JP2715245B2 - Manufacturing method of chlorinated rubber - Google Patents
Manufacturing method of chlorinated rubberInfo
- Publication number
- JP2715245B2 JP2715245B2 JP5267961A JP26796193A JP2715245B2 JP 2715245 B2 JP2715245 B2 JP 2715245B2 JP 5267961 A JP5267961 A JP 5267961A JP 26796193 A JP26796193 A JP 26796193A JP 2715245 B2 JP2715245 B2 JP 2715245B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- reaction
- rubber
- chlorination
- chlorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は屋外建造物等の重防食塗
料やインキ・接着剤等に広く使われている塩化ゴムおよ
びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chlorinated rubber widely used for heavy-duty anticorrosive paints, inks and adhesives for outdoor buildings and the like, and a method for producing the same.
【0002】[0002]
【従来の技術】塩化ゴムは天然ゴムや合成ゴム(ポリイ
ソプレン)を塩素含有率が60%以上になるまで塩素化し
て得られる樹脂で、化学的に安定で酸・アルカリに強く
また耐候性に優れ、トルエン等の芳香族系溶剤やエステ
ル・ケトン類の有機溶剤に容易に溶解する。このため塗
料・インキ・接着剤に使われ、特に重防食塗料等に多量
に使われ、古くから工業的に製造されている。2. Description of the Related Art Chloride rubber is a resin obtained by chlorinating natural rubber or synthetic rubber (polyisoprene) until the chlorine content exceeds 60%. It is chemically stable, resistant to acids and alkalis, and weather resistant. Excellent, easily soluble in aromatic solvents such as toluene and organic solvents such as esters and ketones. For this reason, it is used in paints, inks and adhesives, especially in heavy anticorrosion paints, etc., and has been industrially manufactured since ancient times.
【0003】現在、工業的に塩化ゴムを製造するには、
天然ゴムや合成ゴム等の原料を塩素に不活性な塩素系溶
剤である四塩化炭素に溶解させ、この溶液に塩素ガスを
通じて塩素化を行う“溶液法”という方法で行ってい
る。溶液法では四塩化炭素を多量に使用するが、四塩化
炭素の低コストでの完全な回収は困難で一部が製造設備
から洩れて大気中に揮散したりまた製品に少量混入した
りしていた。しかし、四塩化炭素は人体に有害であるほ
か、オゾン層を破壊するため世界的に使用が規制される
ことが決っており数年後には使用できなくなる。また、
クロロホルム等の塩素系有機溶剤には毒性や塩素との反
応性の点で問題があり、四塩化炭素に代る溶剤とはなり
得ない。At present, in order to produce chlorinated rubber industrially,
Raw materials such as natural rubber and synthetic rubber are dissolved in carbon tetrachloride, which is a chlorine-based solvent inert to chlorine, and chlorination is performed by passing chlorine gas through this solution. Although a large amount of carbon tetrachloride is used in the solution method, it is difficult to completely recover carbon tetrachloride at low cost, and some of the carbon tetrachloride leaks from manufacturing equipment and volatilizes into the atmosphere, or is mixed in small quantities into products. Was. However, carbon tetrachloride is harmful to the human body, and its use has been decided worldwide to destroy the ozone layer. Also,
Chlorine-based organic solvents such as chloroform have problems in toxicity and reactivity with chlorine, and cannot be used as a solvent in place of carbon tetrachloride.
【0004】[0004]
【発明が解決しようとする課題】また、溶液法とはまっ
たく異なった塩素化方法として天然ゴムのラテックスを
塩素化しようという試みがなされてきた。この方法は、
天然ゴムラテックスに界面活性剤と酸を加えてラテック
スの凝固を防ぎ、塩素ガスを吹込んで塩素化するという
ものである(British Pat. 634241 (1947)、Industrial
and EngineeringChemistry, Vol.43, p.2535 (195
1))。しかし、これらの方法では塩素化反応の後半に反
応の進行が極度に遅くなり高塩素含有率のものが得られ
ないという欠点があった。そこで、この問題を解決する
ため本出願人は特定の温度条件と紫外線照射条件からな
り2段階で塩素化反応を行う方法を開発した(特開平4-
59801 号公報)。Attempts have been made to chlorinate natural rubber latex as a chlorination method completely different from the solution method. This method
A surfactant and acid are added to natural rubber latex to prevent coagulation of the latex and chlorinate by blowing chlorine gas (British Pat. 634241 (1947), Industrial
and EngineeringChemistry, Vol. 43, p. 2535 (195
1)). However, these methods have a disadvantage that the progress of the reaction is extremely slowed in the latter half of the chlorination reaction, and that a product having a high chlorine content cannot be obtained. Therefore, in order to solve this problem, the present applicant has developed a method of performing a chlorination reaction in two stages consisting of specific temperature conditions and ultraviolet irradiation conditions (Japanese Patent Laid-Open Publication No.
No. 59801).
【0005】この方法では塩素化反応は進行するもの
の、塩素含有率が約63%以上で反応速度がやや遅くな
る、反応の後半で系の粘度が極度に上昇する、得られた
塩化ゴムが5μm以下の微粒子であるため塩素化後の後
工程で脱水性が劣る、塩化ゴムの乾燥粉末が微粒子なた
めハンドリングが劣るという欠点があった。In this method, although the chlorination reaction proceeds, the reaction rate becomes slightly slower when the chlorine content is about 63% or more, and the viscosity of the system extremely increases in the latter half of the reaction. The following fine particles are disadvantageous in that they have poor dehydration properties in the post-process after chlorination, and that the dry powder of the chlorinated rubber is fine particles, so that handling is poor.
【0006】[0006]
【課題を解決するための手段】本発明者等は上記問題点
を解決するため鋭意検討を行った結果、従来樹脂の軟化
温度以上に温度を上げると樹脂の団塊化が起こり反応継
続が困難になると思われていたのに対し、驚くべきこと
に特定の条件で温度を上げることにより樹脂が数10μm
の大きさに均一に凝集し操作性や反応性が改善できるこ
とを見出し本発明をなすに至った。すなわち、ゴムラテ
ックスに界面活性剤および酸を加え塩素ガスで塩素含有
率60%〜75%まで水媒体中のまま塩素化することにより
得られる塩化ゴムにおいて、塩素含有率が50%を越えて
から、少なくとも1回、反応系の温度を樹脂の軟化開始
温度より高い温度に上げて塩素化することにより上記問
題点を解決できることを見出した。The present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, if the temperature is raised to a temperature higher than the softening temperature of the conventional resin, the resin aggregates and the continuation of the reaction becomes difficult. Surprisingly, by raising the temperature under specific conditions, the resin becomes several tens of μm
It has been found that the particles can be uniformly agglomerated to the size of to improve operability and reactivity, and the present invention has been accomplished. That is, in a chlorinated rubber obtained by adding a surfactant and an acid to a rubber latex and chlorinating a chlorine gas in an aqueous medium to a chlorine content of 60% to 75% with chlorine gas, after the chlorine content exceeds 50% It has been found that the above problem can be solved at least once by raising the temperature of the reaction system to a temperature higher than the softening start temperature of the resin and performing chlorination.
【0007】本発明におけるゴムラテックスとは天然ゴ
ムラテックス、合成ポリイソプレンゴムラテックス、ポ
リブタジエンラテックス、SBRラテックス、ポリクロ
ロプレンラテックス等をいい、天然ゴムラテックスのほ
か合成のジエン系ゴムラテックスもいう。これらの中で
も天然ゴムラテックスと合成ポリイソプレンゴムラテッ
クスが工業的価値が大きく好ましい。[0007] The rubber latex in the present invention refers to natural rubber latex, synthetic polyisoprene rubber latex, polybutadiene latex, SBR latex, polychloroprene latex, and the like, and includes synthetic diene rubber latex in addition to natural rubber latex. Of these, natural rubber latex and synthetic polyisoprene rubber latex are preferred because of their high industrial value.
【0008】天然ゴムラテックスは遠心分離法により濃
縮したハイアンモニアタイプやローアンモニアタイプを
用いるのが一般的だが、精製を強化した高純度タイプ、
薬品処理した特殊タイプ、クリーミング法や蒸発法によ
るラテックスを用いてもよい。天然ゴムラテックスはそ
のまま使用してもよいが、解重合して分子量を調節して
もよい。解重合は酸素や過酸化水素を使用する酸化的な
方法か過酸化物等のラジカル発生剤による方法が用いら
れる(接着、31巻、p.308 (1987))。As the natural rubber latex, a high ammonia type or a low ammonia type concentrated by a centrifugal separation method is generally used.
A special type treated with a chemical, or a latex by a creaming method or an evaporation method may be used. The natural rubber latex may be used as it is, or may be depolymerized to adjust the molecular weight. For the depolymerization, an oxidative method using oxygen or hydrogen peroxide or a method using a radical generator such as peroxide is used (adhesion, vol. 31, p. 308 (1987)).
【0009】合成ポリイソプレンゴムラテックスは公知
の方法(「合成ゴム概説」p.130 、朝倉書店(1971))に
より乳化重合して製造することができる。また、溶液重
合したポリイソプレンを後乳化し溶剤を除去したもの
(住友精化製、商品名マックスプレンIR−900)、
液状ポリイソプレンを乳化したものでもよい。また、天
然ゴムラテックスをグラフト変性して極性基を導入した
ラテックス、極性モノマーを共重合した合成ポリイソプ
レンゴムラテックスを使用することもできる。The synthetic polyisoprene rubber latex can be produced by emulsion polymerization according to a known method ("Overview of Synthetic Rubber" p.130, Asakura Shoten (1971)). Further, a solution-polymerized polyisoprene is post-emulsified and the solvent is removed (manufactured by Sumitomo Seika Co., Ltd., trade name: Maxprene IR-900);
What emulsified liquid polyisoprene may be used. In addition, a latex in which a polar group is introduced by graft modification of a natural rubber latex, and a synthetic polyisoprene rubber latex in which a polar monomer is copolymerized can also be used.
【0010】ゴムラテックスを塩素化する方法は次に述
べるような公知の方法(例えば、特開平4-59801 号公
報)で行うことができる。ゴムラテックスに直接塩素ガ
スを吹込むとラテックスが凝固し塩素化を行うことがで
きない。これはラテックスがアニオン性であり、塩素ガ
スを吹込むと次亜塩素酸や塩酸が生成しラテックスが破
壊されるためである。このため、塩素化の前にゴムラテ
ックスにノニオン系界面活性剤またはカチオン系界面活
性剤を加える。この処理を行うとゴムラテックスに塩素
ガスを吹き込んでもラテックスは凝固せず塩素化を行う
ことができる。The method of chlorinating rubber latex can be carried out by a known method described below (for example, JP-A-4-59801). If chlorine gas is blown directly into the rubber latex, the latex solidifies and cannot be chlorinated. This is because the latex is anionic, and when chlorine gas is blown, hypochlorous acid or hydrochloric acid is generated and the latex is destroyed. Therefore, a nonionic surfactant or a cationic surfactant is added to the rubber latex before chlorination. By performing this treatment, even if chlorine gas is blown into the rubber latex, the latex does not coagulate and chlorination can be performed.
【0011】ノニオン系またはカチオン系界面活性剤の
量はラテックスの固形分に対し 0.5%ないし10%が好ま
しく、 0.5%以下ではラテックスの凝固を防ぐことがで
きず、10%を越えてもその効果は向上しない。さらに好
ましくは2%ないし5%である。The amount of the nonionic or cationic surfactant is preferably 0.5% to 10% based on the solid content of the latex. If it is less than 0.5%, the coagulation of the latex cannot be prevented. Does not improve. More preferably, it is 2% to 5%.
【0012】ノニオン系界面活性剤としてはポリオキシ
エチレンアルキルエーテル、ポリオキシエチレンアルキ
ルフェニルエーテル、ポリオキシエチレンアルキルエス
テル、ソルビタンアルキルエステル、ポリオキシエチレ
ンソルビタンアルキルエステル等が、カチオン系界面活
性剤としては脂肪族アミン塩またはその4級アンモニウ
ム塩、芳香族4級アンモニウム塩、複素環4級アンモニ
ウム塩等が挙げられる。Examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl ester, sorbitan alkyl ester, polyoxyethylene sorbitan alkyl ester, and the like. And quaternary ammonium salts thereof, aromatic quaternary ammonium salts, and heterocyclic quaternary ammonium salts.
【0013】塩素化の前にはラテックスに酸を加える。
これはイソプレン構造中の二重結合へのヒドロキシル化
を防ぐためであり、水溶液への塩素の溶解度の向上や天
然ゴムの場合はラテックスの安定化向上という利点もあ
る。酸の濃度は、 0.1N以上、好ましくは3N以上、さ
らに好ましくは6N以上である。酸濃度が高過ぎると副
反応を起こすおそれがあるので、上限は8N程度が望ま
しい。使用する酸としては、塩酸、硫酸等が挙げられる
が塩酸が好ましい。Before the chlorination, an acid is added to the latex.
This is to prevent hydroxylation to a double bond in the isoprene structure, and has the advantage of improving the solubility of chlorine in an aqueous solution and, in the case of natural rubber, improving the stability of the latex. The concentration of the acid is 0.1N or more, preferably 3N or more, more preferably 6N or more. If the acid concentration is too high, a side reaction may occur, so the upper limit is preferably about 8N. Examples of the acid used include hydrochloric acid and sulfuric acid, and hydrochloric acid is preferred.
【0014】塩素化反応の初期は50℃以下の温度で塩素
化するのが好ましい。初期の段階で温度を上げ過ぎると
大きな凝固物が生成しやすくなり好ましくない。また、
初期は反応速度が高く、また発熱するので、さらに好ま
しくは30℃以下の温度である。この段階では光などの触
媒なしでも反応が速く進むので、光照射をしなくてもよ
い。Preferably, chlorination is performed at a temperature of 50 ° C. or less at the beginning of the chlorination reaction. If the temperature is too high in the initial stage, a large solidified product is easily formed, which is not preferable. Also,
In the initial stage, the reaction rate is high and heat is generated, so the temperature is more preferably 30 ° C. or lower. At this stage, since the reaction proceeds without a catalyst such as light, light irradiation does not need to be performed.
【0015】塩素含有率が30%以上になれば徐々に温度
を上げて塩素化を進めるのが好ましい。また、この段階
から紫外線を照射しながら塩素化するのが好ましいが、
紫外線照射なしでも塩素化を進めることが可能である。When the chlorine content reaches 30% or more, it is preferable to gradually increase the temperature and proceed with chlorination. From this stage, it is preferable to chlorinate while irradiating ultraviolet rays,
Chlorination can proceed without UV irradiation.
【0016】塩素含有率が高くなるとゴム粒子が弾性を
失って樹脂となり固くなる。特に、塩素含有率が50%を
越えると樹脂の軟化温度がかなり高くなる。When the chlorine content is high, the rubber particles lose elasticity and become resin and become hard. In particular, when the chlorine content exceeds 50%, the softening temperature of the resin becomes considerably high.
【0017】樹脂の軟化温度には不均一性に由来する幅
があるが、本発明では軟化温度の指標として軟化開始温
度(軟化温度の最低点)で表わす。軟化開始温度はDS
C(示差走査熱量測定)で測定することができる。DS
Cで樹脂の軟化温度を測定するときは、軟化開始温度は
吸熱ピークの立ち上がりの温度をいう。軟化開始温度は
分子量によって異なるが塩素含有率50%で50〜80℃、塩
素含有率60%で80〜110 ℃である。Although the softening temperature of the resin has a width due to non-uniformity, in the present invention, the softening temperature is represented by the softening start temperature (the lowest point of the softening temperature). The softening start temperature is DS
It can be measured by C (differential scanning calorimetry). DS
When measuring the softening temperature of the resin in C, the softening start temperature means the temperature at which the endothermic peak rises. The softening start temperature varies depending on the molecular weight, but is 50 to 80 ° C at a chlorine content of 50% and 80 to 110 ° C at a chlorine content of 60%.
【0018】塩素含有率が低いところで温度を上げると
大きな凝固物が生成し反応を続けることができなくなる
が、驚くべきことに塩素含有率が高いところでは均一に
凝集が起こり粒子同士が熱融着して粒子径の揃った大粒
子を生成させることが可能である。このため塩素含有率
が50%を越えてからは樹脂の軟化開始温度より高い温度
に上げ粒子を大きくしながら反応を継続することができ
る。このときの反応温度は軟化開始温度より1〜20℃高
い温度が好ましく、さらに好ましくは3〜10℃高い温度
である。温度を上げ過ぎると樹脂が着色するので好まし
くない。When the temperature is increased in a place where the chlorine content is low, a large coagulated product is formed and the reaction cannot be continued. Surprisingly, in a place where the chlorine content is high, the particles are uniformly aggregated and the particles are thermally fused. Thus, large particles having a uniform particle diameter can be generated. For this reason, after the chlorine content exceeds 50%, the reaction can be continued while raising the temperature to a temperature higher than the softening start temperature of the resin to enlarge the particles. The reaction temperature at this time is preferably 1 to 20 ° C. higher than the softening start temperature, and more preferably 3 to 10 ° C. higher. If the temperature is too high, the resin is undesirably colored.
【0019】反応温度を軟化開始温度より高い温度にす
る方法においては、一度軟化開始温度より高い温度に上
げてその後温度を下げてもよいし、常に軟化開始温度よ
り高い温度に保っていてもよい。好ましくは塩素含有率
が58%を越えてから90℃以上に上げて塩素化することで
ある。さらに、好ましくは塩素含有率が61%を越えてか
ら加圧下で 100℃以上に上げることである。また、温度
の上限として樹脂の分解を防ぐために塩素含有率が高い
ところでも 180℃以下にすることが好ましく、より好ま
しくは 150℃以下である。さらに、 100℃以上の高温に
おいて塩素化すると光等の触媒なしでも塩素化が速やか
に進行するという利点もある。In the method of raising the reaction temperature to a temperature higher than the softening start temperature, the temperature may be once raised to a temperature higher than the softening start temperature and then lowered, or the temperature may always be kept higher than the softening start temperature. . Preferably, the chlorination is carried out by increasing the chlorine content to more than 90 ° C after the chlorine content exceeds 58%. Further, it is preferable to increase the chlorine content to more than 100 ° C. under pressure after the chlorine content exceeds 61%. The upper limit of the temperature is preferably 180 ° C. or lower, more preferably 150 ° C. or lower, even in a place where the chlorine content is high in order to prevent decomposition of the resin. Further, when chlorinating at a high temperature of 100 ° C. or higher, there is an advantage that chlorination proceeds rapidly without a catalyst such as light.
【0020】このようにして温度を樹脂の軟化開始温度
より高い温度に上げると、粒子が凝集して大きくなる
が、粒子径は軟化開始温度より上げる温度の幅や温度を
上げている時間によって変わるので、反応濃度・攪拌の
回転数が一定の場合温度や時間をコントロールすること
によって粒子径を制御できる。このとき適度な攪拌をす
ることが必要であり、少なくとも10rpm 以上で攪拌する
ことが望ましく、さらに好ましくは30rpm 以上である。
通常5μm以下の粒子を10μm以上の大きさにすること
が好ましい。さらに好ましくは20μm以上の大きさであ
る。また、粒子径は大きくし過ぎると塩素化の反応性が
落ちるので、 200μm以下にするのが望ましい。粒子径
の測定はレーザー回折現象を利用した光学的方法で測定
でき、平均粒子径で表わす。この場合、測定試料を超音
波処理して緩やかな凝集をほぐしてから測定する。 150
W以上の出力で1分間以上超音波を照射してから測定す
る。When the temperature is raised to a temperature higher than the softening start temperature of the resin in this way, the particles aggregate and become larger, but the particle size varies depending on the width of the temperature raised above the softening start temperature and the time during which the temperature is raised. Therefore, when the reaction concentration and the number of rotations of stirring are constant, the particle diameter can be controlled by controlling the temperature and time. At this time, it is necessary to perform appropriate stirring, and it is desirable that the stirring be performed at least at 10 rpm or more, and more preferably 30 rpm or more.
Usually, it is preferable to make particles having a size of 5 μm or less into a size of 10 μm or more. More preferably, the size is 20 μm or more. If the particle diameter is too large, the reactivity of chlorination decreases. Therefore, the particle diameter is desirably 200 μm or less. The particle diameter can be measured by an optical method utilizing a laser diffraction phenomenon, and is represented by an average particle diameter. In this case, the measurement is performed after the measurement sample is sonicated to loosen loose aggregation. 150
The measurement is performed after irradiating ultrasonic waves with an output of W or more for 1 minute or more.
【0021】塩素化反応におけるラテックスの濃度は1
%ないし10%が好ましく、10%以上では塩素化反応の後
半に粘度が高くなりすぎて反応効率が落ち、1%以下で
は生産性が悪い。The latex concentration in the chlorination reaction is 1
% To 10% is preferable. If it is 10% or more, the viscosity becomes too high in the latter half of the chlorination reaction, and the reaction efficiency decreases. If it is 1% or less, the productivity is poor.
【0022】塩素化の反応装置は内部をガラスライニン
グした、攪拌機・ジャケット付きの加圧可能な反応タン
クで行うことができる。塩素ガスは反応釜の底部または
釜上部の空間部から吹込む。反応は常圧でもよいが、温
度を 100℃以上に上げるときには加圧下で行う必要があ
る。The reactor for chlorination can be carried out in a pressurized reaction tank equipped with a stirrer and a jacket, the inside of which is glass-lined. Chlorine gas is blown from the bottom of the reactor or the space above the reactor. The reaction may be carried out at normal pressure, but when the temperature is raised to 100 ° C. or higher, it is necessary to carry out the reaction under pressure.
【0023】また、本発明においては反応釜内の攪拌が
不十分だと均一な凝集が起きないおそれがあるので、適
度に攪拌できる装置にすることが望ましい。紫外線を照
射する場合は光源として水銀ランプ、炭素アーク灯、希
ガスの放電管等が挙げられるが、高圧水銀ランプが好ま
しく、反応装置に組込んで使用する。In the present invention, if the stirring in the reaction vessel is insufficient, uniform aggregation may not occur. Therefore, it is desirable to use a device capable of appropriately stirring. When irradiating with ultraviolet light, a mercury lamp, a carbon arc lamp, a discharge tube of a rare gas and the like can be used as a light source, but a high-pressure mercury lamp is preferable and used by being incorporated in a reactor.
【0024】また、塩素化反応中あるいは塩素化反応終
了後に解重合処理を行ってもよい。解重合処理は酸素の
吹込みや過酸化物等のラジカル発生剤の添加で行うこと
ができる。塩素含有率の測定は反応中に適宜反応液を抜
き取って、JIS−K7229の方法で測定することができ
る。The depolymerization treatment may be performed during the chlorination reaction or after the chlorination reaction is completed. The depolymerization treatment can be performed by blowing oxygen or adding a radical generator such as a peroxide. The chlorine content can be measured by appropriately extracting the reaction solution during the reaction and measuring according to JIS-K7229.
【0025】塩素化反応終了後は反応液を脱水・中和・
洗浄し、乾燥して粉末とする。塩化ゴム粉末はトルエ
ン、キシレン、酢酸エチル、MEK等の有機溶剤に容易
に溶解し塗料・インキ・接着剤の用途に使用できる。塩
化ゴムの重合度により有機溶剤溶液の粘度や塗膜の性質
が異なり、用途に応じた重合度のものを使用する。After completion of the chlorination reaction, the reaction solution is dehydrated, neutralized,
Wash and dry to a powder. The chlorinated rubber powder is easily dissolved in an organic solvent such as toluene, xylene, ethyl acetate, and MEK, and can be used for paints, inks, and adhesives. The viscosity of the organic solvent solution and the properties of the coating film vary depending on the degree of polymerization of the chlorinated rubber.
【0026】[0026]
【作用】従来、ゴムラテックスに金属塩等を添加して数
mmの不定形粒子を製造することは知られていたが、塩化
ゴムにおいて塩素化反応中に添加剤なしで粒子径の揃っ
た数10μmの粒子が得られることは予想もされなかった
ことである。そのメカニズムははっきりとはわからない
が、次のように推定される。[Effect] Conventionally, adding a metal salt or the like to rubber latex
Although it was known to produce irregular shaped particles of mm, it was not expected that chlorinated rubber would give particles of a uniform size of several tens of μm without additives during the chlorination reaction. . The mechanism is not clearly understood, but is presumed as follows.
【0027】塩素含有率が低いところで温度を数10℃に
上げると、ラテックス中の粒子自体はかなり軟らかく流
動性のあるものとなる。このため、粒子を取り巻く界面
活性剤による安定化作用にラテックス中の粒子同士の相
互作用が勝ると大きな凝固物が生成しやすくなる。しか
し、本発明の場合、塩素含有率が50%を越えてからは樹
脂が固くなり特に粒子の外殻が硬くなって、軟化開始温
度より高い温度においても樹脂粒子表面が部分的にしか
軟化せず、軟化した部分も流動性が低いので大きな凝固
物は生成しないものと思われる。さらに、温度、時間、
適度な攪拌下で、粒子が一定量集って凝集・熱融着し均
一な大粒子を形成するものと推定される。If the temperature is raised to several tens of degrees Celsius where the chlorine content is low, the particles themselves in the latex become quite soft and fluid. For this reason, if the interaction between the particles in the latex exceeds the stabilizing effect of the surfactant surrounding the particles, a large coagulated product is easily generated. However, in the case of the present invention, after the chlorine content exceeds 50%, the resin becomes hard, and particularly the outer shell of the particles becomes hard, and even at a temperature higher than the softening start temperature, the surface of the resin particles only partially softens. It is considered that no large coagulated product is formed because the softened portion has low fluidity. In addition, temperature, time,
It is presumed that a certain amount of particles are aggregated and thermally fused under moderate stirring to form uniform large particles.
【0028】[0028]
【実施例】以下、実施例に基づいて本発明を具体的に説
明するが、本発明はこれによって制限されるものではな
い。EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited thereto.
【0029】(実施例1)天然ゴムラテックス(Soctex
−CC、ハイアンモニアタイプ、固形分60%)3kgにノ
ニオン系界面活性剤(エマノーン3199、花王製)54
gを水1リットルに溶解させた水溶液と水10リットルを
加えてよく攪拌し、濃塩酸(36%)25リットルを加え
た。これを内容積が50リットルで攪拌機、高圧水銀ラン
プ、温度計、廃ガス排出口を備えた内面をガラスライニ
ングした耐圧反応容器に仕込んだ。(Example 1) Natural rubber latex (Soctex)
Nonionic surfactant (Emanon 3199, manufactured by Kao) in 3 kg of -CC, high ammonia type, solid content 60%) 54
g in 1 liter of water and 10 liters of water were added and stirred well, and 25 liters of concentrated hydrochloric acid (36%) was added. This was charged into a pressure-resistant reaction vessel having an inner volume of 50 liters and equipped with a stirrer, a high-pressure mercury lamp, a thermometer, and a waste gas discharge port, the inside of which was lined with glass.
【0030】窒素ガスで系内をパージした後室温におい
て、反応容器の底部にもうけた口から塩素ガスを吹き込
んだ。10℃/時間の速さで徐々に昇温しながら塩素化を
続け、塩素を4kg吹込んだところでサンプリングし塩素
含有率を測定すると55%、DSCによる軟化開始温度は
80℃であった。反応温度を85℃に上げ、高圧水銀ランプ
を点灯し紫外線の照射を開始し徐々に昇温しながら塩素
化を続けた。反応温度が 110℃になったところで温度を
保持して塩素化を続け、塩素を7kg吹込んだところで反
応を終了した。After purging the inside of the system with nitrogen gas, chlorine gas was blown at room temperature from a port provided at the bottom of the reaction vessel. Chlorination is continued while gradually increasing the temperature at a rate of 10 ° C./hour. When 4 kg of chlorine is blown in, sampling is performed and the chlorine content is measured. The softening start temperature by DSC is 55%.
80 ° C. The reaction temperature was raised to 85 ° C., the high-pressure mercury lamp was turned on, ultraviolet irradiation was started, and chlorination was continued while gradually increasing the temperature. When the reaction temperature reached 110 ° C., chlorination was continued while maintaining the temperature, and the reaction was terminated when 7 kg of chlorine was blown.
【0031】反応液を中和、ロ過、水洗し、遠心脱水を
20分間行うと含水率35%の樹脂が得られた。送風乾燥機
で乾燥し塩化ゴム粉末を得た。塩素含有率は68.0%(重
量%、以下同様)、レーザー回折式粒度分布測定装置で
超音波による前処理(150W、1分)をして粒子径を測定
すると平均粒子径は24μmであった。トルエンに固形分
濃度20%で溶解させると容易に溶解し粘度は41cpであっ
た。The reaction solution is neutralized, filtered, washed with water, and centrifugally dehydrated.
After 20 minutes, a resin having a water content of 35% was obtained. It was dried with a blow dryer to obtain a chlorinated rubber powder. The chlorine content was 68.0% (% by weight, the same applies hereinafter), and the average particle diameter was 24 μm when the particle diameter was measured by ultrasonic pretreatment (150 W, 1 minute) using a laser diffraction type particle size distribution analyzer. When dissolved in toluene at a solid concentration of 20%, it was easily dissolved and had a viscosity of 41 cp.
【0032】(実施例2)天然ゴムラテックス(Soctex
−CC、ハイアンモニアタイプ、固形分60%)3kgにノ
ニオン系界面活性剤(ノニオンK−230、日本油脂
製)45gを水1リットルに溶解させた水溶液と水10リッ
トルを加えてよく攪拌し、濃塩酸(36%)25リットルを
加えた。これを実施例1と同じ反応容器に仕込んだ。Example 2 Natural rubber latex (Soctex)
-CC, high ammonia type, solid content 60%) To 3 kg, add an aqueous solution in which 45 g of a nonionic surfactant (Nonion K-230, manufactured by NOF Corporation) is dissolved in 1 liter of water and 10 liters of water, and stir well. 25 liters of concentrated hydrochloric acid (36%) was added. This was charged into the same reaction vessel as in Example 1.
【0033】窒素ガスで系内をパージした後室温におい
て、反応容器の底部にもうけた口から塩素ガスを吹き込
んだ。徐々に昇温しながら塩素化を続け、塩素を5kg吹
込んだところでサンプリングし塩素含有率を測定すると
60%、DSCによる軟化開始温度は95℃であった。反応
温度を 100℃に上げ、徐々に昇温しながら塩素化を続け
た。反応温度が 120℃になったところで温度を保持して
塩素化を続け、塩素を6.5kg 吹込んだところで反応を終
了した。After purging the inside of the system with nitrogen gas, chlorine gas was blown at room temperature from a port provided at the bottom of the reaction vessel. Chlorination is continued while gradually increasing the temperature. When 5 kg of chlorine is blown, sampling is performed and the chlorine content is measured.
The softening start temperature by DSC was 95%. The reaction temperature was increased to 100 ° C., and chlorination was continued while gradually increasing the temperature. When the reaction temperature reached 120 ° C., chlorination was continued while maintaining the temperature, and the reaction was terminated when 6.5 kg of chlorine was blown.
【0034】実施例1と同様にして後処理と分析を行っ
た。遠心脱水した樹脂の含水率は38%、乾燥した塩化ゴ
ム粉末の塩素含有率は67.3%、平均粒子径は30μmであ
った。トルエンに固形分濃度20%で溶解させると粘度は
145cp であった。Post-processing and analysis were performed as in Example 1. The water content of the centrifugally dehydrated resin was 38%, the chlorine content of the dried chlorinated rubber powder was 67.3%, and the average particle size was 30 μm. When dissolved in toluene at a solid concentration of 20%, the viscosity becomes
It was 145 cp.
【0035】(実施例3)天然ゴムラテックス(Soctex
−CC、ハイアンモニアタイプ、固形分60%)3kgにク
メンハイドロパーオキサイド10g(50%トルエン溶液)
とテトラエチレンペンタミン2g(50%水溶液)を添加
し攪拌しながら50℃に加熱した。この状態で3時間反応
させて解重合天然ゴムラテックスを得た。Example 3 Natural rubber latex (Soctex)
-CC, high ammonia type, solid content 60%) 10 g of cumene hydroperoxide (50% toluene solution) in 3 kg
And 2 g (50% aqueous solution) of tetraethylenepentamine were added and heated to 50 ° C. while stirring. In this state, the reaction was carried out for 3 hours to obtain a depolymerized natural rubber latex.
【0036】この解重合天然ゴムラッテクスにカチオン
系界面活性剤(ナイミーンT2−210、日本油脂製)
45gと水15リットルを加えてよく攪拌し、濃塩酸(36
%)20リットルを加えた。これを実施例1と同じ反応容
器に仕込み、室温において、反応容器の底部にもうけた
口から塩素ガスを吹き込んだ。徐々に昇温しながら塩素
化を続け、塩素を 5.5kg吹込んだところでサンプリング
し塩素含有率を測定すると63%、DSCによる軟化開始
温度は 105℃であった。反応温度を 110℃に上げ、徐々
に昇温しながら塩素化を続けた。反応温度が 120℃にな
ったところで温度を保持して塩素化を続け、塩素を 6.2
kg吹込んだところで反応を終了した。The depolymerized natural rubber latex is treated with a cationic surfactant (Nymeen T2-210, manufactured by NOF Corporation).
Add 45 g and 15 liters of water, stir well, and add concentrated hydrochloric acid (36
%) 20 liters were added. This was charged into the same reaction vessel as in Example 1, and at room temperature, chlorine gas was blown through a port provided at the bottom of the reaction vessel. Chlorination was continued while gradually increasing the temperature. When 5.5 kg of chlorine was blown in, sampling was performed to measure the chlorine content. The softening start temperature by DSC was 105 ° C. The reaction temperature was increased to 110 ° C., and chlorination was continued while gradually increasing the temperature. When the reaction temperature reached 120 ° C, the temperature was maintained and chlorination was continued.
The reaction was terminated when kg was injected.
【0037】実施例1と同様にして後処理と分析を行っ
た。遠心脱水した樹脂の含水率は30%、乾燥した塩化ゴ
ム粉末の塩素含有率は65.2%、平均粒子径は20μmであ
った。トルエンに固形分濃度20%で溶解させると粘度は
13cpであった。Post-processing and analysis were performed as in Example 1. The water content of the centrifugally dehydrated resin was 30%, the chlorine content of the dried chlorinated rubber powder was 65.2%, and the average particle size was 20 μm. When dissolved in toluene at a solid concentration of 20%, the viscosity becomes
13 cp.
【0038】(実施例4)天然ゴムラテックス(Soctex
−CC、ハイアンモニアタイプ、固形分60%)3kgにノ
ニオン系界面活性剤(ニューポールPE−108、三洋
化成製)72gを水1リットルに溶解させた水溶液と水15
リットルを加えてよく攪拌し、濃塩酸(36%)20リット
ルを加えた。これを実施例1と同じ反応容器に仕込ん
だ。(Example 4) Natural rubber latex (Soctex)
An aqueous solution obtained by dissolving 72 g of a nonionic surfactant (Newpole PE-108, manufactured by Sanyo Chemical) in 1 liter of water and 3 kg of 3 kg of -CC, high ammonia type, solid content 60%)
Then, 20 liters of concentrated hydrochloric acid (36%) was added. This was charged into the same reaction vessel as in Example 1.
【0039】窒素ガスで系内をパージした後室温におい
て、反応容器の底部にもうけた口から塩素ガスを吹き込
んだ。徐々に昇温しながら塩素化を続け、塩素を5kg吹
込んだところでサンプリングし塩素含有率を測定すると
60%、DSCによる軟化開始温度は95℃であった。反応
温度を 100℃に上げ、徐々に昇温しながら塩素化を続け
た。反応温度が 120℃になったところで温度を保持し、
塩素ガスと少量の酸素ガスを同時に吹込みながら塩素化
を続け、塩素を6kg吹込んだところで反応を終了した。After purging the inside of the system with nitrogen gas, chlorine gas was blown at room temperature from a port provided at the bottom of the reaction vessel. Chlorination is continued while gradually increasing the temperature. When 5 kg of chlorine is blown, sampling is performed and the chlorine content is measured.
The softening start temperature by DSC was 95%. The reaction temperature was increased to 100 ° C., and chlorination was continued while gradually increasing the temperature. When the reaction temperature reaches 120 ° C, maintain the temperature,
Chlorination was continued while simultaneously blowing chlorine gas and a small amount of oxygen gas, and the reaction was terminated when 6 kg of chlorine was blown.
【0040】実施例1と同様にして後処理と分析を行っ
た。遠心脱水した樹脂の含水率は30%、乾燥した塩化ゴ
ム粉末の塩素含有率は64.8%、平均粒子径は25μmであ
った。トルエンに固形分濃度20%で溶解させると粘度は
6cpであった。Post-processing and analysis were performed as in Example 1. The water content of the centrifugally dehydrated resin was 30%, the chlorine content of the dried chlorinated rubber powder was 64.8%, and the average particle size was 25 μm. When dissolved in toluene at a solid concentration of 20%, the viscosity was 6 cp.
【0041】(実施例5)攪拌機、圧力計、温度計及び
内部注入用バルブを備えた耐圧反応容器に、水100 部、
アクリル酸 3.6部、ポリオキシエチレンアルキルフェニ
ルエーテル硫酸エステル 2.4部、t−ドデシルメルカプ
タン 0.2部、過硫酸カリウム 0.8部、および塩化カリウ
ム 0.8部を加えて密閉しよく攪拌した。次に、反応容器
内に注入バルブを通じてイソプレン80部を添加し、60℃
で12時間、乳化重合反応を行わせた。Example 5 100 parts of water was placed in a pressure-resistant reaction vessel equipped with a stirrer, a pressure gauge, a thermometer, and an internal injection valve.
3.6 parts of acrylic acid, 2.4 parts of polyoxyethylene alkylphenyl ether sulfate, 0.2 parts of t-dodecylmercaptan, 0.8 parts of potassium persulfate and 0.8 parts of potassium chloride were added, and the mixture was tightly closed and stirred well. Next, 80 parts of isoprene was added into the reaction vessel through an injection valve,
For 12 hours to carry out an emulsion polymerization reaction.
【0042】乳化重合したポリイソプレンゴムラテック
ス4kgに水15リットルを加えてよく攪拌し、濃塩酸(36
%)20リットルを加えた。これを実施例1と同じ反応容
器に仕込んだ。窒素ガスで系内をパージした後室温にお
いて、反応容器の底部にもうけた口から塩素ガスを吹き
込んだ。徐々に昇温しながら塩素化を続け、塩素を4kg
吹込んだところでサンプリングし塩素含有率を測定する
と52%、DSCによる軟化開始温度は60℃であった。反
応温度を70℃に上げ、徐々に昇温しながら塩素化を続け
た。反応温度が 120℃になったところで温度を保持して
塩素化を続け、塩素を6kg吹込んだところで反応を終了
した。15 kg of water was added to 4 kg of the emulsion-polymerized polyisoprene rubber latex, and the mixture was stirred well.
%) 20 liters were added. This was charged into the same reaction vessel as in Example 1. After purging the inside of the system with nitrogen gas, at room temperature, chlorine gas was blown through a port formed at the bottom of the reaction vessel. Continue to chlorinate while gradually increasing the temperature, 4 kg of chlorine
When chlorine content was measured by sampling at the point where the gas was blown, the softening start temperature by DSC was 60 ° C. The reaction temperature was raised to 70 ° C., and chlorination was continued while gradually increasing the temperature. When the reaction temperature reached 120 ° C., chlorination was continued while maintaining the temperature, and the reaction was terminated when 6 kg of chlorine was blown.
【0043】実施例1と同様にして後処理と分析を行っ
た。遠心脱水した樹脂の含水率は35%、乾燥した塩化ゴ
ム粉末の塩素含有率は65.0%、平均粒子径は28μmであ
った。トルエンに固形分濃度20%で溶解させると粘度は
20cpであった。Post-processing and analysis were performed as in Example 1. The water content of the centrifugally dehydrated resin was 35%, the chlorine content of the dried chlorinated rubber powder was 65.0%, and the average particle size was 28 μm. When dissolved in toluene at a solid concentration of 20%, the viscosity becomes
It was 20cp.
【0044】(比較例1)天然ゴムラテックス(Soctex
−CC、ハイアンモニアタイプ、固形分60%)3kgにノ
ニオン系界面活性剤(エマノーン3199、花王製)54
gを水1リットルに溶解させた水溶液と水10リットルを
加えてよく攪拌し、濃塩酸(36%)25リットルを加え
た。これを実施例1と同じ反応容器に仕込んだ。Comparative Example 1 Natural rubber latex (Soctex)
Nonionic surfactant (Emanon 3199, manufactured by Kao) in 3 kg of -CC, high ammonia type, solid content 60%) 54
g in 1 liter of water and 10 liters of water were added and stirred well, and 25 liters of concentrated hydrochloric acid (36%) was added. This was charged into the same reaction vessel as in Example 1.
【0045】窒素ガスで系内をパージした後室温におい
て、反応容器の底部にもうけた口から塩素ガスを吹き込
んだ。10℃/時間の速さで徐々に昇温しながら塩素化を
続け、塩素を4kg吹込んだところでサンプリングし塩素
含有率を測定すると55%、DSCによる軟化開始温度は
80℃であった。反応温度を75℃とし、高圧水銀ランプを
点灯して紫外線の照射を開始し徐々に昇温しながら塩素
化を続けた。反応温度が90℃になったところで温度を保
持して塩素化を続けたが、反応液がクリーム状となって
粘度が上昇し塩素ガスの吹込みが難しくなった。塩素ガ
スを少量ずつ間欠的に吹込みながら時間をかけて塩素7
kg吹込んだところで反応を終了した。After purging the inside of the system with nitrogen gas, chlorine gas was blown at room temperature from a port provided at the bottom of the reaction vessel. Chlorination is continued while gradually increasing the temperature at a rate of 10 ° C./hour. When 4 kg of chlorine is blown in, sampling is performed and the chlorine content is measured. The softening start temperature by DSC is 55%.
80 ° C. The reaction temperature was set to 75 ° C., a high-pressure mercury lamp was turned on, irradiation with ultraviolet rays was started, and chlorination was continued while gradually increasing the temperature. When the reaction temperature reached 90 ° C., chlorination was continued while maintaining the temperature, but the reaction solution became creamy and the viscosity increased, making it difficult to blow chlorine gas. Slowly inject chlorine gas little by little and take time
The reaction was terminated when kg was injected.
【0046】実施例1と同様にして後処理と分析を行っ
た。遠心脱水を1時間行った樹脂の含水率は65%であり
乾燥に長時間かかった。乾燥した塩化ゴム粉末の塩素含
有率は67.0%、平均粒子径は3μmであった。トルエン
に固形分濃度20%で溶解させると粘度は40cpであった。Post-processing and analysis were performed as in Example 1. After 1 hour of centrifugal dehydration, the resin had a water content of 65% and took a long time to dry. The chlorine content of the dried chlorinated rubber powder was 67.0%, and the average particle size was 3 μm. When dissolved in toluene at a solid concentration of 20%, the viscosity was 40 cp.
【0047】(比較例2)天然ゴムラテックス(Soctex
−CC、ハイアンモニアタイプ、固形分60%)3kgにノ
ニオン系界面活性剤(エマノーン3199、花王製)54
gを水1リットルに溶解させた水溶液と水10リットルを
加えてよく攪拌し、濃塩酸(36%)25リットルを加え
た。これを実施例1と同じ反応容器に仕込んだ。Comparative Example 2 Natural rubber latex (Soctex)
Nonionic surfactant (Emanon 3199, manufactured by Kao) in 3 kg of -CC, high ammonia type, solid content 60%) 54
g in 1 liter of water and 10 liters of water were added and stirred well, and 25 liters of concentrated hydrochloric acid (36%) was added. This was charged into the same reaction vessel as in Example 1.
【0048】窒素ガスで系内をパージした後60℃の温度
で、反応容器の底部にもうけた口から塩素ガスを吹き込
んだ。10℃/時間の速さで徐々に昇温しながら塩素化を
続けた。塩素を3kg吹込んだところでサンプリングした
が、サンプリング口が詰り気味であった。塩素含有率を
測定すると45%、DSCによる軟化開始温度は60℃であ
った。反応温度を70℃とし、高圧水銀ランプを点灯して
紫外線の照射を開始し徐々に昇温しながら塩素化を続け
た。反応温度が 110℃になったところで温度を保持して
塩素化を続け、塩素を7kg吹込んだところで反応を終了
した。After purging the inside of the system with nitrogen gas, chlorine gas was blown in at a temperature of 60 ° C. from a port provided at the bottom of the reaction vessel. Chlorination was continued while gradually increasing the temperature at a rate of 10 ° C./hour. Sampling was performed when 3 kg of chlorine was blown in, but the sampling port was slightly clogged. When the chlorine content was measured, the softening start temperature by DSC was 60 ° C. The reaction temperature was set to 70 ° C., a high-pressure mercury lamp was turned on, irradiation with ultraviolet rays was started, and chlorination was continued while gradually increasing the temperature. When the reaction temperature reached 110 ° C., chlorination was continued while maintaining the temperature, and the reaction was terminated when 7 kg of chlorine was blown.
【0049】実施例1と同様にして後処理と分析を行っ
た。反応液をロ過したとき数cmの塊が多数あった。遠心
脱水した樹脂の含水率は35%、乾燥した塩化ゴム粉末は
篩い分けして 200メッシュを通過したものを集めた。塩
素含有率は67.0%、平均粒子径は50μmであった。トル
エンに固形分濃度20%で溶解させると粘度は45cpであっ
たが、トルエン溶液は濁っておりトルエンに溶解しない
小さな塊が多数沈澱した。Post-processing and analysis were performed as in Example 1. When the reaction solution was filtered, there were many lumps of several cm. The water content of the centrifugally dehydrated resin was 35%, and the dried chloride rubber powder was sieved and collected after passing through 200 mesh. The chlorine content was 67.0%, and the average particle size was 50 μm. When dissolved in toluene at a solid concentration of 20%, the viscosity was 45 cp. However, the toluene solution was turbid, and many small lumps that did not dissolve in toluene precipitated.
【0050】塩化ゴムの性能試験 実施例1、3、比較例1、2の塩化ゴムおよび溶液法の
塩化ゴム(スーパークロンCR−10(日本製紙(株)
製))を 100部取り、塩パラ(A−40)45部、二酸化チ
タン 125部、安定剤 2.5部、キシレンを加え、混練して
塗料を調整した。塗料調整時に実施例1、3の塩化ゴム
は溶液法の塩化ゴムと同様の扱いやすさであった。比較
例1の塩化ゴムは微粉末が舞い散り周辺が粉で汚れた。
各塗料を無機ジンク塗料を下塗りしたサンドブラスト鋼
板に塗装し、性能を試験した。結果を次の表1に示し
た。 Performance test of chlorinated rubber The chlorinated rubber of Examples 1 and 3 and Comparative Examples 1 and 2 and the chlorinated rubber of the solution method (Supercron CR-10 (Nippon Paper Industries, Ltd.)
100 parts), 45 parts of salt para (A-40), 125 parts of titanium dioxide, 2.5 parts of stabilizer, and xylene were added and kneaded to prepare a paint. When preparing the paint, the chlorinated rubbers of Examples 1 and 3 were as easy to handle as the chlorinated rubber of the solution method. In the case of the chlorinated rubber of Comparative Example 1, the fine powder was scattered and the periphery was soiled with the powder.
Each paint was applied to a sandblasted steel sheet primed with an inorganic zinc paint and tested for performance. The results are shown in Table 1 below.
【0051】[0051]
【表1】 [Table 1]
【0052】表中、脱水性 :遠心脱水の時間
(分)/含水率(%) 取扱いやすさ :塩化ゴム粉末の扱いやすさ 試験方法 接着性 :ゴバン目試験、7日後 塩水噴霧テスト:5%NaCl水を35℃において噴霧、
30日後 耐湿性 :50℃、 100%RH、30日後 耐アルカリ性 :3%NaOH水に浸漬、30日後 促進耐候性 :サンシャインウェザオメーター、 200
時間後 結果は◎、○、△、×、××の5段階で表示した。In the table, dehydration property: time of centrifugal dehydration (minute) / water content (%) Ease of handling: ease of handling of chlorinated rubber powder Test method Adhesion: Goban eye test, 7 days later Salt spray test: 5% NaCl water is sprayed at 35 ° C.,
After 30 days Moisture resistance: 50 ° C, 100% RH, after 30 days Alkali resistance: Immersion in 3% NaOH water, after 30 days Accelerated weathering: Sunshine weatherometer, 200
After time The results were displayed in five stages of ◎, △, Δ, ×, XX.
【0053】[0053]
【発明の効果】本発明の方法では塩素化反応の後半にお
いても塩素化反応速度が低下せず、また反応液性状も悪
化しない。実施例1と比較例1とを比べてみれば明らか
で、比較例1では反応後半において液がクリーム状とな
って反応の進行が遅れるのに対し、本発明を実行した実
施例1では反応がスムーズに進行している。According to the method of the present invention, the chlorination reaction rate does not decrease even in the latter half of the chlorination reaction, and the properties of the reaction solution do not deteriorate. It is clear from a comparison between Example 1 and Comparative Example 1. In Comparative Example 1, the solution became creamy in the latter half of the reaction and the progress of the reaction was delayed, whereas in Example 1 in which the present invention was carried out, the reaction was It is progressing smoothly.
【0054】本発明の方法では得られた塩化ゴムの粒子
径が大きいので、脱水性の向上やハンドリングの向上と
いった効果がある。実施例1〜5と比較例1を比べれば
脱水性の向上効果がはっきりする。実施例1〜5では含
水率が低く乾燥が速いのに対し、比較例1では含水率が
非常に高く脱水性、乾燥性とも劣るものである。さら
に、塩化ゴムの性能試験の項にあるように本発明の塩化
ゴムは従来からある溶液法の塩化ゴムと同様の扱いやす
さであるのに対し、比較例1のものは微粉末でハンドリ
ングが劣る。According to the method of the present invention, the obtained rubber chloride has a large particle diameter, and thus has an effect of improving dehydration and improving handling. When Examples 1 to 5 and Comparative Example 1 are compared, the effect of improving the dewatering property becomes clear. In Examples 1 to 5, the moisture content was low and drying was fast, whereas in Comparative Example 1, the moisture content was very high and both the dehydration property and the drying property were poor. Furthermore, as described in the performance test of the chlorinated rubber, the chlorinated rubber of the present invention is as easy to handle as the chlorinated rubber of the conventional solution method, whereas the chlorinated rubber of Comparative Example 1 is fine powder and can be handled. Inferior.
Claims (6)
え塩素ガスで塩素含有率60〜75%まで水媒中のまま
塩素化する塩化ゴムの製法において、塩素含有率50%
を越え、かつ軟化開始温度が60℃以上になってから、
少なくとも1回、反応系の温度を樹脂の軟化開始温度よ
り高い温度に上げゴム粒子を凝集させて塩素化すること
を特徴とする有機溶剤に溶解する塩化ゴムの製造方法。1. A process for producing a chlorinated rubber in which a surfactant and an acid are added to a rubber latex and chlorinated with a chlorine gas in a water medium to a chlorine content of 60 to 75%.
And after the softening start temperature becomes 60 ° C or more ,
A process for producing a chlorinated rubber dissolved in an organic solvent, wherein the temperature of the reaction system is raised to a temperature higher than the softening start temperature of the resin at least once to agglomerate and chlorinate the rubber particles.
00μm以下である請求項1記載の塩化ゴムの製造方
法。2. An average particle size of the chlorinated rubber is 10 μm or more.
The method for producing a chlorinated rubber according to claim 1, wherein the thickness is not more than 00 µm.
の温度を90℃以上、180℃未満の温度で塩素化する
請求項1又は2記載の塩化ゴムの製造方法。3. The process for producing a chlorinated rubber according to claim 1, wherein the chlorination is carried out at a temperature of 90 ° C. or more and less than 180 ° C. after the chlorine content exceeds 58%.
イソプレンゴムである請求項1〜3のいずれか1項記載
の塩化ゴムの製造方法。4. The method according to claim 1, wherein the rubber latex is a natural rubber or a synthetic polyisoprene rubber.
ある請求項1〜4のいずれか1項記載の塩化ゴムの製造
方法。5. The method for producing a chlorinated rubber according to claim 1, wherein the rubber latex is a depolymerized natural rubber.
を行う請求項1〜5のいずれか1項記載の塩化ゴムの製
造方法。6. The process for producing a chlorinated rubber according to claim 1, wherein depolymerization is performed during or after the chlorination reaction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5267961A JP2715245B2 (en) | 1993-09-30 | 1993-09-30 | Manufacturing method of chlorinated rubber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5267961A JP2715245B2 (en) | 1993-09-30 | 1993-09-30 | Manufacturing method of chlorinated rubber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07102018A JPH07102018A (en) | 1995-04-18 |
JP2715245B2 true JP2715245B2 (en) | 1998-02-18 |
Family
ID=17452002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5267961A Expired - Fee Related JP2715245B2 (en) | 1993-09-30 | 1993-09-30 | Manufacturing method of chlorinated rubber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2715245B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0446905A (en) * | 1990-06-15 | 1992-02-17 | Asahi Denka Kogyo Kk | Production of chlorinated rubber |
JPH0459801A (en) * | 1990-06-29 | 1992-02-26 | Sanyo Kokusaku Pulp Co Ltd | Production of chlorinated rubber |
JPH05202101A (en) * | 1991-11-29 | 1993-08-10 | Asahi Denka Kogyo Kk | Production of chlorinated rubber |
-
1993
- 1993-09-30 JP JP5267961A patent/JP2715245B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0446905A (en) * | 1990-06-15 | 1992-02-17 | Asahi Denka Kogyo Kk | Production of chlorinated rubber |
JPH0459801A (en) * | 1990-06-29 | 1992-02-26 | Sanyo Kokusaku Pulp Co Ltd | Production of chlorinated rubber |
JPH05202101A (en) * | 1991-11-29 | 1993-08-10 | Asahi Denka Kogyo Kk | Production of chlorinated rubber |
Also Published As
Publication number | Publication date |
---|---|
JPH07102018A (en) | 1995-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3640415B2 (en) | Polytetrafluoroethylene micropowder and methods for producing and using them | |
JP5257360B2 (en) | Polytetrafluoroethylene aqueous dispersion and process for producing the same | |
EP2513173B1 (en) | Process for manufacturing a dispersion of a vinylidene fluoride polymer | |
JPS5842607A (en) | Manufacture of aqueous emulsion state high quality vinylidene fluoride polymer | |
GB2430437A (en) | Method of making a fluoropolymer | |
EP1908792B1 (en) | Process for production of coagulated latex particles | |
US5143980A (en) | Method of producing chlorinated rubber | |
JP2715245B2 (en) | Manufacturing method of chlorinated rubber | |
JP2934623B2 (en) | Method for producing hydrogenated acrylonitrile butadiene rubber | |
CA1056542A (en) | Process for forming acrylic elastomer containing interpolymer particles by emulsion polymerization | |
JPS5931523B2 (en) | Methods for producing tetrafluoroethylene homo- and copolymers and methods for using the polymers | |
JPS587401A (en) | Treatment of polymerization reactor | |
JP3215491B2 (en) | Manufacturing method of chlorinated rubber | |
JP2660478B2 (en) | Chlorinated rubber and method for producing the same | |
JP2002220403A (en) | Vinylidene fluoride polymer and its production method | |
EP3093281B1 (en) | Alkali metal salt of perfluoro(vinyloxy polyether) carboxylic acid, and method for producing same | |
US2609365A (en) | Chlorinated polychloroprene latex | |
JPS6050365B2 (en) | Suspension polymerization method of tetrafluoroethylene | |
JP3014410B2 (en) | Method for producing chlorinated polyisoprene | |
JPH0446905A (en) | Production of chlorinated rubber | |
CA1250085A (en) | Polyvinyl chloride suspension polymerization process and product | |
JP3457044B2 (en) | Method for producing thermoplastic resin | |
JP2567287B2 (en) | Chlorinated polyolefin coating composition | |
JPS5834814A (en) | Polymerization of vinylidene fluoride | |
JP2003012717A (en) | Method for producing particles of fluorine-containing copolymer and composition for powder coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |