JP2714065B2 - Refrigeration cycle for low temperature - Google Patents
Refrigeration cycle for low temperatureInfo
- Publication number
- JP2714065B2 JP2714065B2 JP63283647A JP28364788A JP2714065B2 JP 2714065 B2 JP2714065 B2 JP 2714065B2 JP 63283647 A JP63283647 A JP 63283647A JP 28364788 A JP28364788 A JP 28364788A JP 2714065 B2 JP2714065 B2 JP 2714065B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- liquid
- compressor
- condenser
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Rotary Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非共沸混合冷媒を用いた低温用冷凍サイクル
において、圧縮機から吐出される冷媒の温度上昇を防止
するのに好適な低温用冷凍サイクルに関する。The present invention relates to a low-temperature refrigeration cycle using a non-azeotropic refrigerant mixture, which is suitable for preventing a rise in temperature of refrigerant discharged from a compressor. It relates to a refrigeration cycle.
従来の装置は、特開昭59−217458号公報に記載のよう
に非共沸混合冷媒を封入した冷凍サイクルにおいて、凝
縮器の中間部から冷媒を抽出し、この冷媒が圧縮機の圧
縮室内へインジエクシヨンされ、液化した冷媒が気化す
る際に圧縮機より熱を奪い圧縮機を冷却するようになつ
ていた。A conventional apparatus extracts a refrigerant from an intermediate portion of a condenser in a refrigeration cycle in which a non-azeotropic mixed refrigerant is sealed as described in JP-A-59-217458, and the refrigerant is introduced into a compression chamber of a compressor. When the refrigerant that has been injected and liquefied evaporates, heat is taken from the compressor to cool the compressor.
上記従来技術は、圧縮機の圧縮室への液冷媒供給管が
凝縮器の途中から分岐された分岐管よりとられている。
この場合、凝縮器へ流入した非共沸混合冷媒は、通常は
伝熱管内を流れながら冷却されて主に低圧冷媒が液化さ
れ、この液冷媒と高圧冷媒割合の大きいガス状態の冷媒
が共存した状態のいわゆる二相流状態となつているが、
このような液、ガスの二相状態の流動様式は複雑な流れ
となるため、安定して液冷媒を圧縮室内へ供給できな
い。特に、凝縮器の冷却媒体である冷却水や空気などの
温度変動等、凝縮器負荷の変動があつた場合には、冷媒
液化量が少なくなりガス冷媒割合の大きい冷媒状態とな
る場合がある。このような状態になると圧縮室内へ供給
される液冷媒量も少なくなり、吐出ガス温度上昇をまね
き、圧縮機の冷却効果が悪くなるなどの問題があつた。In the above prior art, the liquid refrigerant supply pipe to the compression chamber of the compressor is taken from a branch pipe branched from the middle of the condenser.
In this case, the non-azeotropic mixed refrigerant that has flowed into the condenser is usually cooled while flowing in the heat transfer tube, and mainly the low-pressure refrigerant is liquefied, and the liquid refrigerant and the refrigerant in the gas state having a large ratio of the high-pressure refrigerant coexisted. The state is a so-called two-phase flow state,
Since the liquid and gas flow in a two-phase state is a complicated flow, the liquid refrigerant cannot be stably supplied to the compression chamber. In particular, when there is a change in the condenser load such as a change in the temperature of the cooling water or air serving as the cooling medium of the condenser, the refrigerant liquefaction amount is reduced, and the refrigerant may be in a state of a large gas refrigerant ratio. In such a state, the amount of the liquid refrigerant supplied to the compression chamber is reduced, which causes an increase in the temperature of the discharge gas, and the cooling effect of the compressor is deteriorated.
また、冷凍サイクル用圧縮機としては、往復動式やロ
ータリ式のものも考えられるが、これらの圧縮機では周
知のように圧縮室内へ液インジエクシヨンするために設
けられる連通穴にかかる圧力の変動が大きい。また、液
圧縮が生じる場合も考えられる。このため往復動式やロ
ータリ式の圧縮機では、安定した液インジエクシヨンを
行うのが難しく、信頼性の面から問題がある。即ち、液
インジエクシヨンのための液冷媒取出し口と圧縮室内の
圧力との差圧変動が大きいと、液インジエクシヨン量も
変動し、主回路を流れる冷媒量の変動も大きくなる。こ
の結果、特に非共沸混合冷媒を用いた低温用サイクルの
場合には、サイクル各部の冷媒割合に変化が生じ、不安
定な運転状態となる。また、往復動式圧縮機を用いたサ
イクルでは、液が圧縮室へ流入すると吐出弁を破壊する
危険性が大きくなる。In addition, reciprocating or rotary type compressors are also conceivable as refrigerating cycle compressors, but in these compressors, as is well known, fluctuations in pressure applied to a communication hole provided for liquid injection into a compression chamber are known. large. It is also conceivable that liquid compression occurs. Therefore, it is difficult for a reciprocating compressor or a rotary compressor to perform stable liquid injection, and there is a problem in terms of reliability. That is, if the pressure difference between the liquid refrigerant outlet for the liquid injection and the pressure in the compression chamber is large, the amount of liquid injection also fluctuates, and the amount of refrigerant flowing through the main circuit also fluctuates. As a result, especially in the case of a low-temperature cycle using a non-azeotropic refrigerant mixture, the ratio of refrigerant in each part of the cycle changes, resulting in an unstable operation state. Further, in a cycle using a reciprocating compressor, when liquid flows into the compression chamber, the risk of breaking the discharge valve increases.
本発明の目的は、非共沸混合冷媒を使用した低温用冷
凍サイクルにおいて、常に安定して液冷媒を圧縮機の圧
縮室へ供給することにより、圧縮機の冷却効果が十分に
得られ、安定した運転状態が得られる信頼性の高い低温
用冷凍サイクルを提供することにある。An object of the present invention is to provide a liquid refrigerant to a compression chamber of a compressor in a low-temperature refrigeration cycle using a non-azeotropic mixed refrigerant. It is an object of the present invention to provide a low-temperature refrigeration cycle with high reliability in which a stable operating state can be obtained.
上記目的を達成するために、本発明は、非共沸混合冷
媒を用い、圧縮機、蒸発器、複数の凝縮器、複数の膨張
装置、複数の冷媒分離器を有し、非共沸混合冷媒を複数
の凝縮器のそれぞれで順次凝縮すると共に凝縮液を冷媒
分離器で分離し、蒸発器へ供給する低温用冷凍サイクル
において、圧縮機として用いられるスクロール式圧縮機
と、複数ある冷媒分離器と膨張装置とを接続する液配管
のそれぞれの途中から温度の異なる液冷媒を取り出し、
スクロール式圧縮機へ連通する液インジェクション配管
とを備えたものである。To achieve the above object, the present invention uses a non-azeotropic mixed refrigerant, comprising a compressor, an evaporator, a plurality of condensers, a plurality of expansion devices, and a plurality of refrigerant separators. In a low-temperature refrigeration cycle for sequentially condensing the condensed liquid in each of a plurality of condensers and separating the condensed liquid by a refrigerant separator, and supplying the condensed liquid to an evaporator, a scroll compressor used as a compressor, Take out liquid refrigerants with different temperatures from the middle of each of the liquid pipes connecting the expansion device,
And a liquid injection pipe communicating with the scroll compressor.
圧縮機をスクロール式圧縮機とすることにより液イン
ジェクション用の穴に加わる圧力変動、液インジェクシ
ョン用取り出し口の圧力と圧縮室内の圧力差の変動を小
さくできる。さらに、液インジェクション用液冷媒は複
数ある液配管のそれぞれの途中から温度の異なる液冷媒
として取り出されるので、上流側にある凝縮器で空気や
水などにより冷却媒体が温度変化して凝縮器の負荷が変
化しこの凝縮器で冷媒の液化量が少なくなっても、さら
に下流側の凝縮器で上流側の凝縮器で液化できなかった
冷媒も液化され、スクロール式圧縮機の圧縮室内へ供給
される。By using a scroll compressor as the compressor, fluctuations in pressure applied to the liquid injection hole, fluctuations in the pressure of the liquid injection outlet and the pressure difference in the compression chamber can be reduced. Furthermore, since the liquid refrigerant for liquid injection is taken out as a liquid refrigerant having a different temperature from the middle of each of the plurality of liquid pipes, the temperature of the cooling medium changes due to air or water in the condenser on the upstream side, and the load on the condenser is reduced. Changes, and the amount of refrigerant liquefied in this condenser is reduced, the refrigerant that could not be liquefied in the upstream condenser in the further downstream condenser is also liquefied and supplied to the compression chamber of the scroll compressor. .
よって、液インジェクションのための駆動力となる圧
力が安定し、凝縮器の負荷が変化しても十分な液インジ
ェクション用液冷媒が確保されるので、吐出ガス温度の
上昇を防止し、圧縮機の冷却を良好に行うことができ
る。Therefore, the pressure serving as a driving force for liquid injection is stabilized, and a sufficient liquid refrigerant for liquid injection is secured even if the load on the condenser changes, preventing the discharge gas temperature from rising and preventing the compressor from operating. Cooling can be performed well.
以下、本発明の一実施例を図により説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
第1図のサイクルは、圧縮機1,凝縮器2,第1カスケー
ド凝縮器3,第2カスケード凝縮器4,蒸発器5,第I膨張装
置6,第II膨張装置7,第III膨張装置8,第I冷媒分離器9,
第II冷媒分離器10などの主構成要素機器が配管で連結さ
れている。サイクルには3種類の非共沸混合冷媒が封入
されているとし、各々の冷媒のうち最も沸点の高い冷媒
を高沸点冷媒、最も沸点の低い冷媒を低沸点冷媒、これ
らの中間沸点の冷媒を中間沸点冷媒と呼び、以下にサイ
クルの動作について説明する。The cycle of FIG. 1 includes a compressor 1, a condenser 2, a first cascade condenser 3, a second cascade condenser 4, an evaporator 5, an I-expansion device 6, a II-expansion device 7, and a III-expansion device 8. , The first refrigerant separator 9,
Main component devices such as the second refrigerant separator 10 are connected by piping. It is assumed that three types of non-azeotropic mixed refrigerants are enclosed in the cycle. The operation of the cycle will be described below.
圧縮機に吸入される非共沸混合冷媒は、ここで圧縮さ
れて高温高圧の冷媒ガスとなり凝縮器2へ流入する。凝
縮器2では水や空気などの冷却媒体により冷却されるこ
とにより、3種類の非共沸冷媒のうち、主に高沸点冷媒
が凝縮液化する。中間沸点冷媒,低沸点冷媒のほとんど
はガス状態で凝縮器2から流出する。すなわち、凝縮器
2内では冷媒は気液二相状態である。凝縮器2を出た気
液二相の混合冷媒は、つぎに第I冷媒分離器9へ入り、
ここで気液分離される。気液分離された中間沸点冷媒,
低沸点冷媒割合の大きい混合ガス冷媒は、冷媒分離器9
から出てガス配管14を通り第Iカスケード凝縮器3の高
圧側へ流入する。一方、第I冷却分離器9で分離された
液冷媒は液配管12を通り第I膨張装置6で液圧された
後、第IIカスケード凝縮器4の低圧側から流出する冷媒
と合流後、第Iカスケード凝縮器3の低圧側へ流入し、
前記ガス配管14を通り第Iカスケード凝縮器3の高圧側
へ流入してきた混合ガス冷媒の冷却熱源として使われ
る。第Iカスケード凝縮器3では、主に中間沸点冷媒が
凝縮液化され、気液二相状態となつた冷媒が第Iカスケ
ード凝縮器3の高圧側から流出した後、第II冷媒分離器
10へ流入する。ここで気液二相冷媒は気液分離される。
気液分離された低沸点冷媒割合の大きいガス冷媒は、ガ
ス配管15を通り第IIカスケード凝縮器4の高圧側へ流入
する。一方、第II冷媒分離器10で分離された液冷媒は、
液配管13を通り第II膨張装置7で減圧された後、蒸発器
5から流出する冷媒と合流後、第IIカスケード凝縮器4
の低圧側へ流入し、前記ガス配管15を通り第IIカスケー
ド凝縮器4の高圧側へ流入してきた混合ガス冷媒の冷却
熱源として使われる。第IIカスケード凝縮器4で冷却さ
れて液化した低沸点冷媒割合の大きい冷媒は、第III膨
張装置8で減圧された後、蒸発器へ流入する。ここで低
温が発生される。蒸発器から流出した冷媒は、前記した
ように第II膨張装置,第I膨張装置で減圧された冷媒と
合流し第IIカスケード凝縮器,第Iカスケード凝縮器の
冷却熱源として使われた後、圧縮機に吸入される。以上
のような運転動作が行われているときに圧縮機から吐出
されるガス冷媒の温度が異常に高くなつた場合には、液
配管12,液配管13の両方または片一方の途中から液冷媒
を分岐させて液インジエクシヨン配管19を介して圧縮機
の圧縮室内へ液インジエクシヨンすることによつて、圧
縮室内の冷媒ガスはインジエクシヨンされた液冷媒によ
つて冷却され、吐出ガス温度を低くおさえることができ
る。すなわち、上記の如く液配管12,液配管13の2箇所
から液インジエクシヨンできるように構成したことによ
つて、凝縮器2の冷却媒体(空気や水)の温度の上昇に
ともなつて凝縮器2での凝縮液化量が減少し液配管12か
らの分岐液量が十分確保できない場合も、液配管13から
も液冷媒を分岐して液インジエクシヨンが可能であるた
め、吐出ガス温度の上昇をおさえることができる。しか
も、圧縮機として、圧縮室に通じる液インジエクシヨン
用穴にかかる圧力の変動が小さい特徴をもつスクロール
式圧縮機を用いることによつて、液インジエクシヨン用
冷媒取り出し口と圧縮室の差圧変動を小さくおさえるこ
とができるため、液配管12,液配管13から分岐される液
インジエクシヨン流量、および、第I膨張装置6,第II膨
張装置7を流れる主回路の冷媒量とも安定し、サイクル
各部の冷媒混合割合が一定となる。この結果、冷媒混合
割合が変化することによるサイクルの運転圧力、およ
び、サイクル各部の温度の変動が小さくなり、安定した
運転が得られる。なお、弁16,弁17は液インジエクシヨ
ン用冷媒の取り出し箇所の切り換え、あるいは、液イン
ジエクシヨン量を調節するための弁であるが、これらの
弁をなくして常時液インジエクシヨンが行われるように
してもよく、あるいは、キヤピラリチユーブ等の抵抗体
を用いて、液配管12,液配管13からの液インジエクシヨ
ン量を適当に配分してもよい。また、弁16,弁17のうち
片一方の弁はとりはずし常時液インジエクシヨンを行
い、もう一方側からは必要に応じて液インジエクシヨン
を行えるようにしても前記効果と同様の効果が得られる
ものである。The non-azeotropic mixed refrigerant sucked into the compressor is compressed here to become a high-temperature and high-pressure refrigerant gas and flows into the condenser 2. In the condenser 2, of the three types of non-azeotropic refrigerants, mainly high-boiling refrigerants are condensed and liquefied by being cooled by a cooling medium such as water or air. Most of the medium-boiling refrigerant and the low-boiling refrigerant flow out of the condenser 2 in a gaseous state. That is, the refrigerant is in a gas-liquid two-phase state in the condenser 2. The gas-liquid two-phase mixed refrigerant that has exited the condenser 2 then enters the I-th refrigerant separator 9,
Here, gas-liquid separation is performed. Gas-liquid separated medium boiling point refrigerant,
The mixed gas refrigerant having a large low boiling point refrigerant ratio is supplied to the refrigerant separator 9.
And flows into the high pressure side of the first cascade condenser 3 through the gas pipe 14. On the other hand, the liquid refrigerant separated by the I-th cooling separator 9 passes through the liquid pipe 12 and is hydraulically compressed by the I-expansion device 6, and then joins with the refrigerant flowing out from the low-pressure side of the second cascade condenser 4. Flows into the low pressure side of the I-cascade condenser 3,
It is used as a cooling heat source for the mixed gas refrigerant flowing into the high pressure side of the first cascade condenser 3 through the gas pipe 14. In the first cascade condenser 3, the intermediate boiling point refrigerant is mainly condensed and liquefied, and the refrigerant in a gas-liquid two-phase state flows out from the high pressure side of the first cascade condenser 3.
Flow into 10. Here, the gas-liquid two-phase refrigerant is separated into gas and liquid.
The gas refrigerant having a high ratio of the low-boiling refrigerant separated from the gas flows into the high-pressure side of the second cascade condenser 4 through the gas pipe 15. On the other hand, the liquid refrigerant separated by the second refrigerant separator 10 is
After the pressure is reduced by the second expansion device 7 through the liquid pipe 13, the refrigerant is combined with the refrigerant flowing out of the evaporator 5, and then the second cascade condenser 4 is cooled.
And is used as a cooling heat source for the mixed gas refrigerant flowing into the high pressure side of the second cascade condenser 4 through the gas pipe 15. The refrigerant having a high low boiling point refrigerant ratio that has been cooled and liquefied by the second cascade condenser 4 is decompressed by the third expansion device 8, and then flows into the evaporator. Here, a low temperature is generated. The refrigerant flowing out of the evaporator merges with the refrigerant depressurized by the second expansion device and the first expansion device as described above, and is used as a cooling heat source of the second cascade condenser and the first cascade condenser. Inhaled by the machine. If the temperature of the gas refrigerant discharged from the compressor becomes abnormally high while the above-described operation is performed, the liquid refrigerant may flow from the middle of one or both of the liquid pipes 12 and 13. And the refrigerant gas in the compression chamber is cooled by the liquid refrigerant which has been injected into the compression chamber of the compressor via the liquid injection pipe 19, so that the discharge gas temperature can be kept low. it can. That is, as described above, the liquid pipe 12 and the liquid pipe 13 are configured such that the liquid injection can be performed from two places, so that the temperature of the cooling medium (air or water) of the condenser 2 increases with the rise of the temperature of the condenser 2. When the amount of condensed and liquefied liquid decreases and the amount of branch liquid from the liquid pipe 12 cannot be secured sufficiently, the liquid refrigerant can also be branched from the liquid pipe 13 and liquid injection can be performed. Can be. In addition, by using a scroll type compressor having a characteristic that the pressure applied to the liquid injection hole communicating with the compression chamber is small, the pressure difference between the refrigerant outlet for the liquid injection and the compression chamber is reduced. Therefore, the flow rate of the liquid injection branched from the liquid pipe 12 and the liquid pipe 13 and the amount of refrigerant in the main circuit flowing through the I-expansion device 6 and the II-expansion device 7 are stable, and the refrigerant mixing in each part of the cycle is stabilized. The ratio becomes constant. As a result, fluctuations in the operating pressure of the cycle and the temperature of each part of the cycle due to a change in the refrigerant mixing ratio are reduced, and stable operation is obtained. Note that the valves 16 and 17 are valves for switching the location for taking out the liquid-injection refrigerant or for adjusting the liquid-injection amount.However, these valves may be eliminated so that the liquid-injection is always performed. Alternatively, a resistor such as a capillary tube may be used to appropriately distribute the liquid injection amount from the liquid pipes 12 and 13. In addition, one of the valves 16 and 17 is removed to perform liquid injection at all times, and the same effect as described above can be obtained even if liquid injection can be performed from the other side as necessary. .
第2図,第3図に示したサイクルは、第1図に示した
サイクルの実施例よりカスケード凝縮器,冷媒分離器,
膨張装置が各々1個多いサイクル構成となつている。動
作原理等は第1図に示したサイクルと何ら変わるもので
はないので、第2図,第3図に示したサイクルの詳細説
明は省略する。第3図のサイクルは、液インジエクシヨ
ン用冷媒を液配管13のかわりに、液配管23からとる構成
とした点が第2図のサイクルと異なる。ただし、液配管
12,液配管13,液配管23の3箇所からとつても前記効果は
得られるものである。The cycle shown in FIGS. 2 and 3 is different from the embodiment of the cycle shown in FIG. 1 in that a cascade condenser, a refrigerant separator,
Each inflator has a cycle configuration of one more. Since the operation principle and the like are not different from the cycle shown in FIG. 1, detailed description of the cycle shown in FIG. 2 and FIG. 3 is omitted. The cycle shown in FIG. 3 differs from the cycle shown in FIG. 2 in that the refrigerant for the liquid injection is taken from the liquid pipe 23 instead of the liquid pipe 13. However, liquid piping
The above-described effect can be obtained even from three places of the liquid pipe 13, the liquid pipe 13, and the liquid pipe 23.
以上の第1図〜第3図で述べたサイクルに用いるスク
ロール圧縮機を、圧縮機チヤンバー内空間が圧縮室から
吐出されるガス冷媒となるいわゆる高圧チヤンバータイ
プのスクロール圧縮機を用いた場合には、圧縮機用モー
タコイルは吐出ガス冷媒と接触している(吐出ガスでモ
ータコイルの冷却が行われる)ため、前記したように安
定して液インジエクシヨン効果が得られれば、モータコ
イルの冷却も安定して行われるのでモータコイルの過熱
による圧縮機焼損を防止できる。また、起動時あるい起
動後、まだサイクルが十分に冷えていない場合には、高
圧冷媒は液化されないので、吐出圧力が高くなり吐出ガ
ス温度も高くなるが、高圧チヤンバータイプのスクロー
ル圧縮機を用いれば、サイクル高圧側の容積が大きくな
るため吐出圧力(高圧側圧力)を比較的低くおさえるこ
とができるので、吐出ガス温度も低くすることが可能と
なる。When the scroll compressor used in the cycle described in FIGS. 1 to 3 is a so-called high-pressure chamber-type scroll compressor in which the internal space of the compressor chamber is a gas refrigerant discharged from the compression chamber. Since the motor coil for the compressor is in contact with the discharge gas refrigerant (the motor coil is cooled by the discharge gas), if the liquid injection effect is stably obtained as described above, the motor coil also cools. Since it is performed stably, it is possible to prevent the compressor from burning due to overheating of the motor coil. Also, if the cycle is not sufficiently cooled at startup or after startup, the high pressure refrigerant will not be liquefied, so the discharge pressure will increase and the discharge gas temperature will increase. If used, the discharge pressure (high-pressure side pressure) can be kept relatively low because the volume on the high pressure side of the cycle becomes large, so that the discharge gas temperature can also be lowered.
本発明によれば、凝縮器の負荷が変化しても十分な液
インジエクシヨン用冷媒を安定して圧縮室に供給できる
ので、吐出ガス温度の上昇や圧縮機モータコイルの冷却
が良好に行えるとともに安定したサイクル運転状態が得
られる。ADVANTAGE OF THE INVENTION According to this invention, even if the load of a condenser changes, a sufficient liquid-injection refrigerant can be stably supplied to a compression chamber, so that the discharge gas temperature can be increased and the compressor motor coil can be cooled well and can be performed stably. The obtained cycle operation state is obtained.
第1図,第2図及び第3図はそれぞれ本発明の実施例を
示す系統図である。 1……圧縮機、2……凝縮器、3……第Iカスケード凝
縮器、4……第IIカスケード凝縮器、5……蒸発器、6
……第I膨張装置、7……第II膨張装置、8……第III
膨張装置、9……第I冷媒分離器、10……第II冷媒分離
器、11……膨張タンク、18……弁、19……液インジエク
シヨン配管、21……第III膨張装置、22……第III冷媒分
離器。1, 2 and 3 are system diagrams each showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Condenser, 3 ... I Cascade condenser, 4 ... II Cascade condenser, 5 ... Evaporator, 6
…… I expansion device, 7 …… II expansion device, 8 …… III
Expansion device, 9 ... I refrigerant separator, 10 ... II refrigerant separator, 11 ... Expansion tank, 18 ... Valve, 19 ... Liquid injection pipe, 21 ... III expansion device, 22 ... Third refrigerant separator.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 勝又 直登 静岡県清水市村松390番地 株式会社日 立製作所清水工場内 (56)参考文献 特開 昭55−72764(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Naoto Katsumata, Inventor 390 Muramatsu, Shimizu-shi, Shizuoka Pref. Inside Shimizu Plant, Hitachi, Ltd. (56) References JP-A-55-72764
Claims (1)
複数の凝縮器、複数の膨張装置、複数の冷媒分離器を有
し、非共沸混合冷媒を複数の凝縮器のそれぞれで順次凝
縮すると共に凝縮液を冷媒分離器で分離し、蒸発器へ供
給する低温用冷凍サイクルにおいて、 前記圧縮機として用いられるスクロール式圧縮機と、 複数ある前記冷媒分離器と前記膨張装置とを接続する液
配管のそれぞれの途中から温度の異なる液冷媒を取り出
し、前記スクロール式圧縮機へ連通する液インジェクシ
ョン配管と を備えたことを特徴とする低温用冷凍サイクル。1. A compressor, an evaporator, a non-azeotropic refrigerant mixture,
It has multiple condensers, multiple expansion devices, and multiple refrigerant separators.The non-azeotropic mixed refrigerant is sequentially condensed in each of the multiple condensers, and the condensed liquid is separated by the refrigerant separator and supplied to the evaporator. In a low-temperature refrigeration cycle, a scroll compressor used as the compressor, and liquid refrigerants having different temperatures are taken out of the liquid pipes connecting the plurality of refrigerant separators and the expansion device, and the scroll is taken out. And a liquid injection pipe communicating with the compressor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63283647A JP2714065B2 (en) | 1988-11-11 | 1988-11-11 | Refrigeration cycle for low temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63283647A JP2714065B2 (en) | 1988-11-11 | 1988-11-11 | Refrigeration cycle for low temperature |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02130354A JPH02130354A (en) | 1990-05-18 |
JP2714065B2 true JP2714065B2 (en) | 1998-02-16 |
Family
ID=17668228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63283647A Expired - Fee Related JP2714065B2 (en) | 1988-11-11 | 1988-11-11 | Refrigeration cycle for low temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2714065B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5329788A (en) * | 1992-07-13 | 1994-07-19 | Copeland Corporation | Scroll compressor with liquid injection |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5572764A (en) * | 1978-11-21 | 1980-05-31 | Maekawa Seisakusho Kk | Method of refrigeration or heat pump |
-
1988
- 1988-11-11 JP JP63283647A patent/JP2714065B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02130354A (en) | 1990-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11892208B2 (en) | Method and apparatus for isothermal cooling | |
US7818971B2 (en) | CO2 cooling and heating apparatus and method having multiple refrigerating cycle circuits | |
CN100483042C (en) | Air-cooled condensor unit and cmpressor unit for refrigeration device | |
US8181478B2 (en) | Refrigeration system | |
JP4973976B2 (en) | Sealed turbo compression refrigerator | |
US7818978B2 (en) | Vapour compression device and method of performing an associated transcritical cycle | |
JP2001221517A (en) | Supercritical refrigeration cycle | |
US20090175748A1 (en) | Multi-stage compressor unit for refrigeration system | |
WO1999010686A1 (en) | Cooling cycle | |
JP2006292229A (en) | Co2 refrigeration cycle device and supercritical refrigeration operation method therefor | |
JP2008224206A (en) | Dual refrigerating cycle device | |
JP2004308972A (en) | Co2 refrigerating machine | |
JP2006234363A (en) | Screw refrigerating device | |
JP2714065B2 (en) | Refrigeration cycle for low temperature | |
JP2001272122A (en) | Two-stage compression refrigerating unit | |
JP2000035251A (en) | Three layers separator in cooling cycle | |
JPH0336467A (en) | High temperature heat pump | |
JPH0642829A (en) | Freezer for low temperature freezing | |
JPH10292948A (en) | Refrigerator | |
JP2003021411A (en) | Supercritical vapor compression refrigerating machine | |
JP3448793B2 (en) | Refrigeration equipment | |
JP3336032B2 (en) | Refrigeration circuit with injection circuit | |
KR200226903Y1 (en) | A accumulator that has a steam value for supply of liguid refrigerants | |
KR200214003Y1 (en) | Heating apparatus with low compression load | |
JP3019739U (en) | Cryogenic refrigerator compressor unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |