JP2717853B2 - Diamond-like thin film, manufacturing method and manufacturing apparatus - Google Patents

Diamond-like thin film, manufacturing method and manufacturing apparatus

Info

Publication number
JP2717853B2
JP2717853B2 JP17564689A JP17564689A JP2717853B2 JP 2717853 B2 JP2717853 B2 JP 2717853B2 JP 17564689 A JP17564689 A JP 17564689A JP 17564689 A JP17564689 A JP 17564689A JP 2717853 B2 JP2717853 B2 JP 2717853B2
Authority
JP
Japan
Prior art keywords
diamond
thin film
substrate
inclined portion
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17564689A
Other languages
Japanese (ja)
Other versions
JPH0340994A (en
Inventor
正典 柴原
正俊 中山
国博 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP17564689A priority Critical patent/JP2717853B2/en
Priority to US07/547,736 priority patent/US5185067A/en
Publication of JPH0340994A publication Critical patent/JPH0340994A/en
Application granted granted Critical
Publication of JP2717853B2 publication Critical patent/JP2717853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ダイヤモンド様薄膜、その製造方法、及び
製造装置に関し、特に割れ(クラック)の無い優れたダ
イヤモンド様薄膜を製造する技術に関する。
Description: TECHNICAL FIELD The present invention relates to a diamond-like thin film, a method for producing the same, and a production apparatus, and more particularly to a technique for producing an excellent diamond-like thin film without cracks.

気相法により製造されるダイヤモンド様薄膜は硬度が
高く、耐摩耗性、耐久性、耐薬品性、耐食性等に優れて
おり、また任意形状の物品に被着できるため、こうした
特性の一つ以上が必要な物品の保護膜として有用であ
り、あるいは有望視されている。
Diamond-like thin films produced by the vapor phase method have high hardness, excellent wear resistance, durability, chemical resistance, corrosion resistance, etc., and can be applied to articles of any shape, so one or more of these characteristics Is useful as a protective film for articles that require it, or is considered promising.

(従来技術とその問題点) 気相法によるダイヤモンド様薄膜製造装置には各種の
形式がある(例えば「表面化学」第5巻第108号(1984
年)第108-115頁の各種の方法、特願昭63-59377号(特
開平1-234397号)及び同63-59376号(特開平1-234396
号)等の方法参照)。ダイヤモンド様薄膜は任意形状の
保護すべき物品の表面に被覆され、耐食性、耐摩耗性な
どの保護膜として広く利用される。しかしこれらの従来
技術によって製造されたダイヤモンド様薄膜は基体の種
類によらずある厚さ、或はある硬度を越えると周辺部か
ら割れ(クラック)が入り易く、厚くしても充分な耐食
性や耐久性が得られない。一方、割れが入らない程度に
薄くすると耐摩耗性等が不十分となる。この原因は、ダ
イヤモンド様薄膜が原因は基体の高温化等の製膜時の条
件の不均一性により膜に内部応力が入ることと膜の硬度
が固くなればなるほど内部応力がたまり易いためである
と考えられる。
(Prior art and its problems) There are various types of diamond-like thin film manufacturing apparatuses by a vapor phase method (for example, "Surface Chemistry" Vol. 5, No. 108 (1984)
Years) pages 108-115, various methods, Japanese Patent Application Nos. 63-59377 (Japanese Patent Application Laid-Open No. 1-234397) and 63-59376 (Japanese Patent Application No. 1-234396)
No.) etc.). The diamond-like thin film is coated on the surface of an article of any shape to be protected, and is widely used as a protective film such as corrosion resistance and abrasion resistance. However, the diamond-like thin films produced by these conventional techniques are susceptible to cracks (cracks) from the periphery when they exceed a certain thickness or a certain hardness, irrespective of the type of the substrate. I can not get the nature On the other hand, if it is thin enough not to crack, wear resistance and the like become insufficient. The reason for this is that the diamond-like thin film causes internal stress to enter the film due to non-uniformity of conditions at the time of film formation, such as high temperature of the substrate, and the internal stress tends to accumulate as the hardness of the film becomes harder. it is conceivable that.

しかし、今のところ、こうした内部応力の除去を行な
い、割れを防止し、高硬度でも、あるいは充分な厚さで
も割れのないダイヤモンド様薄膜を得る方法は提供され
ていない。
However, at present, no method has been provided for removing such internal stress, preventing cracking, and obtaining a diamond-like thin film having high hardness or sufficient thickness without cracking.

(発明の目的) 本発明の目的は、割れ(クラック)が無く、しかも
(又は)充分な厚さを有する優れたダイヤモンド様薄膜
を提供することを目的とし、又このようなダイヤモンド
様薄膜を製造する方法及び装置を提供することを目的と
する。
(Object of the Invention) An object of the present invention is to provide an excellent diamond-like thin film having no crack and / or a sufficient thickness, and to manufacture such a diamond-like thin film. It is an object of the present invention to provide a method and an apparatus.

(発明の構成及び効果の概要) 本発明者は鋭意研究の結果、膜の周辺部の内部応力が
割れの発生に大きな影響を及ぼすことを発見した。この
知見に基づいて製膜条件、膜の周辺部の構造などを研究
し、膜の周辺部を外周ほど薄くすれば良いことを突き止
めた。すなわち、本発明は、基板上に製膜されたダイヤ
モンド様薄膜の周辺部が外周に向けて先細に傾斜してお
り、この傾斜部分が始まる部分の膜厚をa、傾斜部分の
長さbとするとき、これらの寸法が 100<b/a<10,000 を満足するときに、割れの問題を防止出来ることが分か
った。
(Summary of Configuration and Effect of Invention) As a result of earnest study, the present inventors have found that internal stress at the peripheral portion of the film has a great effect on the occurrence of cracks. Based on this knowledge, the inventors studied the film forming conditions and the structure of the peripheral part of the film, and found that the peripheral part of the film should be made thinner toward the outer periphery. That is, in the present invention, the peripheral portion of the diamond-like thin film formed on the substrate is tapered toward the outer periphery, and the thickness of the portion where the inclined portion starts is a, and the length b of the inclined portion is It was found that when these dimensions satisfied 100 <b / a <10,000, the problem of cracking could be prevented.

上記の関係を満足するダイヤモンド様薄膜を製造する
には、基体とダイヤモンド様薄膜形成用イオン流を制御
するグリッドの間に設けるマスクを基体の表面から一定
距離に位置付けると良いことが分かった。すなわち、本
発明は又、低分子量炭化水素又は分解は反応により低分
子量炭化水素を生成し得る原料ガス供給源と、前記ガス
のイオン化手段と、前記イオン化手段に対向して設けら
れた基体と、前記イオン化源と前記基体との間に設けた
マスク部材とからなるダイヤモンド様薄膜製造装置及び
この装置を使用したダイヤモンド様薄膜製造方法におい
て、前記マスク部材と基体との距離を前記寸法関係のダ
イヤモンド様薄膜が得られる様に定めたことを特徴とす
る。
In order to produce a diamond-like thin film that satisfies the above relationship, it was found that a mask provided between the substrate and the grid for controlling the ion flow for forming the diamond-like thin film should be positioned at a certain distance from the surface of the substrate. That is, the present invention also provides a raw material gas supply source capable of producing a low molecular weight hydrocarbon by a low molecular weight hydrocarbon or cracking reaction, ionization means for the gas, and a substrate provided opposite to the ionization means, In a diamond-like thin film manufacturing apparatus comprising a mask member provided between the ionization source and the base and a diamond-like thin film manufacturing method using the apparatus, the distance between the mask member and the base is set to the diamond-like thickness having the dimensional relationship. It is characterized in that it is determined to obtain a thin film.

(発明の具体的な説明) 上に簡単に述べたように、本発明のダイヤモンド様薄
膜は上に述べた各種の製膜法を使用して製造することが
出来る。しかし、本発明の方法はその内、イオン化蒸着
法によるダイヤモンド様薄膜製造法である。なぜなら製
造されるダイヤモンド様薄膜の品質が良く、且つ工程が
制御し易いからである。
(Specific Description of the Invention) As briefly described above, the diamond-like thin film of the present invention can be manufactured using the above-described various film forming methods. However, the method of the present invention is a method for producing a diamond-like thin film by ionization vapor deposition. This is because the quality of the produced diamond-like thin film is good and the process is easy to control.

イオン化蒸着法は炭化水素原料ガス又は分解又は反応
により炭化水素を生成し得る原料ガス(ここに炭化水素
とはメタン、エタン、プロパン等の飽和炭化水素、エチ
レン、プロピレン、アセチレン等の不飽和炭化水素等が
あり、分解して炭化水素を生成し得る原料ガスはメチル
アルコール、エチルアルコール等のアルコール類、アセ
トン、メチルエチルケトン等のケトン類などがあり、又
反応して炭化水素ガスを生成する原料ガスには一酸化炭
素、二酸化炭素と水素との混合ガス等がある。また前記
原料にはヘリウム、ネオン、アルゴン等の希ガスあるい
は水素、酸素、窒素、水、一酸化炭素、二酸化炭素、等
の少なくとも一種を含ませることができる)を陰極−対
陰極間のアーク放電、陰極熱フィラメント−対陰極間の
熱電子放出によるイオン化等の手段でイオン化してイオ
ン流とし、この流れを電場で加速して基体に差し向ける
ことによりダイヤモンド様薄膜を製膜する方法であり、
特開昭59-174507号、特願昭63-59376号(特開平1-23439
6号)、特願昭63-59377号(特開平1-234397号)、特願
平1-1199号(特開平2-184595号)、特願平1-15093(特
開平2-196095号)号等に記載されている通り、イオン化
蒸着法は基体温度として従来のような700℃以上の高温
度を用いる必要がなく(例えば「表面化学」第5巻第10
8号(1984年)第108-115頁の各種の方法参照)、製膜能
率も良く、製膜されたダイヤモンド様膜が良好な表面
性、高硬度、高熱伝導性、高屈折率を有し、仕上表面処
理が不要である等、優れた方法である。
In the ionization deposition method, a hydrocarbon raw material gas or a raw material gas capable of generating a hydrocarbon by decomposition or reaction (here, hydrocarbon is a saturated hydrocarbon such as methane, ethane, and propane, and an unsaturated hydrocarbon such as ethylene, propylene, and acetylene) Source gases that can be decomposed to produce hydrocarbons include alcohols such as methyl alcohol and ethyl alcohol, and ketones such as acetone and methyl ethyl ketone. Is a mixed gas of carbon monoxide, carbon dioxide and hydrogen, etc. The raw material is a rare gas such as helium, neon, argon, or at least hydrogen, oxygen, nitrogen, water, carbon monoxide, carbon dioxide, etc. One kind can be included) by the arc discharge between the cathode and the cathode, and the bombardment due to thermionic emission between the cathode hot filament and the cathode. Ionized by means of emission and the like as an ion current, a method of forming a film of diamond-like carbon film by directing to the substrate to accelerate the flow field,
JP-A-59-174507, JP-A-63-59376 (JP-A-1-23439)
No. 6), Japanese Patent Application No. 63-59377 (Japanese Patent Application Laid-Open No. 1-234397), Japanese Patent Application No. 1-1199 (Japanese Patent Application No. 2-84595), Japanese Patent Application No. 1-15093 (Japanese Patent Application No. 2-96095). As described in Japanese Patent Application Laid-Open No. H10-260, the ionization vapor deposition method does not require the use of a high temperature of 700 ° C. or more as in the past (for example, “Surface Chemistry” Vol. 5, No. 10).
No. 8 (1984) 108-115, various methods), the film forming efficiency is good, and the formed diamond-like film has good surface properties, high hardness, high thermal conductivity, and high refractive index. It is an excellent method, such as no need for finishing surface treatment.

なおイオンビームを固定し基体を移動するか、逆に基
体を固定しイオン化された炭化水素のプラズマ状のイオ
ンビームを元の方向に対してほぼ直角な方向に偏向走査
することにより広い基体に対してダイヤモンド様薄膜の
製膜を実施できる。このような偏向磁界は、イオン流の
加速方向に対して交差する方向の磁界を生じる永久磁石
又は電磁石を用いることにより形成することができる。
しかし、基体が固定であるか移動であるかに拘りなく、
生成された膜の周辺が本発明に従って構成されることが
肝要である。
A wide substrate can be fixed by moving the substrate while fixing the ion beam, or conversely by fixing the substrate and deflecting and scanning the ionized hydrocarbon plasma ion beam in a direction substantially perpendicular to the original direction. To form a diamond-like thin film. Such a deflection magnetic field can be formed by using a permanent magnet or an electromagnet that generates a magnetic field in a direction crossing the acceleration direction of the ion flow.
However, regardless of whether the substrate is fixed or mobile,
It is imperative that the periphery of the produced membrane is constructed according to the invention.

本発明の基本技術であるイオン化蒸着法は、特願昭63
-59377号(特開平1-234397号)及び同63-59376号(特開
平1-234396号)等に記載されており、本発明の実施例で
はこれらに記載された装置を基体とした方法及び装置を
用いる。
The ionization deposition method, which is the basic technology of the present invention, is disclosed in Japanese Patent Application
-59377 (Japanese Patent Application Laid-Open No. 1-234397) and 63-59376 (Japanese Patent Application Laid-Open No. 1-234396), and in Examples of the present invention, a method using the apparatus described therein as a substrate and Use the device.

(実施例の説明) 製膜装置の概要 第1図に製膜装置の好ましい例を示す。図中30は真空
容器、31はチャンバーであり、排気系38に接続されて10
-6Torr程度までの高真空に引かれる。32は基体Sの裏面
に設けられた電極であり、この場合電圧Vaが与えられて
いる。基体Sの表面に近接してダイヤモンド様薄膜Dの
形状を形成する窓を有するマスク42が設けられる。33は
電極32と同一の電位Vaに維持されたグリッドでイオンの
加速を行なうのに使用される。34は熱陰極フィラメント
であり、交流電源Ifによって加熱されて熱電子を発生
し、また負電位に維持されている。35は原料である炭化
水素ガスの供給口である。フィラメント34を取囲んで対
電極36が配置され、フィラメントとの間に電圧Vcを与え
る。フィラメント34、対電極36及び供給口35の周りを取
り囲んでイオン化ガスの閉じ込め用の磁界を発生する電
磁コイル39が配置されている。電磁コイルには電流Ic、
電圧Vcの直流電源が接続されている。従ってVc、Vd、Va
及びコイルの電流Icを調整することにより膜質を変える
ことができる。
(Description of Example) Outline of Film Forming Apparatus FIG. 1 shows a preferred example of a film forming apparatus. In the figure, reference numeral 30 denotes a vacuum vessel, 31 denotes a chamber, which is connected to an exhaust system 38, and 10
It is drawn to a high vacuum of about -6 Torr. Reference numeral 32 denotes an electrode provided on the back surface of the base S, and in this case, a voltage Va is applied. A mask 42 having a window for forming the shape of the diamond-like thin film D is provided near the surface of the substrate S. Reference numeral 33 denotes a grid which is maintained at the same potential Va as the electrode 32 and is used to accelerate ions. Reference numeral 34 denotes a hot cathode filament, which is heated by an AC power supply If to generate thermoelectrons and is maintained at a negative potential. Reference numeral 35 denotes a supply port for a hydrocarbon gas as a raw material. A counter electrode 36 is arranged around the filament 34, and applies a voltage Vc to the filament 34. An electromagnetic coil 39 that generates a magnetic field for confining the ionized gas is disposed around the filament 34, the counter electrode 36, and the supply port 35. The current Ic,
A DC power supply of voltage Vc is connected. Therefore Vc, Vd, Va
By adjusting the coil current Ic, the film quality can be changed.

第3図は第1図のA−A線から見た平面図であり、膜
の形が長方形の場合には例えば図示のような複数フィラ
メントの配列体を用いるとか、コイル状に巻いたものを
用いる。
FIG. 3 is a plan view taken along the line AA in FIG. 1. When the shape of the film is rectangular, for example, an array of a plurality of filaments as shown in FIG. Used.

なお第1図においては、炭化水素ガスの原料導入通路
37にプラズマ励起室37′が設けられており、これにより
イオン化装置の効率を高めている。プラズマ励起は例え
ばマイクロ波、高周波(RF波)、放射線、紫外線などが
利用できる。
In FIG. 1, a raw material introduction passage for hydrocarbon gas is shown.
37 is provided with a plasma excitation chamber 37 ', which increases the efficiency of the ionizer. For the plasma excitation, for example, microwave, high frequency (RF wave), radiation, ultraviolet light and the like can be used.

また、第2図に示したように第3図の構成の一部を変
更して固定又は可変強度の磁石40をフィラメント34の上
部に配置してプラズマ状のイオンビームの偏向用に用い
ても良い。磁石40の磁界強度は固定又は可変にし、磁石
の磁界はイオン流の走行方向に対して交差する方向にす
る。このようにしてCH3 +、CH4 +イオン等の所望するイオ
ンに対して偏向角度θを得る。固定の場合一方、質量が
これらのイオンと大きく異なるイオン例えば水素イオン
はさらに大きく曲げられ、また中性粒子や重質の多量体
イオンは直進する。従って、直進方向にマスクを配置す
れば結晶性の高いイオンのみが基体Sに付着する。
Also, as shown in FIG. 2, a part of the configuration of FIG. 3 may be modified and a fixed or variable strength magnet 40 may be disposed above the filament 34 and used for deflecting a plasma-like ion beam. good. The magnetic field strength of the magnet 40 is fixed or variable, and the magnetic field of the magnet is in a direction crossing the traveling direction of the ion flow. In this manner, the deflection angle θ is obtained with respect to desired ions such as CH 3 + and CH 4 + ions. On the other hand, in the case of fixation, ions whose masses are significantly different from these ions, for example, hydrogen ions, are further bent, and neutral particles and heavy multimeric ions go straight. Therefore, if the mask is arranged in the straight traveling direction, only ions having high crystallinity adhere to the substrate S.

第4図は本発明の特徴を示すために第1図の一部を拡
大した図である。グリッド33と基体Sとの間にはマスク
42が配置されており、又マスクと基板の距離Cは約0.5
〜10mmの範囲に定められる。これはイオンの程よい回り
込みを許容し基板状に析出成長するダイヤモンド様薄膜
のエッジに傾斜部分を形成する値である。この傾斜部分
の寸法関係は、この傾斜部分が始まる部分の膜厚をa、
傾斜部分の長さbとするとき、 100<b/a<10,000 を満足することである。なお、各部の寸法の一例を上げ
るとaは約0.1〜10μm、b約20〜20,000μm、cは0.5
〜10mmであり、距離cによってb/aを選ぶことが出来
る。又グリッド33と基板の間隔は約2〜30mmである。b/
aの比が小さすぎると割れの防止が出来ず、この比が大
きすぎると製膜速度が低下し、特に周辺部分の厚さが薄
くなり又膜の硬度が低下する。
FIG. 4 is an enlarged view of a part of FIG. 1 to show the features of the present invention. Mask between grid 33 and substrate S
42, and the distance C between the mask and the substrate is about 0.5
It is determined in the range of ~ 10mm. This is a value that allows moderate sneak of ions and forms an inclined portion at the edge of a diamond-like thin film that is deposited and grown on a substrate. The dimensional relationship of the inclined portion is such that the film thickness of the portion where the inclined portion starts is a,
When the length b of the inclined portion is set, 100 <b / a <10,000 is satisfied. In addition, as an example of the dimensions of each part, a is about 0.1 to 10 μm, b is about 20 to 20,000 μm, and c is 0.5
B / a can be selected depending on the distance c. The distance between the grid 33 and the substrate is about 2 to 30 mm. b /
If the ratio of a is too small, cracks cannot be prevented, and if this ratio is too large, the film forming speed will be reduced, especially the thickness of the peripheral portion will be reduced, and the hardness of the film will be reduced.

製膜方法 第1図の装置によって製膜方法を詳しく説明する。先
ず、チャンバー31内を10-6Torrまで高真空とし、ガス供
給通路37のバルブを操作して所定流量のメタンガス、そ
れと水素との混合ガス、或いはそれとAr、He、Ne等のキ
ャリアガス等を各供給口35から導入しながら排気系38を
調整して所定のガス圧例えば10-1Torrとする。一方、熱
陰極フイラメント34には交流電流Ifを流して加熱し、フ
イラメント34と対陰極36の間には電位差Vdを印加して放
電を形成する。供給口35から供給されたメタンガスは熱
分解されるとともにフィラメントからの熱電子と衝突し
てプラスのイオンと電子を生じる。この電子は別の熱分
解粒子と衝突する。電磁コイルの磁界による閉じ込め作
用の下に、このような現象を繰り返すことによりメタン
ガスは熱分解物質のプラスイオンと成る。
1. Film forming method The film forming method will be described in detail with reference to the apparatus shown in FIG. First, the inside of the chamber 31 is set to a high vacuum up to 10 -6 Torr, and a valve of the gas supply passage 37 is operated to supply a predetermined flow rate of methane gas, a mixed gas thereof and hydrogen, or a carrier gas such as Ar, He, Ne or the like. The exhaust system 38 is adjusted while being introduced from each supply port 35 to a predetermined gas pressure, for example, 10 -1 Torr. On the other hand, an alternating current If is passed through the hot cathode filament 34 to heat it, and a potential difference Vd is applied between the filament 34 and the counter electrode 36 to form a discharge. The methane gas supplied from the supply port 35 is thermally decomposed and collides with thermoelectrons from the filament to generate positive ions and electrons. This electron collides with another pyrolysis particle. By repeating such a phenomenon under the confinement effect of the magnetic field of the electromagnetic coil, methane gas becomes a positive ion of a pyrolysis substance.

プラスイオンは電極32、グリッド33に印加された負電
位Vaにより引き寄せられ、基体Sの方へ向けて加速さ
れ、基体に衝突して製膜反応を行ない、ダイヤモンド様
薄膜を形成する。所望により、上に述べた固定磁石を利
用して更に品質の良い薄膜を得ることができる。
The positive ions are attracted by the negative potential Va applied to the electrode 32 and the grid 33, accelerated toward the substrate S, collide with the substrate, and perform a film forming reaction to form a diamond-like thin film. If desired, a higher quality thin film can be obtained using the fixed magnet described above.

なお、各部の電位、電流、温度等の条件については先
に引用した特許出願や特許公報のほかの公知の資料を参
照されたい。
For the conditions such as the potential, current, temperature, etc. of each part, please refer to other well-known materials in the above-cited patent applications and patent publications.

形成する膜の厚さは好ましくは100〜10,000Åであ
り、厚さが上記の範囲よりも薄いと耐摩耗性等の効果が
減じ又厚すぎても効果が増大せず製造時間が長くなる。
The thickness of the film to be formed is preferably 100 to 10,000 °, and if the thickness is smaller than the above range, the effects such as abrasion resistance are reduced. If the thickness is too large, the effect is not increased and the production time is increased.

また、予め有機溶剤による超音波洗浄等によりダイヤ
モンド様膜を形成する基体を清浄化しても良い。
Further, the substrate on which the diamond-like film is formed may be cleaned in advance by ultrasonic cleaning with an organic solvent or the like.

以下に本発明を例示する。 Hereinafter, the present invention will be exemplified.

実施例1 第1図の装置を使用し、真空室10内に板状基体Sをの
配置し、その面から種々の距離500、1000μmのところ
に幅10mm、長さ10mmの開口を有するマスク42を配置し、
又グリッド33を基体Sから6mmのところに配置した。又
基体Sからフィラメントまでの距離は約40mmであった。
Example 1 Using the apparatus shown in FIG. 1, a plate-like substrate S was placed in a vacuum chamber 10 and a mask 42 having openings of 10 mm in width and 10 mm in length at various distances of 500 and 1000 μm from the surface thereof. And place
The grid 33 was arranged at a position 6 mm from the substrate S. The distance from the substrate S to the filament was about 40 mm.

真空室10を10-6Torrに排気してからメタンガスを導入
しガス圧を10-1Torrとして熱陰極フィラメント34に放電
を起こさせた。電磁コイル19の磁束密度は400ガウス、
基体電圧Va-300V、基体温度200℃とした。またフィラメ
ント34には交流電流If25Aを流した。
After evacuating the vacuum chamber 10 to 10 -6 Torr, methane gas was introduced to set the gas pressure at 10 -1 Torr, and discharge was caused in the hot cathode filament 34. The magnetic flux density of the electromagnetic coil 19 is 400 gauss,
The substrate voltage Va-300V and the substrate temperature were 200 ° C. An AC current If25A was passed through the filament.

フィラメント34にはコイル状としその幅3mm、その周
りを取り囲む対電極36との隙間8mmとした。
The filament 34 was coil-shaped and had a width of 3 mm and a gap 8 mm between the filament 34 and the counter electrode 36 surrounding the coil.

Vc=30V、Vd=−30Vの条件で、膜厚1.0μmのダイヤ
モンド様膜を得た。
Under conditions of Vc = 30 V and Vd = −30 V, a diamond-like film having a thickness of 1.0 μm was obtained.

得られた膜の厚さa、傾斜部の長さbを測定し、又周
部の割れ(クラック)を観測した。その結果を表1に示
す。
The thickness a of the obtained film and the length b of the inclined portion were measured, and cracks at the peripheral portion were observed. Table 1 shows the results.

た。Was.

(作用効果) 表1から明らかな様に、本発明の基体上に製膜された
ダイヤモンド様薄膜は周部の傾斜部分の寸法が100<b/a
<10000を満足する時に、割れが防止されること、この
条件を満足させるにはマスクの位置cを0.5〜10mmに位
置付けると良いことが分かる。
(Effects) As is clear from Table 1, the diamond-like thin film formed on the substrate of the present invention has a peripheral inclined portion having a dimension of 100 <b / a.
It can be seen that when <10000 is satisfied, cracking is prevented, and in order to satisfy this condition, it is better to position the mask position c at 0.5 to 10 mm.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のダイヤモンド様薄膜の製造装置の一例
を示す断面図、第2図はダイヤモンド様薄膜の製造装置
の他の例を示す断面図、第3図はフィラメント部分の構
造を示す平面斜視図、及び第4図は本発明の要部を示す
第1図の装置の部分拡大図である。
FIG. 1 is a cross-sectional view showing an example of the apparatus for producing a diamond-like thin film of the present invention, FIG. 2 is a cross-sectional view showing another example of the apparatus for producing a diamond-like thin film, and FIG. FIG. 4 is a perspective view and FIG. 4 is a partially enlarged view of the apparatus shown in FIG. 1 showing a main part of the present invention.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に製膜されたダイヤモンド様薄膜で
あって、その周辺部が外周に向けて先細に傾斜してお
り、この傾斜部分が始まる部分の膜厚をa、傾斜部分の
長さbとするとき、これらの寸法が 100<b/a<10,000 を満足することを特徴とするダイヤモンド様薄膜。
1. A diamond-like thin film formed on a substrate, wherein a peripheral portion thereof is tapered toward the outer periphery, and a film thickness at a portion where the inclined portion starts is a, and a length of the inclined portion is a. A diamond-like thin film characterized in that these dimensions satisfy 100 <b / a <10,000, where b.
【請求項2】低分子量炭化水素、又は分解又は反応によ
り低分子量炭化水素を生成し得る原料ガス供給源と、前
記ガスのイオン化手段と、前記イオン化手段に対向して
設けられた基体と、前記イオン化源と前記基体との間に
設けたマスク部材とからなり、前記マスク部材は前記基
体の面から、前記基体上に製膜されるダイヤモンド様薄
膜の周辺部分が次式100<b/a<10,000 (ただしaはダイヤモンド様薄膜の周部の先細傾斜部が
始まる部分の膜厚、bは傾斜部分の長さ)を満足する距
離cに配置されていることを特徴とするダイヤモンド様
薄膜製造装置。
2. A source gas supply source capable of producing a low molecular weight hydrocarbon or a low molecular weight hydrocarbon by decomposition or reaction, ionization means for said gas, a base provided opposite to said ionization means, It comprises a mask member provided between the ionization source and the substrate, and the mask member has a peripheral portion of a diamond-like thin film formed on the substrate from the surface of the substrate, and has the following formula: 100 <b / a < A diamond-like thin film manufacturing apparatus characterized by being disposed at a distance c which satisfies 10,000 (where a is the film thickness of a portion where the tapered inclined portion of the periphery of the diamond-like thin film starts, and b is the length of the inclined portion). .
【請求項3】距離cは0.5〜10mmである前記第1項記載
のダイヤモンド様薄膜製造方法。
3. The method according to claim 1, wherein the distance c is 0.5 to 10 mm.
【請求項4】前記第2項記載のダイヤモンド様薄膜製造
装置を排気し、炭化水素原料ガス又は分解又は反応によ
り炭化水素を生成し得る原料ガスを導入し、これを熱及
び電界によりイオン化させてイオンビームを形成し、こ
れを基体の表面上に析出させてダイヤモンド様薄膜を形
成させることを特徴とするダイヤモンド様薄膜製造方
法。
4. The apparatus for manufacturing a diamond-like thin film according to claim 2, wherein a hydrocarbon raw material gas or a raw material gas capable of generating a hydrocarbon by decomposition or reaction is introduced, and this is ionized by heat and an electric field. A method for producing a diamond-like thin film, comprising forming an ion beam and depositing it on the surface of a substrate to form a diamond-like thin film.
【請求項5】イオンビームは偏向磁界により元のイオン
ビームの方向に対して直角な方向に偏向されることを特
徴とする前記第4項記載のダイヤモンド様薄膜製造方
法。
5. The method according to claim 4, wherein the ion beam is deflected by a deflecting magnetic field in a direction perpendicular to the direction of the original ion beam.
JP17564689A 1989-07-10 1989-07-10 Diamond-like thin film, manufacturing method and manufacturing apparatus Expired - Fee Related JP2717853B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17564689A JP2717853B2 (en) 1989-07-10 1989-07-10 Diamond-like thin film, manufacturing method and manufacturing apparatus
US07/547,736 US5185067A (en) 1989-07-10 1990-06-29 Process for manufacturing diamond-like thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17564689A JP2717853B2 (en) 1989-07-10 1989-07-10 Diamond-like thin film, manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPH0340994A JPH0340994A (en) 1991-02-21
JP2717853B2 true JP2717853B2 (en) 1998-02-25

Family

ID=15999733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17564689A Expired - Fee Related JP2717853B2 (en) 1989-07-10 1989-07-10 Diamond-like thin film, manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2717853B2 (en)

Also Published As

Publication number Publication date
JPH0340994A (en) 1991-02-21

Similar Documents

Publication Publication Date Title
KR900008505B1 (en) Microwave enhanced cvd method for depositing carbon
JP3962420B2 (en) Carbon nanowall manufacturing method, carbon nanowall and manufacturing apparatus
JP2008091022A (en) Recording medium having protective over coating of highly tetrahedral amorphous carbon and its manufacturing method
JPH0672306B2 (en) Plasma processing apparatus and plasma processing method
JP4636476B2 (en) Deposition method of electron emission carbon film by electron cyclotron resonance plasma
JP3386175B2 (en) Method of forming compound thin film with gas cluster ion assist
US5185067A (en) Process for manufacturing diamond-like thin film
US5169452A (en) Apparatus for the synthesis of diamond-like thin films
JP2837700B2 (en) Method for forming diamond-like thin film
JP2006069816A (en) Method for producing carbon nanowall, carbon nanowall and apparatus for producing the same
JP2717853B2 (en) Diamond-like thin film, manufacturing method and manufacturing apparatus
JP3056827B2 (en) Article having a diamond-like carbon protective film and method for producing the same
JP2717854B2 (en) Method for producing diamond-like thin film
JP2687129B2 (en) Method and apparatus for producing diamond-like thin film
JP2717856B2 (en) Method and apparatus for producing diamond-like thin film
JP2687156B2 (en) Method and apparatus for producing diamond-like thin film
JP2717857B2 (en) Method for producing diamond-like thin film
JP2915001B2 (en) Recording / reproducing sliding member
JP2687155B2 (en) Method and apparatus for producing diamond-like thin film
JP2989198B2 (en) Method and apparatus for producing diamond-like thin film
JP3246780B2 (en) Method and apparatus for forming hard carbon film
JPH01279747A (en) Device for forming film by plasma beam
JPH01234396A (en) Method and device for producing diamond-like thin film
JP3485937B2 (en) Mold having protective film of diamond-like thin film and method of manufacturing the same
JP2739286B2 (en) Plasma processing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees