ
ンデンサ35によりY相スイッチユニットを、GTO1
7,18とダイオード29,30とコンデンサ36によ
りZ相スイッチユニットを構成する。
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 1 is a DC power supply, 2 is a DC reactor,
Reference numeral 3 denotes a converter, 4 denotes an AC reactor, 5 denotes an AC power supply, and 6 denotes a voltage suppression circuit. 7 to 18 are reverse conducting GTOs constituting the converter 3, 19 to 30 are diodes, and 31 to 36 are capacitors. Here, a U-phase switch unit is constituted by the GTOs 7, 8 and the diodes 19, 20 and the capacitor 31, a V-phase switch unit is constituted by the GTOs 9, 10 and the diodes 21, 22 and the capacitor 32, and the GTO 11,
12, a diode 23, 24 and a capacitor 33 constitute a W-phase switch unit, GTOs 13, 14 and diodes 25, 26 and a capacitor 34 constitute an X-phase switch unit, and GTOs 15, 16 and diodes 27, 28 and a capacitor 35 constitute a Y-phase switch unit. To GTO1
The Z-phase switch unit is constituted by the elements 7, 18, the diodes 29, 30 and the capacitor 36.

【0014】以上述べた構成は図7の従来の電力変換装
置と同一であるが、次に述べる電圧抑制手段例えば電圧
抑制回路を設けた点が異る。電圧抑制回路は、37〜4
2はダイオード、43はコンデンサ、44はエネルギ吸
収回路である。
The configuration described above is the same as that of the conventional power converter shown in FIG. 7, except that a voltage suppressing means, for example, a voltage suppressing circuit described below is provided. The voltage suppression circuit is 37-4
2 is a diode, 43 is a capacitor, and 44 is an energy absorption circuit.

【0015】図2は本発明の一実施例の電圧抑制回路の
詳細図である。図に於て、37〜44は図1の同一記号
と同一である。45は変換器3の交流電源、46は吸収
したエネルギを回生する他の交流電源、47〜52はサ
イリスタである。以上の構成に於て、交流電源5に進相
電流を供給する場合の動作について説明する。図に於
て、P,Nは変換器3の直流端子、U,V,Wは変換器
3の交流端子、VDは変換器3の直流電圧、IDは変換
器3の直流電源、VCUはU相コンデンサ31の電圧、
VCVはV相コンデンサ32の電圧、VUVは電源5の
U相V相線間電圧、IUは変換器3のU相出力電流、I
Vは変換器3のV相出力電流、VUは交流電源5のU相
電圧である。
FIG. 2 is a detailed diagram of a voltage suppression circuit according to one embodiment of the present invention. In the figure, reference numerals 37 to 44 are the same as the same symbols in FIG. 45 is an AC power supply for the converter 3, 46 is another AC power supply for regenerating the absorbed energy, and 47 to 52 are thyristors. The operation in the case of supplying the leading current to the AC power supply 5 in the above configuration will be described. In the figure, P and N are DC terminals of the converter 3, U, V and W are AC terminals of the converter 3, VD is a DC voltage of the converter 3, ID is a DC power supply of the converter 3, and VCU is U The voltage of the phase capacitor 31,
VCV is the voltage of the V-phase capacitor 32, VUV is the U-phase V-phase line voltage of the power supply 5, IU is the U-phase output current of the converter 3, I
V is a V-phase output current of the converter 3 and VU is a U-phase voltage of the AC power supply 5.

【0016】図6は本発明の電力変換装置が、制御遅れ
角90°で交流電源5に進相電流を供給しているときの
動作を示す波形図である。図6(a)に於て、IUは変
換器3のU相出力電流であり、IVは変換器3のV相出
力電流であり、VUは交流電源5のU相電圧である。ま
た図6(b)に於て、VCUはU相コンデンサ31の電
圧であり、VCVはV相コンデンサ32の電圧であり、
VUVは電源5のU相V相線間電圧でる。さらに図6
(c)に於て、ICUは、逆導通GTO7および8が逆
方向に導通してU相コンデンサ31に流入する充電電流
であり、ICLUはダイオード37および41を介して
コンデンサ43に流入する充電電流であり、IDは変換
器3の直流電流である。図6(d)に於て、VDは変換
器3の直流電圧であり、VGUはU相逆導通形GTO7
および8にかかる電圧であり、VDUはU相ダイオード
19および20にかかる電圧である。
FIG. 6 is a waveform chart showing the operation when the power converter of the present invention supplies a leading current to the AC power supply 5 at a control delay angle of 90 °. In FIG. 6A, IU is the U-phase output current of the converter 3, IV is the V-phase output current of the converter 3, and VU is the U-phase voltage of the AC power supply 5. In FIG. 6B, VCU is the voltage of the U-phase capacitor 31, VCV is the voltage of the V-phase capacitor 32,
VUV is the U-phase V-phase line voltage of the power supply 5. Further FIG.
In (c), ICU is a charging current flowing into the U-phase capacitor 31 through reverse conduction of the GTOs 7 and 8 in the reverse direction, and ICLU is a charging current flowing into the capacitor 43 via the diodes 37 and 41. And ID is the DC current of the converter 3. In FIG. 6D, VD is a DC voltage of the converter 3, and VGU is a U-phase reverse conducting GTO7.
VDU is the voltage across U-phase diodes 19 and 20.

【0017】以下、図1、図2および図6を参照して本
発明の電力変換装置の一実施例の転流動作を説明する。
U相からV相への転流が開始される時刻t4の以前は、
逆導通形GTO7,8,17,18とダイオード19,
20,29,30がオンしており、U相電流IUは、逆
導通形GTO7とダイオード19の直列回路と、ダイオ
ード20と逆導通形GTO8の直列回路に分流して流れ
る。またW相電流は、逆導通形GTO17とダイオード
29の直列回路とダイオード30と逆導通形GTO18
の直列回路に分流して流れる。
Hereinafter, the commutation operation of one embodiment of the power converter of the present invention will be described with reference to FIGS. 1, 2 and 6.
Before time t4 when commutation from the U phase to the V phase is started,
Reverse conducting GTO 7, 8, 17, 18 and diode 19,
20, 29, and 30 are turned on, and the U-phase current IU shunts and flows through the series circuit of the reverse conducting GTO 7 and the diode 19 and the series circuit of the diode 20 and the reverse conducting GTO 8. The W-phase current is supplied to a series circuit of the reverse conducting GTO 17 and the diode 29, and the diode 30 and the reverse conducting GTO 18
And flows into the series circuit of

【0018】このときIUとIDは等しい。時刻t4に
於て逆導通形GTO7および8をオフし、逆導通形GT
O9および10をオンすると、コンデンサ32の電圧V
CVがIVを増加しかつIUを減少する方向に加わる。
このため、IVが流れ電流値が増加し、一方IUは減少
する。コンデンサ31はIUにより充電されその電圧V
CUが増加する。VCUもVCVと同様にIVを増加
し、かつ、IUを減少する方向に加わる。IUは時刻t
5に於て零になり逆導通形GTO7および8はオフとな
る。
At this time, IU and ID are equal. At time t4, reverse conduction type GTOs 7 and 8 are turned off, and reverse conduction type GTOs 7 and 8 are turned off.
When O9 and O9 are turned on, the voltage V
CV increases in IV and decreases IU.
Thus, the IV flows and the current value increases, while the IU decreases. The capacitor 31 is charged by the IU and its voltage V
CU increases. Like the VCV, the VCU also increases the IV and decreases the IU. IU is at time t
It becomes zero at 5 and the reverse conducting GTOs 7 and 8 are turned off.

【0019】しかしこのとき、交流電源5のU相V相線
間電圧VUVとコンデンサ32の電圧VCVの和の電圧
が逆導通形GTO7および8に対して逆方向に加わり、
逆導通形GTO7および8は逆方向に通電し、コンデン
サ31に充電電流ICUが流入する。そのため、コンデ
ンサ31の電圧VCUが増加する。時刻t6に於てコン
デンサ31の電圧VCUがコンデンサ43の電圧よりも
大きくなるとダイオード37および41が導通して、逆
導通形GTO8および7を介してコンデンサ31に流入
していた電流ICUコンデンサ43に分流する。このと
きコンデンサ43に流入する電流がICLUである。コ
ンデンサ43の静電容量がコンデンサ31の静電容量よ
り充分大きいとすれば、逆導通形GTO8および7を介
してコンデンサ31に流入していた電流ICUはほぼ零
になり、コンデンサ31の電圧の上昇が抑制される。時
刻t7に於てICLUが零になりコンデンサ43への充
電が完了する。他の相に於ける転流動作も同様であり、
Z相からX相への転流時にはICLZが流れコンデンサ
36の電圧の上昇を抑制する。V相からW相への転流時
にはICLVが流れコンデンサ32の電圧の上昇を抑制
する。X相からY相への転流時にはICLXが流れコン
デンサ34の電圧の上昇を抑制する。W相からU相への
転流時にはICLWが流れコンデンサ33の電圧の上昇
を抑制する。Y相からZ相への転流時にはICLYが流
れコンデンサ35の電圧の上昇を抑制する。コンデンサ
43には、ICLU〜ICLWおよびICLX〜ICL
Zが流入し電荷が蓄積するからこのエネルギを吸収する
必要がある。44はエネルギ吸収回路の一例であり、サ
イリスタ47〜52で構成した逆変換回路により他の交
流電源46に回生する。
However, at this time, the voltage of the sum of the U-phase V-phase line voltage VUV of the AC power supply 5 and the voltage VCV of the capacitor 32 is applied to the reverse conduction type GTOs 7 and 8 in the opposite direction.
The reverse conducting GTOs 7 and 8 are energized in the reverse direction, and the charging current ICU flows into the capacitor 31. Therefore, voltage VCU of capacitor 31 increases. At time t6, when voltage VCU of capacitor 31 becomes larger than the voltage of capacitor 43, diodes 37 and 41 conduct, and current flows into current ICU capacitor 43 flowing into capacitor 31 via reverse conducting GTOs 8 and 7. I do. At this time, the current flowing into the capacitor 43 is ICLU. Assuming that the capacitance of the capacitor 43 is sufficiently larger than the capacitance of the capacitor 31, the current ICU flowing into the capacitor 31 via the reverse conducting GTOs 8 and 7 becomes substantially zero, and the voltage of the capacitor 31 rises. Is suppressed. At time t7, ICLU becomes zero, and charging of the capacitor 43 is completed. The same applies to the commutation operation in other phases,
At the time of commutation from the Z phase to the X phase, the ICLZ flows and suppresses a rise in the voltage of the capacitor 36. At the time of commutation from the V phase to the W phase, ICLV flows and suppresses a rise in the voltage of the capacitor 32. At the time of commutation from the X-phase to the Y-phase, ICLX flows and suppresses a rise in the voltage of the capacitor 34. At the time of commutation from the W phase to the U phase, the ICLW flows and suppresses a rise in the voltage of the capacitor 33. At the time of commutation from the Y phase to the Z phase, ICLY flows and suppresses a rise in the voltage of the capacitor 35. The capacitors 43 include ICLU to ICLW and ICLX to ICL
Since Z flows in and charges are accumulated, it is necessary to absorb this energy. Reference numeral 44 denotes an example of an energy absorption circuit, which is regenerated to another AC power supply 46 by an inverse conversion circuit composed of thyristors 47 to 52.

【0020】図3は本発明の電力変換装置の第2の実施
例の電圧抑制回路を示す図である。図に於て、37〜4
5は図2の同一記号と同一である。53はGTO、54
は抵抗器である。以上のGTO53と抵抗器54により
エネルギ吸収回路44を構成する。コンデンサ43の電
圧が所定の値を超えないようにGTO53をオンオフし
て、コンデンサ43に蓄積した電荷を抵抗器54で消費
することにより電圧を抑制することができる。
FIG. 3 is a diagram showing a voltage suppression circuit according to a second embodiment of the power converter of the present invention. In the figure, 37-4
5 is the same as the same symbol in FIG. 53 is GTO, 54
Is a resistor. The GTO 53 and the resistor 54 constitute the energy absorbing circuit 44. The voltage can be suppressed by turning on / off the GTO 53 so that the voltage of the capacitor 43 does not exceed a predetermined value and consuming the electric charge accumulated in the capacitor 43 by the resistor 54.

【0021】図4は本発明の電力変換装置の第3の実施
例の電圧抑制回路を示す図である。図に於て、37〜4
2、45は第2図の同一記号と同一である。55は非線
形抵抗素子で所定の電圧より高い電圧が加わると抵抗値
が急激に低くなる特性を有するものとする。変換器3の
交流電源45の電圧が所定の値を超えると非線形抵抗素
子55の抵抗値が急激に低くなり電圧を抑制することが
できる。
FIG. 4 is a diagram showing a voltage suppressing circuit according to a third embodiment of the power converter of the present invention. In the figure, 37-4
Reference numerals 2 and 45 are the same as those in FIG. Reference numeral 55 denotes a non-linear resistance element having a characteristic that when a voltage higher than a predetermined voltage is applied, the resistance value sharply decreases. When the voltage of the AC power supply 45 of the converter 3 exceeds a predetermined value, the resistance value of the non-linear resistance element 55 decreases rapidly, and the voltage can be suppressed.

【0022】図5は本発明の電力変換装置の第4の実施
例の電圧抑制回路を示す図である。図に於て、45は図
2の同一記号と同一である。56〜58は非線形抵抗素
子で所定の電圧より高い電圧が加わると抵抗値が急激に
低くなる特性を有するものとする。変換器3の交流電源
45の電圧が所定の値を超えると非線形抵抗素子56〜
58の抵抗値が急激に低くなり電圧を抑制することがで
きる。
FIG. 5 is a diagram showing a voltage suppressing circuit according to a fourth embodiment of the power converter of the present invention. In the figure, 45 is the same as the same symbol in FIG. Reference numerals 56 to 58 denote non-linear resistance elements having a characteristic that when a voltage higher than a predetermined voltage is applied, the resistance value sharply decreases. When the voltage of the AC power supply 45 of the converter 3 exceeds a predetermined value, the nonlinear resistance elements 56 to
The resistance value of 58 is rapidly lowered, and the voltage can be suppressed.

【0023】以上述べたように本発明の実施例によれ
ば、コンデンサ31〜36の電圧が増加してゆく現象を
抑制することができるから、交流電源5に進み電流を供
給する領域での運転が可能になる。また、図8の従来の
変換器の動作波形と図6の本発明一実施例変換器の動作
波形を比較すると、コンデンサ31の電圧VCUの最大
値は、本発明の変換器は従来の変換器の52%であつ
た。また、GTO7および8にかかる電圧VGUの最大
値は、本発明の変換器は従来の変換器の59%であっ
た。また、ダイオード19および20にかかる電圧VD
Uの最大値は、本発明の変換器は従来の変換器の52%
であった。またコンデンサ43に流入する電流ICLU
〜ICLWおよびICLX〜ICLZの平均値は、直流
電流IDの1.4%であった。従って小容量の電圧抑制
回路6により変換器にかかる電圧を大幅に低減できるか
ら、その経済的効果は大きい。
As described above, according to the embodiment of the present invention, the phenomenon in which the voltage of the capacitors 31 to 36 increases can be suppressed, so that the operation in the region in which the current is supplied to the AC power supply 5 is supplied. Becomes possible. Also, comparing the operation waveform of the conventional converter of FIG. 8 with the operation waveform of the converter of the embodiment of the present invention of FIG. 6, the maximum value of the voltage VCU of the capacitor 31 is as follows. Of 52%. Also, the maximum value of the voltage VGU applied to the GTOs 7 and 8 was 59% for the converter of the present invention compared to the conventional converter. Further, the voltage VD applied to the diodes 19 and 20
The maximum value of U is that the converter of the present invention is 52% of the conventional converter.
Met. The current ICLU flowing into the capacitor 43
-ICLW and ICLX-ICLZ averaged 1.4% of DC current ID. Therefore, the voltage applied to the converter can be greatly reduced by the small-capacity voltage suppression circuit 6, and the economic effect is large.

【0024】[0024]

【発明の効果】本発明によれば、コンデンサの電圧の増
加を抑制して、電源に進み電流を供給する運転領域でも
運転できる電力変換装置を提供できる。
According to the present invention, it is possible to provide a power converter capable of suppressing an increase in the voltage of a capacitor and operating even in an operation region in which a current is supplied to a power supply and current is supplied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電力変換装置の第1の実施例を示す構
成図。
FIG. 1 is a configuration diagram showing a first embodiment of a power converter according to the present invention.

【図2】図1の電圧抑制回路の詳細図。FIG. 2 is a detailed diagram of the voltage suppression circuit of FIG. 1;

【図3】本発明の電力変換装置の第2の実施例の電圧抑
制回路を示す図。
FIG. 3 is a diagram showing a voltage suppression circuit according to a second embodiment of the power converter of the present invention.

【図4】本発明の電力変換装置の第3の実施例の電圧抑
制回路を示す図。
FIG. 4 is a diagram showing a voltage suppression circuit according to a third embodiment of the power converter of the present invention.

【図5】本発明の電力変換装置の第4の実施例の電圧抑
制回路を示す図。
FIG. 5 is a diagram showing a voltage suppression circuit according to a fourth embodiment of the power converter of the present invention.

【図6】本発明による図1および図2に示す電力変換装
置の動作を示す波形図。
FIG. 6 is a waveform chart showing the operation of the power converter shown in FIGS. 1 and 2 according to the present invention.

【図7】従来の電力変換装置の一例を示す構成図。FIG. 7 is a configuration diagram showing an example of a conventional power converter.

【図8】図7の従来の電力変換装置の動作を示す波形
図。
8 is a waveform chart showing the operation of the conventional power converter of FIG.

【符号の説明】[Explanation of symbols]

1…直流電源、2…直流リアクトル、3…変換器、4…
交流リアクトル、5…交流電源、6…電圧抑制回路、7
〜18…逆導通形GTO、19〜30…ダイオード、3
1〜36…コンデンサ、37〜42…ダイオード、43
…コンデンサ、44…エネルギ吸収回路、45…変換器
交流電源、46…交流電源、47〜52…サイリスタ、
53…GTO、54…抵抗器、55〜58…非線形抵抗
素子。
1. DC power supply, 2. DC reactor, 3. Converter, 4.
AC reactor, 5: AC power supply, 6: Voltage suppression circuit, 7
-18: reverse conducting GTO, 19-30: diode, 3
1-36 ... condenser, 37-42 ... diode, 43
... Capacitor, 44 ... Energy absorption circuit, 45 ... Converter AC power supply, 46 ... AC power supply, 47-52 ... Thyristor,
53: GTO, 54: resistor, 55 to 58: nonlinear resistance element.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1の逆導通形自己消弧半導体素子のカ
ソードと第1のダイオードのアノードを接続して第1の
共通接続点とし、第2のダイオードのカソードと第2の
逆導通形自己消弧半導体素子のアノードを接続して第2
の共通接続点とし、前記第1の共通接続点にコンデンサ
の一端を接続し、前記第2の共通接続点に前記コンデン
サの他端を接続し、前記第1の逆導通形自己消弧半導体
素子のアノードと前記第2のダイオードのアノードを共
通に接続した第3の共通接続点とし、前記第1のダイオ
ードのカソードと前記第2の逆導通形自己消弧半導体素
子のカソードを共通に接続して第4の共通接続点とし、
前記第3の共通接続点と前記第4の共通接続点を端子と
するスイッチユニットを最小構成要素としてなる電力変
換装置において、 前記コンデンサの電圧が所定の値を超えたとき、該コン
デンサに流入する電流をバイパスし、前記コンデンサの
電圧の上昇を抑制する電圧抑制手段を備えたことを特徴
とする電力変換装置。
1. A cathode of a first reverse conduction type self-extinguishing semiconductor device and an anode of a first diode are connected to form a first common connection point, and a cathode of a second diode and a second reverse conduction type are connected. Connect the anode of the self-extinguishing semiconductor device to the second
The first common connection point, one end of a capacitor is connected to the first common connection point, the other end of the capacitor is connected to the second common connection point, the first reverse conducting self-extinguishing semiconductor device A third common connection point where the anode of the second diode and the anode of the second diode are connected in common, and the cathode of the first diode and the cathode of the second reverse conducting self-extinguishing semiconductor element are connected in common. As the fourth common connection point,
In a power converter including a switch unit having the third common connection point and the fourth common connection point as terminals, when the voltage of the capacitor exceeds a predetermined value, the power flows into the capacitor. A power converter, comprising: a voltage suppressing unit that bypasses a current and suppresses a rise in the voltage of the capacitor.
JP4180919A 1992-07-08 1992-07-08 Power converter Expired - Fee Related JP2718857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4180919A JP2718857B2 (en) 1992-07-08 1992-07-08 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4180919A JP2718857B2 (en) 1992-07-08 1992-07-08 Power converter

Publications (2)

Publication Number Publication Date
JPH0630568A JPH0630568A (en) 1994-02-04
JP2718857B2 true JP2718857B2 (en) 1998-02-25

Family

ID=16091579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4180919A Expired - Fee Related JP2718857B2 (en) 1992-07-08 1992-07-08 Power converter

Country Status (1)

Country Link
JP (1) JP2718857B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069314A1 (en) 2005-12-14 2007-06-21 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power converting apparatus

Also Published As

Publication number Publication date
JPH0630568A (en) 1994-02-04

Similar Documents

Publication Publication Date Title
JP2674341B2 (en) Snubber circuit of power converter
US6392907B1 (en) NPC inverter control system
US6876556B2 (en) Accelerated commutation for passive clamp isolated boost converters
AU2008292604A1 (en) Direct type AC power converting device
JP3981886B2 (en) Rectifier circuit
JPH09275674A (en) Power converter
EP0538825A2 (en) Power converting apparatus
JPH07250484A (en) High-voltage self-excited converter for interconnected system
JP2718857B2 (en) Power converter
JP3216759B2 (en) AC power regulator
US4636932A (en) dv/dt Protection circuit device for an AC-DC converter apparatus
Lei et al. Extreme high power density T-modular-multilevel-converter for medium voltage motor drive
US4740881A (en) Simultaneous recovery commutation current source inverter for AC motors drives
JP2619165B2 (en) Power converter
JP3170368B2 (en) Inverter device
JP2528811B2 (en) Power converter
JPH0731158A (en) Snubber energy recovery circuit for power converter
Swathi et al. Reduction of Harmonics using DC-link Shunt Compensator in Single Phase Grid Connected Motor Drive System
JP3068968B2 (en) Power converter
JP3309211B2 (en) Inverter device
JP3117457B2 (en) Snubber circuit
JP2000134945A (en) Power converting apparatus
JPS6116794Y2 (en)
JPH06209580A (en) Snubber energy recovery circuit of power converter
JPH08196083A (en) Inverter

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees