JP2714851B2 - EDM control device - Google Patents

EDM control device

Info

Publication number
JP2714851B2
JP2714851B2 JP10025489A JP10025489A JP2714851B2 JP 2714851 B2 JP2714851 B2 JP 2714851B2 JP 10025489 A JP10025489 A JP 10025489A JP 10025489 A JP10025489 A JP 10025489A JP 2714851 B2 JP2714851 B2 JP 2714851B2
Authority
JP
Japan
Prior art keywords
electric discharge
machining
discharge machining
state
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10025489A
Other languages
Japanese (ja)
Other versions
JPH0253520A (en
Inventor
祥人 今井
温 森田
哲男 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPH0253520A publication Critical patent/JPH0253520A/en
Application granted granted Critical
Publication of JP2714851B2 publication Critical patent/JP2714851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は放電加工制御装置、特に加工状態を常に最
適に保つ最適制御化に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric discharge machining control device, and more particularly, to an optimal control for keeping a machining state always optimal.

[従来の技術] 第11図は例えば文献「機械技術」(1980年6月号、Vo
l 28、No.7、第25頁〜第27頁)に示された従来の放電加
工制御装置のブロック図である。第11図において、
(1)は放電加工状態の目標値Rを設定する目標値設定
器、(2)は目標値設定器(1)で設定された目標値R
に従って制御される放電加工プロセス(放電現象を含む
放電加工事象)、(3)は加工電極と被加工物との間の
加工間隙を操作量Xaとして、放電加工プロセス(2)を
制御する電極制御系、(4)は放電加工プロセス(2)
の状態を加工間隙の電圧又は加工間隙のインピーダンス
等の状態量Yにより検出する状態検出器、(5)は目標
値設定器(1)に設定された目標値Rと状態検出器
(4)で検出した状態量Yとの偏差Eを出力する比較器
である。
[Prior Art] FIG. 11 shows, for example, the document “Mechanical Technology” (June 1980, Vo
l28, No. 7, pp. 25-27) is a block diagram of the conventional electric discharge machining control device shown in FIG. In FIG. 11,
(1) is a target value setter for setting a target value R in the electric discharge machining state, and (2) is a target value R set by the target value setter (1).
EDM process (EDM event including an electric discharge phenomenon) controlled according to (3) is an electrode control for controlling the EDM process (2) by setting a machining gap between a machining electrode and a workpiece as an operation amount Xa. System, (4) is EDM process (2)
(5) is a target value R set in the target value setting unit (1) and a state detector (4). This is a comparator that outputs a deviation E from the detected state quantity Y.

又、第12図は例えば特公昭62−54602号公報に示され
た上記従来例とは異なる放電加工制御装置のブロック図
である。なお、第12図において、(1)、(2)、
(4)及び(5)は第11図に示した従来例と同じもので
ある。又、(6)は加工間隙に印加される加工電源パル
ス条件を操作量Xbとして放電加工プロセス(2)の状態
を制御する電源制御系である。
FIG. 12 is a block diagram of an electric discharge machining control device different from the above-mentioned conventional example disclosed in, for example, Japanese Patent Publication No. 62-54602. In FIG. 12, (1), (2),
(4) and (5) are the same as the conventional example shown in FIG. (6) is a power supply control system for controlling the state of the electric discharge machining process (2) with the machining power supply pulse condition applied to the machining gap as the operation amount Xb.

次に、上記のように構成された従来の放電加工制御装
置の動作について説明する。
Next, the operation of the conventional electric discharge machining control device configured as described above will be described.

第11図に示した放電加工制御装置においては、放電加
工プロセス(2)の望ましい状態の目標値Rが目標値設
定器(1)に設定されて送り出される。一方、放電加工
プロセス(2)の状態量Yが状態検出器(4)により検
出される。
In the electric discharge machining control device shown in FIG. 11, a target value R in a desirable state of the electric discharge machining process (2) is set in the target value setter (1) and sent out. On the other hand, the state quantity Y of the electric discharge machining process (2) is detected by the state detector (4).

電極制御系(3)は検出された状態量Yが目標値Rと
一致するように操作量Xaを操作し、この操作量Xaにより
放電加工プロセス(2)の状態を制御する。即ち、目標
値Rと検出した状態量Yの偏差Eが零となるような加工
間隙の操作量Xaを電極制御系(3)が実現し、放電加工
プロセス(2)の状態が常に望ましい状態となるように
している。
The electrode control system (3) operates the manipulated variable Xa so that the detected state quantity Y matches the target value R, and controls the state of the electric discharge machining process (2) based on the manipulated variable Xa. That is, the electrode control system (3) realizes the operation amount Xa of the machining gap such that the deviation E between the target value R and the detected state amount Y becomes zero, and the state of the electric discharge machining process (2) is always desirable. I am trying to become.

第13図は加工中に状態量Yとして状態検出器(4)で
検出される極間電圧Vgの波形図である。第13図におい
て、Vaはアーク電圧、tdは無負荷時間である。第13図に
示すように、無負荷時間tdは加工間隙に浮遊する加工く
ずの量や加工面に生じる放電痕の微少な凹凸の影響を受
けて不規則に変動する。
FIG. 13 is a waveform diagram of the inter-electrode voltage Vg detected by the state detector (4) as the state quantity Y during machining. In FIG. 13, Va is the arc voltage, and t d is the no-load time. As shown in FIG. 13, unloading time t d is varied irregularly affected by the minute unevenness of discharge craters generated on the amount and the processing surface of the processing debris floating in the machining gap.

又、第14図はこの加工中の無負荷時間tdのパワースペ
クトラムの一例を示す図である。第14図に示すように、
放電加工プロセス(2)の動特性は数百Hzの周波数帯域
を有する。これに対して、加工間隙を操作量Xaとして操
作する電極制御系(3)の動特性はサーボ系により定ま
り、その応答性は数十Hz程度である。
Further, FIG. 14 is a diagram showing an example of a power spectrum of the unloading time t d during the machining. As shown in FIG.
The dynamic characteristic of the electric discharge machining process (2) has a frequency band of several hundred Hz. On the other hand, the dynamic characteristic of the electrode control system (3) that operates the machining gap as the operation amount Xa is determined by the servo system, and its response is about several tens Hz.

一方、第12図に示した放電加工制御装置においては、
電源制御系(6)が加工電源パルス条件を操作量Xbとし
て、例えばパルス間隔又は放電加工電流を操作し、放電
加工プロセス(2)の状態、即ち放電加工状態が常に望
ましい状態となるようにしている。
On the other hand, in the electric discharge machining control device shown in FIG.
The power supply control system (6) sets the machining power supply pulse condition as the manipulated variable Xb, for example, operates the pulse interval or the electric discharge machining current so that the state of the electric discharge machining process (2), that is, the electric discharge machining state is always in a desirable state. I have.

加工電源パルス条件を操作することは、加工により生
じる加工くずの量を調節することに相当する。
Manipulating the machining power supply pulse conditions corresponds to adjusting the amount of machining waste generated by machining.

従って、放電加工状態の変動が比較的小さい範囲にお
いては、第11図に示した放電加工制御装置に比べて放電
加工状態をきめ細かく、かつ高速に制御することができ
る。
Therefore, in a range where the variation of the electric discharge machining state is relatively small, the electric discharge machining state can be controlled more finely and at a higher speed as compared with the electric discharge machining control device shown in FIG.

[発明が解決しようとする課題] ところで、第11図に示した電極制御系(3)を有する
従来の放電加工制御装置は、電極制御系(3)の応答性
が数十Hz程度であるので、数百Hzの周波数帯域を持つ放
電加工プロセス(2)を十分に制御できないという問題
点があった。
[Problems to be Solved by the Invention] In the conventional electric discharge machining control device having the electrode control system (3) shown in FIG. 11, the response of the electrode control system (3) is about several tens Hz. In addition, there is a problem that the electric discharge machining process (2) having a frequency band of several hundred Hz cannot be sufficiently controlled.

又、第12図に示した電源制御系(6)を有する従来の
放電加工制御装置は、応答性が高いが、一般に制御範囲
が電極制御系(3)に比べて小さく、電源が適切なもの
であっても、放電加工プロセス(2)の大きな変動を十
分に補償できないという問題点があった。
The conventional electric discharge machining control device having the power supply control system (6) shown in FIG. 12 has high responsiveness, but generally has a control range smaller than that of the electrode control system (3) and an appropriate power supply. However, there is a problem that large fluctuations in the electric discharge machining process (2) cannot be sufficiently compensated.

この発明はかかる問題点を解決するためになされたも
ので、同一軸方向に複数の駆動機構を組合せ、それぞれ
の駆動機構を適切に動作させる。
The present invention has been made to solve such a problem, and a plurality of driving mechanisms are combined in the same axial direction to appropriately operate the respective driving mechanisms.

又は電極制御系と電源制御系を適切に動作させて、常
に放電加工プロセスの変動を補償して、放電加工能率の
向上を図ることができる放電加工制御装置を提供するこ
とを目的とする。
Alternatively, an object of the present invention is to provide an electric discharge machining control device capable of appropriately operating an electrode control system and a power supply control system, always compensating for variations in an electric discharge machining process, and improving electric discharge machining efficiency.

[課題を解決するための手段] この発明に係る第1の放電加工制御装置は、目標値設
定器に設定された放電加工状態の制御目標値を状態検出
器で検出した加工中の状態量との偏差が零となるように
電源制御系で加工電源パルス条件の操作を行なう。これ
とともに、指令値設定器で設定された加工電源パルス条
件の指令値と電源制御系により操作される加工電源パル
ス条件の操作量との偏差を偏差積分器で積分し、この積
分値に基づいて電極制御系で加工間隙の操作を行ない、
放電加工状態の変動を補償する。
[Means for Solving the Problems] A first electric discharge machining control device according to the present invention includes a state quantity during machining in which a control target value of an electric discharge machining state set in a target value setting device is detected by a state detector. Of the machining power supply pulse condition in the power supply control system so that the deviation of the power supply becomes zero. At the same time, the deviation between the command value of the machining power supply pulse condition set by the command value setting device and the operation amount of the machining power supply pulse condition operated by the power supply control system is integrated by a deviation integrator, and based on this integrated value, Operate the machining gap with the electrode control system,
Compensates for fluctuations in the EDM state.

又、この発明に係る第2の放電加工制御装置は、同一
軸方向に加工電極及び被加工物のうち少なくとも一方を
移動させるために、周波数特性及び位置決め精度のう
ち、少なくともいずれか一方が異なる複数の駆動機構を
組み合せ、それぞれの駆動機構を適切に動作させること
により、放電加工状態の変動を補償する。
Further, the second electric discharge machining control device according to the present invention includes a plurality of electric discharge machining control devices, each of which has at least one of a frequency characteristic and a positioning accuracy different in order to move at least one of the machining electrode and the workpiece in the same axial direction. By combining these drive mechanisms and operating the respective drive mechanisms appropriately, variations in the electric discharge machining state are compensated.

[作 用] この発明においては、放電加工状態の変動に対して、
電源制御系が加工電源パルス条件を操作しても補償しき
れない変動分を偏差積分器で求め、この変動分を電極制
御系で制御することにより、放電加工状態の変動を適切
に補償する。
[Operation] In the present invention, with respect to the variation of the electric discharge machining state,
Variations that cannot be compensated for even when the power supply control system operates the machining power supply pulse conditions are obtained by the deviation integrator, and the variations are controlled by the electrode control system, so that variations in the electric discharge machining state are appropriately compensated.

又、この発明に係る第2の放電加工制御装置は、同一
軸方向の複数の駆動機構を組合せ、この駆動機構の中で
も高い周波数特性を有する駆動機構を上述の電源制御系
の代わりに動作させ、駆動機構によっても補償しきれな
い変動分を偏差積分器で求め、この変動分を残りの駆動
機構で制御することにより放電加工状態の変動を適切に
補償する。
Further, the second electric discharge machining control device according to the present invention combines a plurality of drive mechanisms in the same axial direction, and operates a drive mechanism having a high frequency characteristic among the drive mechanisms instead of the above-described power supply control system, A variation that cannot be compensated for by the drive mechanism is obtained by the deviation integrator, and the variation is controlled by the remaining drive mechanisms to appropriately compensate for the variation in the electric discharge machining state.

[実施例] 第1図はこの発明の一実施例に係る放電加工制御装置
のブロック図である。なお、第1図において、(1)〜
(6)は第11図及び第12図に示した従来例と全く同じも
のであり、電源制御系(6)は第12図に示した従来例と
同様に目標値設定器(1)に設定された放電加工状態の
制御目標値Rと状態検出器(4)で検出された放電加工
プロセス(2)の状態量との偏差Eを状態比較器(5)
から受けて、放電加工電源パルス条件の制御量Xbを操作
する。
FIG. 1 is a block diagram of an electric discharge machining control device according to one embodiment of the present invention. In FIG. 1, (1) to (1)
(6) is exactly the same as the conventional example shown in FIGS. 11 and 12, and the power supply control system (6) is set in the target value setter (1) as in the conventional example shown in FIG. The deviation E between the control target value R of the detected electric discharge machining state and the state quantity of the electric discharge machining process (2) detected by the state detector (4) is compared with the state comparator (5).
To control the control amount Xb of the electric discharge machining power supply pulse condition.

又、第1図において、(7)は加工電源パルス条件の
指令値Rvを設定する指令値設定器、(8)は指令値設定
器(7)から出力される指令値Rvと電源制御系(6)に
より操作される加工電源パルス条件の制御量Xbとの偏差
Evを出力する比較器、(9)は比較器(8)が出力する
偏差Evを積分する偏差積分器である。偏差積分器(9)
が積分した偏差Evの積分値Mは電極制御系(3)に出力
される。
In FIG. 1, (7) is a command value setting device for setting a command value Rv of the machining power supply pulse condition, and (8) is a command value Rv output from the command value setting device (7) and a power control system ( 6) Deviation of machining power supply pulse condition operated by 6) from control amount Xb
A comparator that outputs Ev, and (9) is a deviation integrator that integrates the deviation Ev output by the comparator (8). Deviation integrator (9)
Is output to the electrode control system (3).

ところで、上記のように構成された放電加工制御装置
における各系のパワースペクトラムは第2図に示すよう
になっている。第2図において、(2f)は放電加工プロ
セス(2)の周波数特性、(3f)は電極制御系(3)の
周波数特性、(6f)は電源制御系(6)の周波数特性で
ある。第2図に示すように、放電加工プロセス(2)の
周波数特性(2f)は数十Hzから数百Hzまでの周波数帯域
を有し、電極制御系(3)の周波数特性(3f)は数十Hz
の周波数帯域を有し、電源制御系(6)の周波数帯域
(6f)は数百Hzの周波数帯域を有する。
By the way, the power spectrum of each system in the electric discharge machining control device configured as described above is as shown in FIG. In FIG. 2, (2f) shows the frequency characteristics of the electric discharge machining process (2), (3f) shows the frequency characteristics of the electrode control system (3), and (6f) shows the frequency characteristics of the power supply control system (6). As shown in FIG. 2, the frequency characteristic (2f) of the electric discharge machining process (2) has a frequency band from several tens Hz to several hundred Hz, and the frequency characteristic (3f) of the electrode control system (3) is several 10Hz
And the frequency band (6f) of the power supply control system (6) has a frequency band of several hundred Hz.

従って、電源制御系(6)の周波数特性(6f)は数百
Hzまでの周波数帯域を有しているので、電極制御系
(3)よりも放電加工プロセスの変動を補償するには有
利である。
Therefore, the frequency characteristic (6f) of the power supply control system (6) is several hundreds.
Since it has a frequency band up to Hz, it is more advantageous than the electrode control system (3) for compensating for variations in the electric discharge machining process.

そこで、目標値設定器(1)で設定した目標値Rと状
態検出器(4)で検出した状態量Yとの偏差Eが零とな
るように電源制御系(6)を作動させて、加工電源パル
ス条件の操作量Xbを操作して、放電加工状態の変動を補
償する。
Therefore, the power supply control system (6) is operated so that the deviation E between the target value R set by the target value setter (1) and the state quantity Y detected by the state detector (4) becomes zero, and machining is performed. By manipulating the manipulated variable Xb of the power pulse condition, the fluctuation of the electric discharge machining state is compensated.

一方、電源制御系(6)だけで放電加工状態の変動を
補償しようとすると、加工とともに加工間隙の距離が大
きくなっていく場合、又は加工とともに生成される加工
くずの量が急増していく場合等に、加工電源パルス条件
の操作量Xbは電源制御系(6)で操作できる最大値又は
最小値を連続的に取ることとなる。
On the other hand, if it is attempted to compensate for the variation of the electric discharge machining state only by the power supply control system (6), the distance of the machining gap increases with machining, or the amount of machining waste generated with machining sharply increases. For example, the operation amount Xb of the processing power supply pulse condition continuously takes the maximum value or the minimum value that can be operated by the power supply control system (6).

このため、放電加工状態の小さな変動は補償できる
が、大きな変動に対しては十分な補償効果が得られなく
なる。
For this reason, although a small change in the electric discharge machining state can be compensated, a sufficient compensation effect cannot be obtained for a large change.

そこで、指令値設定器(7)で設定される加工電源パ
ルス条件の指令値Rvと電源制御系(6)により操作され
る加工電源パルス条件の操作量Xbとの偏差Evを求め、こ
の偏差Evを偏差積分器(9)で積分して得た積分値Mを
電極制御系(3)に出力する。電極制御系(3)は積分
値Mから加工電極と被加工物間の距離を可変する操作量
Xaを操作し、電源制御系(6)では補償しきれない放電
加工状態の大きな変動を速やかに補償する。
Therefore, a deviation Ev between the command value Rv of the machining power pulse condition set by the command value setting device (7) and the manipulated variable Xb of the machining power pulse condition operated by the power control system (6) is obtained. Is integrated by a deviation integrator (9), and the integrated value M is output to an electrode control system (3). The electrode control system (3) is a manipulated variable for varying the distance between the machining electrode and the workpiece from the integral value M.
By operating Xa, large fluctuations in the electric discharge machining state that cannot be completely compensated by the power supply control system (6) are promptly compensated.

このように構成された電源制御系(6)と電極制御系
(3)とは相互に協調して、放電加工状態の変動を補償
するため、放電加工状態が数百Hzの周波数帯域で変動す
る場合、又は大きく変動する場合にも、常に安定した放
電加工状態を維持することができる。
The power supply control system (6) and the electrode control system (3) thus configured cooperate with each other to compensate for the variation in the electric discharge machining state, so that the electric discharge machining state varies in a frequency band of several hundred Hz. In this case, or even in the case of large fluctuation, a stable electric discharge machining state can be always maintained.

なお、本実施例においては、電極制御系(3)は直接
偏差積分器(9)からの積分値Mを受けて操作量Xaを操
作する場合について説明したが、第3図に示すように積
分値Mを信号処理フィルタ(10)によりフィルタリング
した後に電極制御系(3)に送っても良い。
In the present embodiment, the case where the electrode control system (3) directly manipulates the manipulated variable Xa by receiving the integral value M from the deviation integrator (9) has been described. However, as shown in FIG. The value M may be sent to the electrode control system (3) after being filtered by the signal processing filter (10).

この信号処理フィルタ(10)は第2図に示した電極制
御系(3)の周波数特性(3f)を考慮して、第4図に示
すように周波数特性(10f)を有するローパスフィルタ
とし、電極制御系(3)が適切な動作を行なうようにす
る。
The signal processing filter (10) is a low-pass filter having a frequency characteristic (10f) as shown in FIG. 4 in consideration of the frequency characteristic (3f) of the electrode control system (3) shown in FIG. The control system (3) performs an appropriate operation.

なお、このローパスフィルタは線形フィルタであるFI
Rディジタルフィルタ、IIRディジタルフィルタ、非線形
のε−分離ディジタルフィルタ又はオペアンプ等を利用
したアナログフィルタで構成しても良い。
This low-pass filter is a linear filter FI
An R digital filter, an IIR digital filter, a nonlinear ε-separated digital filter, or an analog filter using an operational amplifier or the like may be used.

又、電極制御系(3)に複数の駆動機構(3a)、(3
b)、…、(3n)を有するときは、第5図に示すように
各駆動機構(3a)、(3b)、…、(3n)に対応してフィ
ルタ(10a1)、(10a2)、…、(10an)を設けることに
より、各駆動機構(3a)〜(3n)に適した操作量を得る
ようにする。
In addition, the electrode control system (3) has a plurality of drive mechanisms (3a), (3
b), ..., (3n), the filters (10a1), (10a2), ... corresponding to the driving mechanisms (3a), (3b), ..., (3n) as shown in FIG. , (10an), an operation amount suitable for each of the driving mechanisms (3a) to (3n) is obtained.

この場合、フィルタ(10a1)〜(10a2)は第6図に示
す各駆動機構(3a)〜(3n)の周波数特性(3af)〜(3
nf)を考慮し、かつ相互干渉を避けるため、第7図に示
すような周波数特性(10f1)〜(10fn)を有するものを
使用する。
In this case, the filters (10a1) to (10a2) are frequency characteristics (3af) to (3af) of the driving mechanisms (3a) to (3n) shown in FIG.
In order to take into account nf) and to avoid mutual interference, one having frequency characteristics (10f1) to (10fn) as shown in FIG. 7 is used.

さらに、複数の駆動機構(3a)〜(3n)のいずれか一
つの周波数特性が、従来の放電加工機における電極制御
系の周波数特性より高帯域であり、前述の電源制御系の
周波数特性にほぼ近いときは、第1図の構成における電
源制御系(6)をこの駆動機構に変えても同様な作用を
奏する。
Further, the frequency characteristic of any one of the plurality of driving mechanisms (3a) to (3n) is higher than the frequency characteristic of the electrode control system in the conventional electric discharge machine, and substantially equal to the frequency characteristic of the power supply control system described above. When they are close to each other, the same operation is achieved even if the power supply control system (6) in the configuration of FIG.

次に、第8図は本発明の他の実施例に係る放電加工制
御装置のブロック図である。なお、第8図において、
(1)〜(5)、(7)〜(9)は第1図に示した実施
例と全く同じものである。
Next, FIG. 8 is a block diagram of an electric discharge machining control device according to another embodiment of the present invention. In FIG. 8,
(1) to (5) and (7) to (9) are exactly the same as the embodiment shown in FIG.

ところで、放電加工機は加工電極と被加工物とを相対
的に移動させることにより、被加工物を所望の形状に加
工するものであるが、加工電極又は被加工物のうち少な
くとも一方を、同一軸方向に移動させる複数の駆動機構
を組み合わせた駆動系で構成することがある。
By the way, an electric discharge machine is to machine a workpiece into a desired shape by relatively moving a machining electrode and a workpiece. At least one of the machining electrode and the workpiece is the same. In some cases, the drive system is configured by a drive system in which a plurality of drive mechanisms that move in the axial direction are combined.

この場合、各駆動機構において、その周波数特性及び
位置決め精度のうち少なくともいずれか一方が異なって
いることがある。例えば、第1の駆動機構は主に放電加
工状態の変動を素早く補償するために、駆動範囲が小さ
いが高い応答性を持つ機構、第2の駆動機構は主に加工
の進行に伴っての加工電極送りのために、応答性が低い
が大きい駆動範囲を持つ機構とする場合や、第1の駆動
機構は位置決め精度が粗いが大きい駆動範囲を持つ機
構、第2の駆動機構は駆動範囲が小さいが高い位置決め
精度を持つ機構とする場合である。
In this case, at least one of the frequency characteristics and the positioning accuracy may be different in each drive mechanism. For example, the first drive mechanism mainly has a small drive range but has a high responsiveness in order to quickly compensate for fluctuations in the electric discharge machining state, and the second drive mechanism mainly has the machining that proceeds with the progress of machining. A mechanism having a low response but a large drive range for electrode feeding, a mechanism having a large drive range with a coarse positioning accuracy for the first drive mechanism, and a mechanism having a small drive range for the second drive mechanism Is a mechanism having a high positioning accuracy.

そのようなときは、第1図に示した放電加工制御装置
では放電加工状態の変動を補償できないことがある。
In such a case, the electric discharge machining control device shown in FIG. 1 may not be able to compensate for variations in the electric discharge machining state.

そこで、本実施例では周波数特性及び位置決め精度の
うち少なくともいずれか一方が異なっており、同一軸方
向に移動させる複数の駆動機構を組み合せた駆動系で構
成された電極制御系を有する放電加工制御装置による放
電加工状態の変動を補償できるようにした。
Therefore, in this embodiment, at least one of the frequency characteristic and the positioning accuracy is different, and the electric discharge machining control device has an electrode control system configured by a driving system in which a plurality of driving mechanisms for moving in the same axial direction are combined. To compensate for fluctuations in the state of electrical discharge machining due to

このため、偏差積分器(9)は目標値設定器(1)に
より設定した制御目標値と状態検出器(4)が検出した
状態量との偏差を、電極制御系(3)を構成する一方の
駆動機構(3a)の制御指令として加えた際に操作される
加工間隙と、指令値設定器(7)により指令した指令値
Rvとの偏差Evを積分し、その積分値Mを他方の駆動機構
(3b)の制御指令として出力する。
Therefore, the deviation integrator (9) uses the deviation between the control target value set by the target value setter (1) and the state quantity detected by the state detector (4) to form an electrode control system (3). Gap that is operated when it is added as a control command for the drive mechanism (3a) of the above, and the command value that is commanded by the command value setter (7)
The deviation Ev from Rv is integrated, and the integrated value M is output as a control command for the other drive mechanism (3b).

このように構成することにより、電極制御系(3)が
同一軸方向に加工電極又は被加工物を移動するために、
周波数特性及び位置決め精度の少なくともいずれか一方
が異なる複数の駆動機構を組合せた駆動系で構成された
場合にも、各駆動機構の周波数特性と制御範囲を考慮し
て信号処理フィルタ(10)を構成することにより、上記
実施例と同様な作用を奏することができる。
With this configuration, the electrode control system (3) moves the machining electrode or the workpiece in the same axial direction.
Even in the case of a drive system combining a plurality of drive mechanisms different in at least one of frequency characteristics and positioning accuracy, the signal processing filter (10) is configured in consideration of the frequency characteristics and control range of each drive mechanism. By doing so, the same operation as in the above embodiment can be achieved.

なお、本実施例においては積分値Mを直接駆動機構
(3b)に出力しているが、第9図に示すように積分値M
を信号処理フィルタ(10)によりフィルタリングした後
に駆動機構(3b)に送っても良い。
In this embodiment, the integral value M is directly output to the drive mechanism (3b). However, as shown in FIG.
May be sent to the drive mechanism (3b) after being filtered by the signal processing filter (10).

又、第9図に示した実施例では、2つの駆動機構(3
a)及び(3b)から構成された電極制御系(3)につい
て説明したが、第10図に示すようにn個の駆動機構(3
a)〜(3n)から構成された電極制御系(3)を有する
放電加工制御装置であっても、各駆動機構(3b)〜(3
n)に適した操作量を得ることができる。
In the embodiment shown in FIG. 9, two drive mechanisms (3
Although the electrode control system (3) composed of (a) and (3b) has been described, as shown in FIG.
Each of the driving mechanisms (3b) to (3) can be used even in an electric discharge machining control device having an electrode control system (3) composed of (a) to (3n).
An operation amount suitable for n) can be obtained.

[発明の効果] この発明は以上説明したように、放電加工状態の変動
を電源制御系で加工電源パルス条件を操作して補償する
とともに、電源制御系では補償しきれない変動分を偏差
積分器で求め、この変動分を電極制御系で補償するよう
にし、 又は、同一軸方向に加工電極又は被加工物を移動する
ために、少なくとも周波数特性及び位置決め精度の一方
が異なる複数の駆動機構を組合せ、それぞれの駆動機構
を上述と同様な構成により動作させ、放電加工状態の変
動を補償するようにしたので、 常に安定な放電加工状態を維持することができ、放電
加工能率を格段と向上させることができる効果を有す
る。
[Effects of the Invention] As described above, the present invention compensates for fluctuations in the state of electric discharge machining by manipulating machining power supply pulse conditions in a power supply control system, and also uses a deviation integrator to compensate for fluctuations that cannot be completely compensated for in a power supply control system. In order to move the machining electrode or the workpiece in the same axis direction, a combination of a plurality of drive mechanisms that differ in at least one of the frequency characteristics and the positioning accuracy is used. Since each drive mechanism is operated with the same configuration as above to compensate for fluctuations in the electric discharge machining state, a stable electric discharge machining state can be always maintained, and the electric discharge machining efficiency can be significantly improved. It has the effect that can be.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例に係る放電加工制御装置の
ブロック図、第2図は第1図に示した放電加工制御装置
の各部の周波数特性図、第3図、第5図、第8図、第9
図及び第10図はこの発明の他の実施例に係る放電加工制
御装置のブロック図、第4図は第3図に示した放電加工
制御装置の信号処理フィルタの周波数特性図、第6図は
第5図に示した放電加工制御装置の電極制御系の周波数
特性図、第7図は第5図に示した放電加工制御装置の信
号処理フィルタの周波数特性図、第11図及び第12図は従
来の放電加工制御装置のブロック図、第13図は第11図に
示した従来の放電加工制御装置の極間電圧の波形図、第
14図は第11図に示した従来の放電加工制御装置の周波数
特性図である。 各図中、1は目標値設定器、2は放電加工プロセス、3
は電極制御系、4は状態検出器、6は電源制御系、7は
指令値設定器、9は偏差積分器、10は信号処理フィルタ
である。 なお、各図中同一符号は同一又は相当部分を示すもので
ある。
FIG. 1 is a block diagram of an electric discharge machining control device according to an embodiment of the present invention, FIG. 2 is a frequency characteristic diagram of each part of the electric discharge machining control device shown in FIG. 1, FIG. 3, FIG. Fig. 8, ninth
FIG. 10 and FIG. 10 are block diagrams of an electric discharge machining control device according to another embodiment of the present invention, FIG. 4 is a frequency characteristic diagram of a signal processing filter of the electric discharge machining control device shown in FIG. 3, and FIG. FIG. 7 is a frequency characteristic diagram of an electrode control system of the electric discharge machining control device shown in FIG. 5, FIG. 7 is a frequency characteristic diagram of a signal processing filter of the electric discharge machining control device shown in FIG. 5, FIG. FIG. 13 is a block diagram of a conventional electric discharge machining control device, FIG. 13 is a waveform diagram of a gap voltage of the conventional electric discharge machining control device shown in FIG. 11, and FIG.
FIG. 14 is a frequency characteristic diagram of the conventional electric discharge machining control device shown in FIG. In each figure, 1 is a target value setter, 2 is an electric discharge machining process, 3
Is an electrode control system, 4 is a state detector, 6 is a power control system, 7 is a command value setting device, 9 is a deviation integrator, and 10 is a signal processing filter. Note that the same reference numerals in the drawings indicate the same or corresponding parts.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】放電加工状態の制御目標値を設定する目標
値設定器と、加工電極と被加工物との間の加工間隙に印
加される加工電源パルス条件の指令値を設定する指令値
設定器と、前記制御目標値と加工電源パルス条件に従っ
て制御される放電加工の状態量を検出する状態検出器
と、前記制御目標値と状態量との偏差に基づいて、加工
電源パルス条件を操作量として放電加工状態を制御する
電源制御系と、前記加工電源パルス条件の指令値と電源
制御系が出力する操作量との偏差を積分する偏差積分器
と、該偏差積分器の積分値から加工間隙を操作量とし
て、放電加工状態を制御する電極制御系と、を備えたこ
とを特徴とする放電加工制御装置。
A target value setting device for setting a control target value in an electric discharge machining state, and a command value setting for setting a command value of a machining power supply pulse condition applied to a machining gap between a machining electrode and a workpiece. A state detector for detecting a state quantity of electric discharge machining controlled according to the control target value and the machining power supply pulse condition; and a machining power supply pulse condition based on a deviation between the control target value and the state quantity. A power control system for controlling an electric discharge machining state, a deviation integrator for integrating a deviation between a command value of the machining power pulse condition and an operation amount output by the power control system, and a machining gap based on an integral value of the deviation integrator. And an electrode control system for controlling an electric discharge machining state with the operation amount as an operation amount.
【請求項2】放電加工状態の制御目標値を設定する目標
値設定器と、該制御目標値に従って制御される放電加工
の状態量を検出する状態検出器と、加工電極と被加工物
との間の加工間隙の指令値を設定する指令値設定器と、
周波数特性及び位置決め精度のうち、少なくともいずれ
か一方が異なり、加工電極及び被加工物のうち少なくと
も一方を、同一軸方向に移動させる複数の駆動機構を組
み合せた駆動系で構成された電極制御系と、前記制御目
標値と状態量の偏差を、該電極制御系を構成する少なく
とも1つの駆動系の制御指令として加えた際に操作され
る加工間隙と、前記指令値との偏差を積分し、該積分値
を前記駆動系を除いた残りの駆動系の制御指令とする偏
差積分器と、を備えたことを特徴とする放電加工制御装
置。
2. A target value setter for setting a control target value of an electric discharge machining state, a state detector for detecting a state quantity of electric discharge machining controlled according to the control target value, A command value setting device for setting a command value of a machining gap between;
At least one of the frequency characteristics and the positioning accuracy is different, and at least one of the processing electrode and the workpiece is an electrode control system configured by a driving system in which a plurality of driving mechanisms for moving in the same axial direction are combined. Integrating the deviation between the command value and the machining gap operated when adding a deviation between the control target value and the state quantity as a control command for at least one drive system constituting the electrode control system; An electric discharge machining control device, comprising: a deviation integrator that uses an integral value as a control command for a drive system other than the drive system.
JP10025489A 1988-05-27 1989-04-21 EDM control device Expired - Fee Related JP2714851B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-128480 1988-05-27
JP12848088 1988-05-27

Publications (2)

Publication Number Publication Date
JPH0253520A JPH0253520A (en) 1990-02-22
JP2714851B2 true JP2714851B2 (en) 1998-02-16

Family

ID=14985779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10025489A Expired - Fee Related JP2714851B2 (en) 1988-05-27 1989-04-21 EDM control device

Country Status (1)

Country Link
JP (1) JP2714851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6788019B2 (en) 2000-09-20 2004-09-07 Mitsubishi Denki Kabushiki Kaisha Electric discharge machining device and electric discharge machining method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3073621B2 (en) * 1993-02-05 2000-08-07 ファナック株式会社 EDM control method
JP5372252B2 (en) * 2010-06-22 2013-12-18 三菱電機株式会社 Electric discharge machining control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6788019B2 (en) 2000-09-20 2004-09-07 Mitsubishi Denki Kabushiki Kaisha Electric discharge machining device and electric discharge machining method

Also Published As

Publication number Publication date
JPH0253520A (en) 1990-02-22

Similar Documents

Publication Publication Date Title
US4049942A (en) Electric discharge machining method and device with preset electrode feed
JPH03107456A (en) Film forming device
JPS5815476A (en) Speed controlling system for motor
JP2714851B2 (en) EDM control device
KR0164629B1 (en) Method and apparatus for discharge machining control
JP2578357B2 (en) EDM control device
JPS6254609B2 (en)
JPS6211968B2 (en)
JP3736118B2 (en) Electric discharge machining control method and control apparatus
JP2714789B2 (en) Electric discharge machine
SU1168386A1 (en) Power head feed drive
JPH0236017A (en) Servo control of electric discharge machine
JPH0726414B2 (en) Excavator speed control device
SU1758260A1 (en) Power plant control method
JPH056224A (en) Drive controller
EP1283084A4 (en) Electric discharge machine and method of electric discharge machining
JPH0638530A (en) Dc power source with feedforward control function
RU1794009C (en) Method for regulation of saw feed rate in sawing timber and device for its realization
SU709294A2 (en) Apparatus for automatic regulating of fusion welding depth
SU1578798A1 (en) Dc electric drive
JPS6294248A (en) Numerical control device
SU913541A1 (en) Device for control of dc electric motor speed of rolling production mechanism
SU1725358A1 (en) Digital electric drive
SU836746A1 (en) Mission
SU1762423A1 (en) Device for automatic controlling electron-beam thermal unit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20071107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees