JP2718165B2 - Interval measuring device - Google Patents

Interval measuring device

Info

Publication number
JP2718165B2
JP2718165B2 JP1086190A JP8619089A JP2718165B2 JP 2718165 B2 JP2718165 B2 JP 2718165B2 JP 1086190 A JP1086190 A JP 1086190A JP 8619089 A JP8619089 A JP 8619089A JP 2718165 B2 JP2718165 B2 JP 2718165B2
Authority
JP
Japan
Prior art keywords
light
incident
optical element
light beam
physical optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1086190A
Other languages
Japanese (ja)
Other versions
JPH02264807A (en
Inventor
光俊 大和田
謙治 斉藤
優和 真継
繁幸 須田
純 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1086190A priority Critical patent/JP2718165B2/en
Publication of JPH02264807A publication Critical patent/JPH02264807A/en
Application granted granted Critical
Publication of JP2718165B2 publication Critical patent/JP2718165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は2つの物体間の間隔を高精度に測定する間隔
測定装置に関し、例えば半導体製造装置において、マス
クとウエハとの間隔を測定し、所定の値に制御するとき
に好適なものである。
Description: TECHNICAL FIELD The present invention relates to an interval measuring apparatus for measuring an interval between two objects with high accuracy, for example, in a semiconductor manufacturing apparatus, measuring an interval between a mask and a wafer, This is suitable for controlling to a predetermined value.

(従来の技術) 従来より半導体製造装置においては、マスクとウエハ
との間隔を間隔測定装置等で測定し、所定の間隔となる
ように制御した後、マスク面上のパターンをウエハ面上
に露光転写している。これにより高精度な露光転写を行
っている。
2. Description of the Related Art Conventionally, in a semiconductor manufacturing apparatus, the distance between a mask and a wafer is measured by an interval measuring device or the like, and controlled so as to be a predetermined distance, and then the pattern on the mask surface is exposed on the wafer surface. Transcribed. As a result, highly accurate exposure transfer is performed.

本出願人は先の特願昭63−33206号において物理光学
系素子を設けたマスク等の第1物体とウエハ等の第2物
体とを対向配置し、該第1物体上の物理光学素子に光束
を入射させ、該物理光学素子によって所定方向に偏向し
た光を該第2物体面で反射させた後、受光手段面上に導
光し、該受光手段面上における光(スポット)の入射位
置を検出することにより、該第1物体と第2物体との間
隔を求めた間隔測定装置を提案した。
The present applicant disposes a first object such as a mask provided with a physical optical system element and a second object such as a wafer in a previous Japanese Patent Application No. 63-33206 in opposition to each other, and attaches a physical optical element on the first object to the first object. A light beam is made incident, the light deflected in a predetermined direction by the physical optical element is reflected by the second object surface, and then guided onto the light receiving means surface, and the light (spot) incident position on the light receiving means surface A distance measuring device that determines the distance between the first object and the second object by detecting the distance is proposed.

この方法においては、投射光束が正確に入射光束用の
物理光学素子のみを照射する場合には何ら問題は生じな
いが、光束径が大きかったりこの素子への位置がズレあ
りすると出射光束用の物理光学素子を照射してしまう場
合、逆入射光が発生する。この場合には投射光束のうち
の逆入射光は出射光束用の物理光学素子を透過し、それ
に規定された方向に変化し、ウエハで反射されたのち入
射光束用の物理光学素子を透過して出射する場合があ
る。
In this method, no problem occurs when the projected light beam accurately irradiates only the physical optical element for the incident light beam.However, if the light beam diameter is large or the position to this element is misaligned, the physical property for the emitted light beam is not increased. When irradiating the optical element, counter-incident light is generated. In this case, the counter-incident light of the projected light beam passes through the physical optical element for the output light beam, changes in a direction defined by the same, is reflected by the wafer, and then transmits through the physical optical element for the incident light beam. It may be emitted.

この所謂逆入射光束は受光手段面上において正常な信
号光束の入射位置近傍に入射する。
This so-called counter-incident light beam enters the vicinity of the normal signal light beam incident position on the light receiving means surface.

この場合、近傍した2つの光束のスポットを総合した
重心位置を検出する。正常な信号光束に関しては、さき
の提案において示したとおり、その受光手段面上の光束
のスポット移動量は2つの被測定面の間隔の変化に対し
て理論的に線型である。この様子を第10図において直線
S1として示す。この場合、スポットの位置から被測定面
の間隔を算出するのは極めて容易である。
In this case, the position of the center of gravity obtained by integrating the spots of the two adjacent light beams is detected. As for the normal signal light beam, as shown in the proposal, the spot movement amount of the light beam on the light receiving means surface is theoretically linear with respect to the change in the interval between the two measured surfaces. This is shown by the straight line in Fig. 10.
Shown as S1. In this case, it is extremely easy to calculate the interval between the surfaces to be measured from the position of the spot.

一方、逆入射光束においては出射光束用の物理光学素
子を透過し、第2物体で反射した後、入射光束用の物理
光学素子を透過する際に、一般には光束のケラレが生じ
る。またそのケラレの状態が被測定面間隔によって変化
するため、受光手段面上のスポット移動量が面間隔の変
化に対して非線型となる。この様子を第10図において曲
線S2として示す。
On the other hand, when the back-incident light beam passes through the physical optical element for the outgoing light beam, is reflected by the second object, and then passes through the physical optical element for the incident light beam, vignetting of the light beam generally occurs. In addition, since the vignetting state changes depending on the distance between the surfaces to be measured, the spot movement amount on the light receiving means surface becomes non-linear with respect to the change in the surface distance. This is shown as a curve S2 in FIG.

この場合、正常信号光束のスポット及び逆入射光束の
スポットの総合的な重心位置の変化も被測定面間隔変化
に対して非線型となる。従ってスポット移動量から面間
隔を求める処理が複雑になる。よって光束が大きい場合
や素子への入射位置が変動するおそれがある場合には更
なる改良が求められる。
In this case, the change in the overall center of gravity of the spot of the normal signal light beam and the spot of the reverse incident light beam is also non-linear with respect to the change in the measured surface interval. Therefore, the process of obtaining the surface interval from the spot movement amount becomes complicated. Therefore, further improvement is required when the light flux is large or when there is a possibility that the incident position on the element may fluctuate.

(発明が解決しようとする問題点) 本発明は先願発明の改良発明であり、マスクとウエハ
に相当する第1物体と第2物体とを対向配置して両者の
間隔を測定する際、各構成要素を適切に設定することに
より所謂逆入射光束が受光手段面に入射するのを効果的
に防止し、複雑な信号処理回路等を必要とせず、高精度
に第1物体と第2物体との間隔を測定することのできる
間隔測定装置の提供を目的とする。
(Problems to be Solved by the Invention) The present invention is an improved invention of the prior application, and when a first object and a second object corresponding to a mask and a wafer are arranged to face each other and the distance between them is measured, By appropriately setting the components, the so-called back-incident light beam can be effectively prevented from being incident on the light receiving means surface, and the first object and the second object can be accurately determined without a complicated signal processing circuit or the like. It is an object of the present invention to provide an interval measuring device capable of measuring an interval of the object.

(問題点を解決するための手段) 一部に第1物理光学素子と第2物理光学素子とを設け
た第1物体と第2物体とを対向配置し、該第1物体面上
の第1物理光学素子に投光手段からの光束を入射させ、
該第1物理光学素子からの所定次数の回折光を該第2物
体面で反射させた後、該第1物体面上の第2物理光学素
子に入射させ、該第2物理光学素子からの所定次数の回
折光を受光手段面上に導光し、該受光手段面上における
回折光の入射位置を検出することにより、該第1物体と
第2物体との間隔を求める際、該光束のうち主光線が該
第2物理光学素子面に入射する領域に該投光手段からの
光束が直接入射し、該第2物理光学素子から回折される
所定次数の光束が該第2物体面で反射した後、該第1物
理光学素子に入射しないように各要素を設定したことで
ある。
(Means for Solving the Problems) A first object and a second object, which are partially provided with a first physical optical element and a second physical optical element, are arranged to face each other, and a first object on the first object plane is provided. The luminous flux from the light projecting means is incident on the physical optical element,
After diffracted light of a predetermined order from the first physical optical element is reflected by the second object plane, the diffracted light is incident on a second physical optical element on the first object plane, and the predetermined light from the second physical optical element is reflected by the second physical optical element. By guiding the diffracted light of the order onto the light receiving means surface and detecting the incident position of the diffracted light on the light receiving means surface, the distance between the first object and the second object is determined. The light beam from the light projecting means is directly incident on a region where the principal ray is incident on the surface of the second physical optical element, and the light beam of a predetermined order diffracted from the second physical optical element is reflected on the second object surface. Thereafter, each element is set so as not to enter the first physical optical element.

(実施例) 第1図は本発明を半導体製造装置のマスクとウエハと
の間隔を測定する装置に適用した場合の一実施例の光学
系の概略図である。
(Embodiment) FIG. 1 is a schematic diagram of an optical system according to an embodiment in which the present invention is applied to an apparatus for measuring a distance between a mask and a wafer in a semiconductor manufacturing apparatus.

同図において1は例えばHe−Neレーザーや半導体レー
ザー等の光源101からの光束、2は第1物体で例えばマ
スク、3は第2物体で例えばウエハであり、マスク2と
ウエハ3は例えば第2図(A)に示すように間隔d0を隔
てて対向配置されている。4,5は各々マスク2面上の一
部に設けた入射用と射出用の第1,第2物理光学素子で、
これらの物理光学素子4,5は例えば等ピッチの直線回折
格子等から成っている。
Light beam from the light source 101 of 1 such as for example H e -N e laser or a semiconductor laser in the figure, 2 first object, for example a mask, 3 is a second object, for example a wafer, the mask 2 and the wafer 3, for example It is oppositely disposed at an interval d 0 as shown in FIG. 2 (a). Reference numerals 4 and 5 denote first and second physical optical elements for incidence and emission, respectively, provided on a part of the mask 2 surface.
These physical optical elements 4 and 5 are composed of, for example, linear diffraction gratings of equal pitch.

8は受光手段で、ラインセンサーやPSD等から成り、
入射光束の重心位置を検出している。9は信号処理回路
であり、受光手段8からの信号を用いて受光手段8面上
に入射した光束の重心位置を求め、後述するようにマス
ク2とウエハ3との間隔を演算し求めている。
8 is a light receiving means, which is composed of a line sensor, a PSD, etc.
The position of the center of gravity of the incident light beam is detected. Reference numeral 9 denotes a signal processing circuit which obtains the position of the center of gravity of the light beam incident on the surface of the light receiving means 8 using the signal from the light receiving means 8 and calculates the distance between the mask 2 and the wafer 3 as described later. .

10は光プローブであり、受光手段8、そして必要に応
じて信号処理回路9を有しており、マスク2やウエハ3
とは相対的に移動可能となっている。
Reference numeral 10 denotes an optical probe, which includes a light receiving means 8 and, if necessary, a signal processing circuit 9;
Is relatively movable.

本実施例において間隔測定方向をz方向、z方向と垂
直でかつマスク面2と平行方向をy方向、z,y方向に垂
直な方向をx方向とする。そして第2図(B)に示すよ
うにx方向に平行でかつマスク面2と垂直な平面をP、
y方向に平行でかつマスク面2に垂直な平面をP′と
し、マスク面2への入射光1をP面とP′面へ射影し、
2方向に分解したときの光路につき取扱うようにする。
(尚、第1図はP面上における光路を示している。) 本実施例においては光源101、例えば半導体レーザー
からの光束1(波長λ=830nm)をマスク2面上の第1
回折格子4面上の点Aに斜め方向から入射させている。
そして第1の回折格子4からの角度θ1で回折する所定
次数の回折光をウエハ3面上の点B(C)で反射させて
いる。このうち反射光31はウエハ3がマスク2に近い位
置P1に位置しているときの反射光、反射光32はウエハ3
が位置P1から距離dGだけ変位したときの反射光である。
In this embodiment, the distance measurement direction is the z direction, the direction perpendicular to the z direction, the direction parallel to the mask surface 2 is the y direction, and the direction perpendicular to the z, y directions is the x direction. Then, as shown in FIG. 2 (B), a plane parallel to the x direction and perpendicular to the mask surface 2 is defined as P,
A plane parallel to the y-direction and perpendicular to the mask plane 2 is defined as P ′, and the incident light 1 on the mask plane 2 is projected onto the P plane and the P ′ plane,
Handle the optical path when disassembled in two directions.
(Note that FIG. 1 shows an optical path on the P surface.) In this embodiment, a light beam 101 (wavelength λ = 830 nm) from a light source 101, for example, a semiconductor laser, is applied to a first light beam on a mask 2 surface.
The light is made to enter the point A on the surface of the diffraction grating 4 from an oblique direction.
The diffraction light of a predetermined order diffracted at an angle θ1 from the first diffraction grating 4 is reflected at a point B (C) on the surface of the wafer 3. The reflected light 31 is the reflected light when the wafer 3 is located at the position P1 near the mask 2 and the reflected light 32 is the reflected light 32
There is a reflected light when displaced from the position P1 by a distance d G.

次いでウエハ3からの反射光を第1物体2面上の第2
の回折格子5面上の点D(E)に入射させている。
Next, the reflected light from the wafer 3 is converted to the second light on the first object 2 surface.
At the point D (E) on the surface of the diffraction grating 5.

尚、第2の回折格子5は入射光束の入射位置にかかわ
らず一定出射角の回折光を出射させる光学作用を有して
いる。
The second diffraction grating 5 has an optical function of emitting diffracted light having a constant emission angle regardless of the incident position of the incident light beam.

そして第2の回折格子5から角度θ2で回折した所定
次数の回折光(61,62)を集光レンズ7を介して受光手
段8面上に導光している。
Then, the diffracted light (61, 62) of a predetermined order diffracted at an angle θ2 from the second diffraction grating 5 is guided to the surface of the light receiving means 8 via the condenser lens 7.

そして、このときの受光手段8面上における入射光束
(61,62)の重心位置を用いてマスク2とウエハ3との
間隔を演算し求めている。
Then, the distance between the mask 2 and the wafer 3 is calculated using the position of the center of gravity of the incident light beam (61, 62) on the surface of the light receiving means 8 at this time.

本実施例ではマスク2面上に設けた第1,第2の回折格
子4,5は予め設定された既知のピッチで構成されてお
り、それらに入射した光束の所定次数(例えば±1次)
の回折光の回折角度θ1,θ2は予め求められている。
In the present embodiment, the first and second diffraction gratings 4 and 5 provided on the surface of the mask 2 are formed at a predetermined known pitch, and a predetermined order (for example, ± 1 order) of the light beam incident thereon.
Are obtained in advance.

第3図はマスク2面上の第1,第2の回折格子4,5の機
能及びマスク2とウエハ3との間隔との関係を示す説明
図である。
FIG. 3 is an explanatory diagram showing the functions of the first and second diffraction gratings 4 and 5 on the surface of the mask 2 and the relationship between the distance between the mask 2 and the wafer 3.

同図(A)はマスク2面上の第1,第2物理光学素子4,
5との関係を示す説明図、同図(B)は第2図(B)に
おけるP面上の光路、同図(C)は第2図(B)におけ
るP′面上の光路を示す説明図である。
FIG. 3A shows the first and second physical optical elements 4 on the mask 2 surface.
5 (B) is an optical path on the P plane in FIG. 2 (B), and FIG. 2 (C) is an optical path on the P ′ plane in FIG. 2 (B). FIG.

本実施例においては、第1,第2の回折格子4に単に入
射光を折り曲げる作用をしているが、この他収束、又は
発散作用を持たせるようにしても良い。
In the present embodiment, the first and second diffraction gratings 4 simply have a function of bending incident light, but may have a converging or diverging effect.

同図(A),(B),(C)で例えば点11はマスク2
とウエハ3との間隔が100μmのときの出射光束の重心
透過点でマスク2とウエハ3との間隔が増すにつれて出
射光束の透過点は同図(A)において右方に移動し、間
隔が200μmになったときは点12を透過するように設定
している。
In the figures (A), (B) and (C), for example, the point 11 is the mask 2
As the distance between the mask 2 and the wafer 3 increases at the transmission point of the center of gravity of the emitted light beam when the distance between the wafer and the wafer 3 is 100 μm, the transmission point of the emitted light beam moves rightward in FIG. Is set so that point 12 is transmitted.

回折格子のパターンは同図(A)においてA方向に収
束、発散のパワーを光束の拡がりを調整する為に持たせ
ても良い。
The diffraction grating pattern may be provided with convergence and divergence powers in the direction A in FIG. 2A to adjust the spread of the light beam.

尚、第3図においてマスク2とウエハ3との間隔測定
範囲を例えば100μm〜200μmとし場合には、これに対
応させて後述する逆入射行の条件を考慮して第1,第2の
回折格子4,5の領域を設定すれば良い。
In FIG. 3, when the distance measurement range between the mask 2 and the wafer 3 is set to, for example, 100 μm to 200 μm, the first and second diffraction gratings are correspondingly considered in consideration of the condition of the reverse incidence line described later. What is necessary is just to set the area of 4,5.

次に第1図を用いてマスク2とウエハ3との間隔を求
める方法について説明する。
Next, a method for determining the distance between the mask 2 and the wafer 3 will be described with reference to FIG.

第1図に示すようにすると、 AD=2d0tanθ1, AE=2(d0+dG)tanθ1, ∴dM=DE=AE−AD=2dGtanθ1 ……(1) である。受光手段8面上における入射光の動き量Sは S=dM=2dGtanθ1 ……(2) マスク2とウエハ3の単位ギャップ変化量に対する受
光手段8面上の入射光束のずれ量ΔS、即ち感度ΔSは となる。
When as shown in FIG. 1, AD = 2d 0 tanθ1, AE = 2 (d 0 + d G) tanθ1, a ∴d M = DE = AE-AD = 2d G tanθ1 ...... (1). The amount of movement S of the incident light on the surface of the light receiving means 8 is as follows: S = d M = 2d G tan θ1 (2) The shift amount ΔS of the incident light beam on the surface of the light receiving means 8 with respect to the change in the unit gap between the mask 2 and the wafer 3 That is, the sensitivity ΔS is Becomes

本実施例では受光手段8面上の入射光束の位置Sを検
出することにより、(2)式より距離をdGを求め、この
値dGよりマスク2とウエハ3との所定位置からの間隔ず
れ量を求めている。
In this embodiment, by detecting the position S of the incident light beam on the surface of the light receiving means 8, the distance d G is obtained from the equation (2), and the distance d from the predetermined position between the mask 2 and the wafer 3 is obtained from this value d G. The amount of deviation is determined.

マスク41とウエハ42は最初に基準となる間隔d0を隔て
て対向配置される。この時のd0の値を他の例えばTM−23
0N(商品名:キャノン株式会社製)等で測定しておく。
この時のd0の値と光束入射位置より(2)式でdGが求め
られる。
Mask 41 and the wafer 42 is opposed at a distance d 0 as the first reference. The value of d 0 when this other example TM-23
Measure with 0N (trade name: manufactured by Canon Inc.) or the like.
At this time, d G is obtained from the value of d 0 and the incident position of the light beam by the equation (2).

次に第2図(B)に示すようにマスク面2上の第1物
理光学素子4に入射する光束1と同じ入射角で第2物理
光学素子5に入射した逆入射光束13の第2物理光学素子
5からの回折光のうち光束1の第1物理光学素子4で回
折した後、受光手段8に入射する回折光と同次数の回折
光が点線で示すようにウエハ3面で反射した後、第1物
理光学素子4に逆入射し更に回折した後、受光手段8に
入射しノイズとなるのを防止する為の条件について説明
する。
Next, as shown in FIG. 2 (B), the second physics of the counter-incident light beam 13 incident on the second physical optical element 5 at the same incident angle as the light beam 1 incident on the first physical optical element 4 on the mask surface 2 After the diffracted light from the optical element 5 is diffracted by the first physical optical element 4 of the light beam 1, the diffracted light of the same order as the diffracted light incident on the light receiving means 8 is reflected on the surface of the wafer 3 as shown by a dotted line. The conditions for preventing the light from being incident on the first physical optical element 4 back and diffracted, and then incident on the light receiving means 8 and becoming a noise will be described.

第4図は第1,第2物理光学素子43,44の配置と正常な
信号光束48の光路を示す説明図である。説明の便宜上、
各物理光学素子は光束の偏向作用のみを有する直線回折
格子とし、各光束の主光線は第4図に示した平面上に存
するものとする。
FIG. 4 is an explanatory view showing the arrangement of the first and second physical optical elements 43 and 44 and the optical path of a normal signal light beam 48. For convenience of explanation,
Each physical optical element is a linear diffraction grating having only a light beam deflecting function, and the principal ray of each light beam is on the plane shown in FIG.

図中41はマスク、42はウエハ、43は入射用回折格子と
しての第1物理光学素子,4は出射用回折格子としての第
2物理光学素子である。また48は光源からの投射光束の
主光線で、入射用回折格子43上の点Pに入射する。
In the figure, 41 is a mask, 42 is a wafer, 43 is a first physical optical element as an incident diffraction grating, and 4 is a second physical optical element as an outgoing diffraction grating. Reference numeral 48 denotes a principal ray of a light beam projected from the light source, which is incident on a point P on the incident diffraction grating 43.

今、マスク1とウエハ2との間隔αが間隔測定範囲の
最小値d1から最大値d2に変化すると、主光線48の出射用
回折格子44上の入射位置は点Q1から点Q2の間を移動す
る。又、主光線48の入射角と出射角を図に示すようにθ
12とすると(角度は面法線から反時計回りの方
向を正とする)次の関係がある。
Now, the mask 1 and the spacing between the wafer 2 alpha is changed to the maximum value d 2 from the minimum value d 1 distance measurement range, the point of incidence position from the point to Q 1 on the exit diffraction grating 44 of the principal ray 48 Q 2 Move between. Further, the incident angle and the outgoing angle of the chief ray 48 are θ
Assuming that 1 , θ 2 , θ 3 (the angle is positive in the counterclockwise direction from the surface normal), there is the following relationship.

ここでλは波長、P1,P2は各々入射用回折格子と出射
用回折格子のピッチm1,m2は回折次数である。
Here, λ is the wavelength, and P 1 and P 2 are the pitches m 1 and m 2 of the incident diffraction grating and the output diffraction grating, respectively, are the diffraction orders.

次に逆入射光束の光路の様子を第5図に示す。逆入射
光線49は正常な光束48と同じ入射角θで出射用回折格
子44に入射し、回折角θで出射し、ウエハ2で反射
後、入射用回折格子43に入射し、回折角θで出射す
る。このとき次の関係がある。
Next, the state of the optical path of the reverse incident light beam is shown in FIG. The counter-incident light beam 49 enters the output diffraction grating 44 at the same incident angle θ 1 as the normal light beam 48, exits at the diffraction angle θ 4 , reflects off the wafer 2, enters the incident diffraction grating 43, and It is emitted at θ 5. At this time, there is the following relationship.

(5),(7)式より (4),(6)式より となる。よって sinθ=sinθ 即ち、逆入射光束49は正常光束48と同角度でマスク41
を出射する。このため前述のように受光手段8面上で両
者の光束スポットは一般に重なり合い分離することが困
難なため、面間隔の測定において悪影響をもたらす。
From equations (5) and (7) From equations (4) and (6) Becomes Therefore, sin θ 3 = sin θ 5, that is, the reverse incident light beam 49 has the same angle as the normal light beam 48 at the mask 41.
Is emitted. For this reason, as described above, it is generally difficult for the two light beam spots to overlap and separate on the surface of the light receiving means 8, which has an adverse effect on the measurement of the surface distance.

次に逆入射光束を防止する条件を考える。勿論逆入射
光束は完全に除去されるのが最も望ましいが、実際には
正常な信号光束に対する光量の比がある程度小さければ
実質的に悪影響は避けられる。
Next, conditions for preventing the reverse incident light beam will be considered. Of course, it is most desirable that the back-incident light beam be completely removed. However, in practice, if the ratio of the amount of light to the normal signal light beam is small to some extent, adverse effects can be substantially avoided.

一般には種々と検討した結果、正常な信号光束の主光
線が出射用回折格子44に入射する点に入射する逆入射光
線が間隔測定範囲全域において、ウエハ42で反射後、入
射用回折格子43に達しないようにすれば略良好なる検出
が出来る。
In general, as a result of various investigations, the counter-incident light beam that enters the point where the principal ray of the normal signal light beam enters the output diffraction grating 44 is reflected by the wafer 42 over the entire interval measurement range, and then reflected by the incidence diffraction grating 43. If it is not reached, substantially good detection can be performed.

尚、出射用回折格子44面上の信号光束の入射領域の中
心を通過する光線を信号光束の主光線とする。
A light ray passing through the center of the signal light flux incident area on the surface of the diffraction grating 44 for emission is defined as a principal light ray of the signal light flux.

即ち、第5図において線分Q1,Q2に入射する光線群が
ウエハ42で反射後、面間隔dがd1≦d≦d2の範囲で入射
用回折格子43に入射しないようにすれば良好なる検出が
可能となる。
That is, in FIG. 5, after the light rays incident on the line segments Q 1 and Q 2 are reflected by the wafer 42, the light is prevented from being incident on the incident diffraction grating 43 within the range of d 1 ≦ d ≦ d 2. Better detection is possible.

この光線群がウエハ42で反射後、再びマスク41に入射
する領域は、d=d1の場合は線分R1,R2、d=d2の場合
は線分S1,S2となる。第5図から明らかなように点S1
みを考え、これが入射用回折格子43に入らない条件を求
めればよい。入射用回折格子43の大きさをaとすればこ
のときの条件は、 即ち、 となる。
After reflection this light group in the wafer 42, the region that is incident on the mask 41 again, a line segment S 1, S 2 For the case of d = d 1 of the line segment R 1, R 2, d = d 2 . Considering only the point S 1, as is clear from FIG. 5, which may be determined the conditions that do not enter the incident diffraction grating 43. If the size of the incident diffraction grating 43 is a, the condition at this time is: That is, Becomes

尚、θは(5),(6)式より sinθ=sinθ−sinθ−sinθ ……(9) とあらわされる。Incidentally, theta 4 is (5), represented as (6) sinθ 4 = sinθ 1 -sinθ 2 -sinθ 3 ...... from the equation (9).

又、マスクとウエハの間隔測定範囲は、入射用回折格
子に入射した信号光束がウエハで反射後、再びマスクに
入射する際、全光束が出射用回折格子に入射し、ここで
光束のケラレが生じないという条件を満たすマスク−ウ
エハ間隔の範囲と規定される。このとき出射用回折格子
の大きさをb、入射用回折格子と出射用回折格子の間隔
をcとすると 2d1tanθ=a+c 2d2tanθ=b+c 従って、最小測定間隔d1及び最大測定間隔d2 とあらわされる。
In addition, the measurement range of the distance between the mask and the wafer is such that when the signal light beam incident on the incident diffraction grating is reflected on the wafer and then re-enters the mask, the entire light beam is incident on the output diffraction grating. It is defined as the range of the mask-wafer interval that satisfies the condition that no occurrence occurs. At this time, assuming that the size of the output diffraction grating is b and the interval between the incident diffraction grating and the output diffraction grating is c, 2d 1 tan θ 2 = a + c 2d 2 tan θ 2 = b + c Therefore, the minimum measurement interval d 1 and the maximum measurement interval d 2 It is expressed.

又、 tanθ>0 即ち、 sinθ−sinθ−sinθ>0 …(10) ならば任意の面間隔において、又入射用回折格子が任意
の大きさの場合に逆入射光を防止することができる。
If tan θ 4 > 0, that is, sin θ 1 −sin θ 2 −sin θ 3 > 0 (10), it is possible to prevent back-incident light at an arbitrary surface interval and when the incident diffraction grating has an arbitrary size. Can be.

以上のように(8)式又は(10)式の条件を満足する
ように入射用回折格子43と射出用回折格子44の配置及び
格子ピッチを設定すれば逆入射光による悪影響を実質的
に排除することができる。尚、本実施例において所定の
次数m1,m2以外の回折光については、その出射角が正常
な信号光束のそれとは異なるため問題とはならない。
As described above, if the arrangement and the grating pitch of the incident diffraction grating 43 and the exit diffraction grating 44 are set so as to satisfy the condition of the expression (8) or (10), the adverse effect due to the reverse incident light is substantially eliminated. can do. In the present embodiment, there is no problem with respect to diffracted light having a degree other than the predetermined orders m 1 and m 2 , since the exit angle is different from that of a normal signal light flux.

次に具体的な第1実施例を第6,第7図を用いて説明す
る。
Next, a specific first embodiment will be described with reference to FIGS.

本実施例では入射用回折格子43と出射用回折格子44を
矩形状としスクライブライン上に隣接して配置された例
であり、例えば第6図に示すようにICパターンのスクラ
イブライン上に設置されている。
The present embodiment is an example in which the incident diffraction grating 43 and the exit diffraction grating 44 are rectangular and arranged adjacent to a scribe line, for example, as shown in FIG. 6, installed on an IC pattern scribe line. ing.

第7図(A)はマスク41上を上からみた図(xy面)、
同図(B)はxz断面図、同図(C)はyz断面図である。
但し、マスク面内で両回折格子の中心を結ぶ方向をx、
これの直交方向をy、マスク面に垂直方向をzしてい
る。光束の波長λはλ=0.83μm、正常な入射光束48の
入射角のx,y成分を各々25゜,−10゜、出射角のx,y成分
を各々5゜,−5゜、マスク41とウエハ42の間隔の測定
範囲を50μm〜100μmとする。
FIG. 7A is a view of the mask 41 from above (xy plane),
FIG. 1B is an xz sectional view, and FIG. 1C is a yz sectional view.
However, the direction connecting the centers of both diffraction gratings in the mask plane is x,
The direction orthogonal to this is y, and the direction perpendicular to the mask plane is z. The wavelength λ of the light beam is λ = 0.83 μm, the x and y components of the incident angle of the normal incident light beam 48 are 25 ° and -10 °, the x and y components of the output angle are 5 ° and -5 °, respectively, and the mask 41 The measurement range of the distance between the wafer and the wafer 42 is 50 μm to 100 μm.

入射側の第1物理光学素子43の寸法はx方向に30μ
m、y方向に50μm、出射側の第2物理光学素子44の寸
法はx方向に60μm、y方向に50μmである。
The size of the first physical optical element 43 on the incident side is 30 μm in the x direction.
The dimensions of the second physical optical element 44 on the emission side are 50 μm in the x direction and 50 μm in the y direction.

まずxz面内の光路につき第7図(B)を用いて説明す
る。
First, an optical path in the xz plane will be described with reference to FIG.

入射用回折格子43を透過した光束が最小間隔50μmの
場合に入射用回折格子43に隣接する領域44aに入射する
ように正常光線の回折角θを設定する。即ち、 θ=tan-1(15/50)=16.7゜ このとき入射用回折格子43の格子ピッチのx成分P1x
(以下すべて1次回折を考える) sin16.7゜−sin25゜=0.83/P1x P1x=−6.136(μm) ここで格子ピッチのx(y)成分とは向きが回折格子
に直交する方向で、大きさが格子ピッチの逆数に等しい
ベクトル を考え、そのx(y)成分の逆数である。従って、格子
ピッチのx(y)成分の符号は格子の方向に対応してい
る。
The light beam transmitted through the incidence diffraction grating 43 is to set the diffraction angle theta x of the ordinary ray to be incident on the adjacent regions 44a on the incident diffraction grating 43 in the case of minimum spacing 50 [mu] m. That is, θ x = tan −1 (15/50) = 16.7 ° At this time, the x component P 1x of the grating pitch of the incident diffraction grating 43 is (sinusoidal diffraction is considered hereinafter) sin16.7 ゜ −sin25 ゜ = 0.83 / P 1x P 1x = −6.136 (μm) Here, the x (y) component of the grating pitch is a vector whose direction is orthogonal to the diffraction grating and whose size is equal to the reciprocal of the grating pitch. And the reciprocal of the x (y) component. Therefore, the sign of the x (y) component of the grating pitch corresponds to the direction of the grating.

又、出射用回折格子44の回折ピッチのx成分P2xは sin(−16.7゜)−sin5゜=0.83/P2x P2x=−2.216(μm) 出射用回折格子44に正常光束と同じ角度25゜で入射した
逆入射光束49の1次回折光(図中点線)の回折角φは sinφ−sin25゜=0.83/(−2.216) φ=2.76゜ φが正であるので、xz面内においては逆入射光束が入
射用回折格子43に入射し得ない。これは逆入射光防止条
件をあらわす(10)式、即ち、 sin25゜−sin16.7゜−sin5゜>0 を満たしていることからも明らかである。
The x component P 2x of the diffraction pitch of the output diffraction grating 44 is sin (−16.7 °) −sin5 ° = 0.83 / P 2x P 2x = −2.216 (μm) The output diffraction grating 44 has the same angle 25 as that of a normal light beam. 1 diffraction angle phi x-order diffracted light (dotted line in the figure) opposite the incident light beam 49 that ° incident sinφ x -sin25 ° = 0.83 / - so is positive (2.216) phi x = 2.76 ° phi x, xz plane Inside, the reverse incident light beam cannot enter the diffraction grating 43 for incidence. This is also apparent from the fact that the expression (10) representing the condition for preventing back-incident light is satisfied, that is, sin25 ゜ −sin16.7 ゜ −sin5 ゜> 0.

次にyz面内の光をにつき、第7図(C)を用いて説明
する。
Next, light in the yz plane will be described with reference to FIG. 7 (C).

正常光束48は入射用回折格子43に−10゜で入射し、垂
直方向に回折、ウエハ42で反射後、出射用回折格子44よ
り−5゜方向に回折、出射する。このとき両回折格子の
格子ピッチのy成分P1y,P2y P1y=4.780(μm),P2y=9.523(μm)である。こ
のとき逆入射光束49の回折角φは sinφ−sin(−10゜)=0.83/9.523 φ=−4.96゜ ここでxz面及びyz面内での光路を合成して考えると出射
側回折格子44に入射する逆入射光束49はマスクとウエハ
との間隔が50μmの場合は、第7図(A)に示す2点鎖
線の領域50内を通過し、マスクとウエハとの間隔が100
μmの場合は、2点鎖線の領域51内を通過し、この結
果、入射側回折格子43には入射しないことがわかる。当
然、マスクとウエハとの間隔が50〜100μmの間の場合
は領域50と領域51との間の領域を通過するようになる。
The normal light beam 48 enters the incident diffraction grating 43 at −10 °, is diffracted in the vertical direction, is reflected by the wafer 42, and is diffracted and emitted from the output diffraction grating 44 in the −5 ° direction. At this time, the y components P 1y and P 2y of the grating pitch of both diffraction gratings are P 1y = 4.780 (μm) and P 2y = 9.523 (μm). At this time, the diffraction angle φ y of the back-incident light beam 49 is sin φ y −sin (−10 °) = 0.83 / 9.523 φ y = −4.96 ° Here, considering the light paths in the xz plane and the yz plane, the emission side When the distance between the mask and the wafer is 50 μm, the reversely incident light beam 49 incident on the diffraction grating 44 passes through the region 50 indicated by the two-dot chain line shown in FIG.
In the case of μm, the light passes through the region 51 indicated by the two-dot chain line, and as a result, does not enter the incident-side diffraction grating 43. Naturally, when the distance between the mask and the wafer is between 50 and 100 μm, the light passes through the region between the region 50 and the region 51.

以上のように本実施例ではxz面内において条件(10)
を満たすよう各要素を設定し、出射側回折格子に入射す
る逆入射光束が入射側回折格子に入射しないようにして
いる。
As described above, in this embodiment, the condition (10) is satisfied in the xz plane.
Each element is set so as to satisfy the following condition, so that a reverse incident light beam incident on the output side diffraction grating does not enter the incident side diffraction grating.

次に具体的に第2実施例を第8図を用いて説明する。 Next, a second embodiment will be specifically described with reference to FIG.

本実施例では入射用回折格子43と出射用回折格子44と
を互いに間隔を隔てて配置している。第8図はxz面にお
ける配置及び光路をあらわす概略図である。同図におい
ては大きさ30μmの入射用回折格子43と大きさ70μmの
出射用回折格子44が10μmの間隔を隔てて配置されてお
り、他の条件は図に示すように第1実施例と同様であ
る。
In the present embodiment, the incidence diffraction grating 43 and the emission diffraction grating 44 are arranged at an interval from each other. FIG. 8 is a schematic diagram showing the arrangement on the xz plane and the optical path. In the figure, an incident diffraction grating 43 having a size of 30 μm and an output diffraction grating 44 having a size of 70 μm are arranged at intervals of 10 μm, and other conditions are the same as those of the first embodiment as shown in FIG. It is.

このとき正常光束48の回折角θは θ=tan-1(20/50)=21.8゜ 従って、逆入射光束49の回折角φは(9)式より sinφ=sin25゜−sin21.8゜−sin5゜ φ=−2.06゜ であり、条件(10)は満たしていない。しかし、条件
(8)については −2×100×tan(−2.06゜)<2×50×tan21.8゜−15 7.19<25 と満足しており、従ってマスク−ウエハ間隔が50〜100
μmの範囲では逆入射光を防止することができる。
Diffraction angle theta x at this time a normal light beam 48 is θ x = tan -1 (20/50) = 21.8 ° Thus, the diffraction angle phi x reverse incident light beam 49 (9) sinφ x = sin25 ° from the equation -Sin21. 8 ゜ −sin5 ゜ φ x = −2.06 ゜, which does not satisfy the condition (10). However, the condition (8) satisfies the following condition: −2 × 100 × tan (−2.06 °) <2 × 50 × tan21.8 ° −15 7.19 <25.
In the range of μm, reverse incident light can be prevented.

次に矩形の入射用回折格子と出射用回折格子とを互い
に斜めに配置した第3実施例を第9図に示す。
Next, FIG. 9 shows a third embodiment in which rectangular incidence diffraction gratings and emission diffraction gratings are arranged obliquely to each other.

第9図(A)はマスクを上方からみた図、(xy面)、
同図(B)はxz面内の光路を示す図、同図(C)はyz面
内の光路を示す図である。
FIG. 9 (A) is a view of the mask viewed from above, (xy plane),
FIG. 1B shows an optical path in the xz plane, and FIG. 1C shows an optical path in the yz plane.

光束の波長を0.83μm、正常光路48の入射角のx成
分、y成分をそれぞれ5゜,−5゜、出射角のx成分,y
成分をそれぞれ−10゜,−20゜、マスクとウエハの間隔
の測定範囲を50μm〜100μmとし、入射側回折格子43
の大きさはx方向30μm、y方向20μm、出射側回折格
子44の大きさはx方向60μm、y方向40μmで、両回折
格子43,44は第9図(A)に示すように斜めにずらして
配置されている。
The wavelength of the light beam is 0.83 μm, the x component and the y component of the incident angle of the normal optical path 48 are 5 ° and −5 °, respectively, and the x component and the y of the output angle.
The components are −10 ° and −20 °, respectively, and the measurement range of the distance between the mask and the wafer is 50 μm to 100 μm.
Is 30 μm in the x direction and 20 μm in the y direction, and the size of the output side diffraction grating 44 is 60 μm in the x direction and 40 μm in the y direction. Both diffraction gratings 43 and 44 are obliquely shifted as shown in FIG. 9 (A). It is arranged.

第9図(B)において正常光線48の回折角θは θ=tan-1(15/50)=16.70゜ となる。Diffraction angle theta x of the ordinary ray 48 in FIG. 9 (B) becomes θ x = tan -1 (15/50) = 16.70 °.

従って、逆入射光線49の回折角φは(9)式より sinφ=sin5゜−sin16.7゜−sin(−10゜) φ=−1.52゜ これは条件(8)を満たしている。Therefore, the diffraction angle phi x reverse incident light 49 satisfies the sinφ from (9) x = Sin5 ° -sin16.7 ° -sin (-10 °) φ x = -1.52 ° This condition (8) .

又、第9図(C)において正常光線48の回折角θ θ=tan-1(10/50)=11.31゜ 逆入射光束49の回折角φは(9)式より、 sinφ=sin(−5゜)−sin11.31゜−sin(−20
゜) φ=3.37゜ となる。これは条件(10)を満たしている。
In FIG. 9C, the diffraction angle θ y θ y = tan -1 (10/50) = 11.31 of the normal ray 48 is obtained. From the equation (9), the diffraction angle φ y of the counter-incident light beam 49 is given by sin φ y = sin (-5 ゜) -sin 11.31 ゜ -sin (-20
゜) φ y = 3.37 ゜This satisfies condition (10).

第9図(A)中、90,91は面間隔が各々50μm、100μ
mのときの逆入射光束の戻り領域である。
In FIG. 9 (A), 90 and 91 have plane distances of 50 μm and 100 μm, respectively.
This is the return area of the reversely incident light beam when m.

一般に投光手段及び受光手段の配置には、例えば露光
領域を遮ってはならない等の制約がある。従って信号光
束の入射角及び出射角の設定においては、これまで述べ
た逆入射光を防止する条件に加え、このことも考慮しな
ければならない。
In general, the arrangement of the light projecting means and the light receiving means has restrictions such as that the exposure area must not be blocked. Therefore, in setting the incident angle and the output angle of the signal light beam, this must be considered in addition to the conditions for preventing the counter-incident light described above.

本実施例のように入射側と出射側の回折格子をスクラ
イブライン上に斜めにずらして配置すると、上述の入・
出射角の設定の自由度が大きく、第1の実施例(第6
図)のようにスクライブライン方向に両回折格子を並べ
て配置するのに比べ、一般に好ましい。
When the diffraction gratings on the incidence side and the emission side are arranged obliquely on the scribe line as in the present embodiment,
The degree of freedom in setting the emission angle is large, and the first embodiment (the sixth embodiment)
It is generally preferable to arrange both diffraction gratings side by side in the scribe line direction as shown in FIG.

尚、以上の各実施例においては入射用及び出射用の第
1,第2物理光学素子として直線回折格子を用いた場合を
述べたが、これは他の物理光学素子、例えばレンズと同
様に収斂、発散作用を有する物理光学素子、あるいはシ
リンドリカルレンズと同様に、一方向にのみ屈折力を有
する物理光学素子を用いても良い。
In each of the above embodiments, the first and second
1, the case where a linear diffraction grating is used as the second physical optical element has been described, but this is another physical optical element, such as a physical optical element having a converging and diverging effect like a lens, or a cylindrical lens, like the lens. A physical optical element having a refractive power in only one direction may be used.

この場合は回折格子の格子ピッチ及び方向をあらわす
ベクトル が物理光学素子面上の位置によって変化する。即ちベク
トル がx,yの関数となるが、基本的には先に述べたのと同様
にして逆入射光を防止する条件を考慮し、各要素を設定
することができる。
In this case, a vector representing the grating pitch and direction of the diffraction grating Varies depending on the position on the physical optical element surface. Ie vector Is a function of x and y. Basically, each element can be set in the same manner as described above in consideration of the condition for preventing back-incident light.

又、考慮する回折次数はここで述べた1次に限られな
いのは勿論である。
It is needless to say that the diffraction order to be considered is not limited to the first order described here.

(発明の効果) 本発明によれば第1物体面上に設けた第1,第2物理光
学素子からの回折光を利用することにより、被測定物と
光プローグとの相対的な位置が多少変化しても、常に高
精度な間隔測定が可能でしかも検出光以外の逆入射光に
よる不要光が検出手段に入射するのを効果的に排除した
高精度な測定が可能な特に半導体製造装置に好適な間隔
測定装置を達成することができる。
(Effect of the Invention) According to the present invention, the relative position between the object to be measured and the optical probe is slightly changed by using the diffracted light from the first and second physical optical elements provided on the first object plane. Even in the case of a change, it is possible to always perform high-precision interval measurement, and to perform high-precision measurement effectively eliminating unnecessary light due to back-incident light other than the detection light from entering the detection means. A suitable distance measuring device can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の光学系の概略図、第2図
(A),(B)は第1図のマスクとウエハに入射する光
束の説明図、第3図(A),(B),(C)はマスク面
上の物理光学素子の機能を示す説明図、第4図,第5図
は本発明においてマスクに入射する正常光線と逆入射光
線の光路の説明図、第6図,第7図は本発明の第1実施
例の説明図、第8図は本発明の第2実施例の説明図、第
9図は本発明の第3実施例の説明図、第10図は面間隔と
受光手段面上における光スポット位置の関係を示す説明
図である。 図中、1は光束、2,41はマスク、3,42はウエハ、4,43は
第1物理光学素子、5,44は第2物理光学素子、61,62は
回折光、7は集光レンズ、8は受光手段、9は信号処理
回路、10は光プローブ、48は正常光線、49は逆入射光で
ある。
FIG. 1 is a schematic view of an optical system according to an embodiment of the present invention, FIGS. 2 (A) and 2 (B) are explanatory diagrams of light beams incident on the mask and the wafer of FIG. 1, and FIGS. (B) and (C) are explanatory diagrams showing the function of the physical optical element on the mask surface, and FIGS. 4 and 5 are explanatory diagrams of optical paths of normal rays and counter-incident rays incident on the mask in the present invention. 6 and 7 are explanatory diagrams of a first embodiment of the present invention, FIG. 8 is an explanatory diagram of a second embodiment of the present invention, FIG. 9 is an explanatory diagram of a third embodiment of the present invention, and FIG. The figure is an explanatory diagram showing the relationship between the surface interval and the light spot position on the light receiving means surface. In the figure, 1 is a light beam, 2, 41 is a mask, 3, 42 is a wafer, 4, 43 is a first physical optical element, 5, 44 is a second physical optical element, 61, 62 are diffracted lights, and 7 is a condensed light. A lens, 8 is a light receiving means, 9 is a signal processing circuit, 10 is an optical probe, 48 is normal light, and 49 is reverse incident light.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須田 繁幸 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 服部 純 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平2−74815(JP,A) 特開 平2−1512(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Shigeyuki Suda, Inventor 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Jun Hattori 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon (56) References JP-A-2-74815 (JP, A) JP-A-2-1512 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一部に第1物理光学素子と第2物理光学素
子とを設けた第1物体と第2物体とを対向配置し、該第
1物体面上の第1物理光学素子に投光手段からの光束を
入射させ、該第1物理光学素子からの所定次数の回折光
を該第2物体面で反射させた後、該第1物体面上の第2
物理光学素子に入射させ、該第2物理光学素子からの所
定次数の回折光を受光手段面上に導光し、該受光手段面
上における回折光の入射位置を検出することにより、該
第1物体と第2物体との間隔を求める際、該光束のうち
主光線が該第2物理光学素子面に入射する領域に該投光
手段からの光束が直接入射し、該第2物理光学素子から
回折される所定次数の光束が該第2物体面で反射した
後、該第1物理光学素子に入射しないように各要素を設
定したことを特徴とする間隔測定装置。
A first object and a second object partially provided with a first physical optical element and a second physical optical element are arranged to face each other, and projected onto the first physical optical element on the first object plane. A light beam from an optical unit is made incident, and after diffracted light of a predetermined order from the first physical optical element is reflected on the second object surface, a second light beam on the first object surface is reflected.
By making the light incident on the physical optical element, guiding the diffracted light of a predetermined order from the second physical optical element onto the light receiving means surface, and detecting the incident position of the diffracted light on the light receiving means surface, the first When calculating the distance between the object and the second object, the light beam from the light projecting means directly enters a region where the principal ray of the light beam is incident on the surface of the second physical optical element. An interval measuring device, wherein each element is set so that a light beam of a predetermined order to be diffracted is reflected by the second object surface and does not enter the first physical optical element.
【請求項2】マスク面上のスクライブライン上に第1物
理光学素子と第2物理光学素子を該スクライブライン方
向に対して互いに斜めに配置し、該マスクとウエハとを
対向配置し、該マスク面上の第1物理光学素子に投光手
段から光束を入射させ、該第1物理光学素子からの所定
次数の回折光を該ウエハ面で反射させた後、該第2物理
光学素子に入射させ該第2物理光学素子からの所定次数
の回折光を受光手段面上に導光し、該受光手段面上にお
ける回折光の入射位置を検出することにより該マスクと
ウエハとの間隔を求めたことを特徴とする間隔測定装
置。
A first physical optical element and a second physical optical element arranged on a scribe line on a mask surface at an angle to the scribe line direction, and the mask and the wafer are arranged to face each other; A light beam is made incident on the first physical optical element on the surface from the light projecting means, diffracted light of a predetermined order from the first physical optical element is reflected on the wafer surface, and then made incident on the second physical optical element. Determining the distance between the mask and the wafer by guiding the diffracted light of a predetermined order from the second physical optical element onto the light receiving means surface and detecting the incident position of the diffracted light on the light receiving means surface; An interval measuring device characterized by the above-mentioned.
【請求項3】前記ウエハからの反射光束のうち主光線が
該第2物理光学素子に入射する領域に該投光手段からの
光束が直接入射し、該第2物理光学素子から回折される
所定次数の光束が該ウエハで反射した後、該第1物理光
学素子に入射しないように各要素を設定したことを特徴
とする請求項2記載の間隔測定装置。
3. A predetermined beam diffracted from the second physical optical element, wherein the light beam from the light projecting means is directly incident on an area where the principal ray of the reflected light beam from the wafer is incident on the second physical optical element. 3. The distance measuring apparatus according to claim 2, wherein each element is set so that a light beam of the order does not enter the first physical optical element after being reflected by the wafer.
JP1086190A 1989-04-05 1989-04-05 Interval measuring device Expired - Fee Related JP2718165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1086190A JP2718165B2 (en) 1989-04-05 1989-04-05 Interval measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086190A JP2718165B2 (en) 1989-04-05 1989-04-05 Interval measuring device

Publications (2)

Publication Number Publication Date
JPH02264807A JPH02264807A (en) 1990-10-29
JP2718165B2 true JP2718165B2 (en) 1998-02-25

Family

ID=13879855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086190A Expired - Fee Related JP2718165B2 (en) 1989-04-05 1989-04-05 Interval measuring device

Country Status (1)

Country Link
JP (1) JP2718165B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012103007B3 (en) * 2012-04-05 2013-10-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for measuring distance between photomask and substrate in lithographic device, involves determining impact point of light of illumination device reflected on photomask or on substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012103008B3 (en) * 2012-04-05 2013-10-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for distance measurement with a diffractive structure
CN113375579B (en) * 2021-06-25 2022-08-23 上海工程技术大学 Method and platform for detecting grid surface spacing of grid assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012103007B3 (en) * 2012-04-05 2013-10-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for measuring distance between photomask and substrate in lithographic device, involves determining impact point of light of illumination device reflected on photomask or on substrate

Also Published As

Publication number Publication date
JPH02264807A (en) 1990-10-29

Similar Documents

Publication Publication Date Title
JP2704001B2 (en) Position detection device
EP0409573B1 (en) Method of detecting positional deviation
JP2756331B2 (en) Interval measuring device
JP3008633B2 (en) Position detection device
US5235408A (en) Position detecting method and apparatus
JP2718165B2 (en) Interval measuring device
JPH02167409A (en) Position detecting device
JP2513300B2 (en) Position detection device
JP2556126B2 (en) Interval measuring device and interval measuring method
JP2783604B2 (en) Positioning device and positioning method
JP2827250B2 (en) Position detection device
JP2827251B2 (en) Position detection device
US5229617A (en) Position detecting method having reflectively scattered light prevented from impinging on a detector
JP2778231B2 (en) Position detection device
JP2546317B2 (en) Alignment device
JP2775988B2 (en) Position detection device
JP2626077B2 (en) Interval measurement method
JP2925168B2 (en) Position detecting device and method
JP2867597B2 (en) Position detection method
JP2862307B2 (en) Position shift detection method
JP2623757B2 (en) Positioning device
JP2698389B2 (en) Position detection device
JP2615778B2 (en) Positioning device
JP2789787B2 (en) Position detection device
JP2836180B2 (en) Position detection device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees