JP2713615B2 - Method for producing bis (aminomethyl) norcamphans - Google Patents

Method for producing bis (aminomethyl) norcamphans

Info

Publication number
JP2713615B2
JP2713615B2 JP1245184A JP24518489A JP2713615B2 JP 2713615 B2 JP2713615 B2 JP 2713615B2 JP 1245184 A JP1245184 A JP 1245184A JP 24518489 A JP24518489 A JP 24518489A JP 2713615 B2 JP2713615 B2 JP 2713615B2
Authority
JP
Japan
Prior art keywords
reaction
hydrogen
aminomethyl
ndcs
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1245184A
Other languages
Japanese (ja)
Other versions
JPH03109361A (en
Inventor
将実 猪俣
直和 塩谷
一雄 腰塚
皆人 唐沢
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP1245184A priority Critical patent/JP2713615B2/en
Publication of JPH03109361A publication Critical patent/JPH03109361A/en
Application granted granted Critical
Publication of JP2713615B2 publication Critical patent/JP2713615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ビス(アミノメチル)ノルカンファン類
(以下、BAN類とする。)の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing bis (aminomethyl) norcamphans (hereinafter referred to as BANs).

〔従来の技術〕 従来、ジアミン類は、一般には対応するジニトリルの接
触水素化によって製造されてきた。
BACKGROUND OF THE INVENTION Hitherto, diamines have generally been produced by catalytic hydrogenation of the corresponding dinitrile.

触媒としては、ラネーコバルト触媒等を用い、アンモ
ニアの存在下、高圧水素によって、ジニトリルは接触水
素化される。
As a catalyst, a Raney cobalt catalyst or the like is used, and dinitrile is catalytically hydrogenated by high-pressure hydrogen in the presence of ammonia.

しかし、反応条件及び反応収率等は個々の原料ジニト
リルによって、大きく異なるのが通例であるが、ノルカ
ンファンジカルボニトリル類(以下、NDC類とする。)
の接触水素化によるBAN類の製造方法について詳述され
たものは、従来全く見られない。
However, the reaction conditions, reaction yields, and the like generally vary greatly depending on the individual starting dinitrile, but norcampane dicarbonitrile (hereinafter referred to as NDCs).
Heretofore, there has been no description of a method for producing BANs by catalytic hydrogenation.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

そこで本発明は、NDC類の接触水素化によるBAN類を低
圧水素を用いて工業的、経済的に製造する方法を提供す
ることを目的とする。
Therefore, an object of the present invention is to provide a method for industrially and economically producing BANs by catalytic hydrogenation of NDCs using low-pressure hydrogen.

〔課題を解決するための手段及び作用〕[Means and actions for solving the problem]

本発明者は種々検討の結果、NDC類を有機溶媒及びア
ンモニアの存在下、ラネーニッケル触媒を用い接触水素
化することにより、目的を達成し得ることを見出し、本
発明を完成させるに至った。
As a result of various studies, the present inventors have found that the object can be achieved by catalytic hydrogenation of NDCs using a Raney nickel catalyst in the presence of an organic solvent and ammonia, and have completed the present invention.

すなわち、本発明は、有機溶媒及びアンモニアの存在
下、一般式(I) (式中、X,Yは水素もしくはシアノ基であり、同一でな
い。)で表されるNDC類を、該NDC類に対し0.05〜5重量
%のラネーニッケル触媒を用いて接触水素化することを
特徴とする一般式(II) (式中、R1,R2は水素もしくはアミノメチル基であり、
同一でない。)で表されるBAN類の製造方法である。
That is, the present invention relates to a compound represented by the general formula (I) in the presence of an organic solvent and ammonia: (Wherein X and Y are hydrogen or cyano groups and are not the same), wherein the NDCs are catalytically hydrogenated using a Raney nickel catalyst in an amount of 0.05 to 5% by weight based on the NDCs. General formula (II) (Wherein R 1 and R 2 are hydrogen or an aminomethyl group;
Not identical. ) Is a method for producing BANs.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明に用いられるNDC類は、2,5−ノルカンファンジ
カルボニトリル及び2,6−ノルカンファンジカルボニト
リルの混合物であり、ビシクロ〔2,2,1〕−5−ヘプテ
ン−2−カルボニトリルに、パラジウム触媒及びトリフ
ェニルホスファイトの存在下、シアン化水素を付加させ
る公知技術によって容易に得られる(Am.Chem.Soc.Div.
Pet.Chem.Pre prints,14,B29(1969))。
The NDCs used in the present invention are a mixture of 2,5-norcampandicarbonitrile and 2,6-norcampandicarbonitrile, and bicyclo [2,2,1] -5-heptene-2-carbonitrile. Can be easily obtained by a known technique of adding hydrogen cyanide in the presence of a palladium catalyst and triphenyl phosphite (Am. Chem. Soc. Div.
Pet. Chem. Preprints, 14 , B29 (1969)).

本発明に用いられる接触水素化用のラネーニッケル触
媒は、ニッケル含有率30〜50%のラネーニッケル合金粉
末を常法によりアルカリ展開して得られたものを使用す
ることができる。
As the Raney nickel catalyst for catalytic hydrogenation used in the present invention, one obtained by subjecting a Raney nickel alloy powder having a nickel content of 30 to 50% to alkaline development by a conventional method can be used.

また、触媒の活性化剤として合金製造の段階で、例え
ば銅、銀、錫、鉛、モリブデン、クロム、マンガン、鉄
等、異種金属を添加して得られるラネーニッケル触媒も
用いることができる。
As a catalyst activator, a Raney nickel catalyst obtained by adding a different metal such as copper, silver, tin, lead, molybdenum, chromium, manganese, or iron at the stage of alloy production can also be used.

ラネーニッケル触媒の使用量は、NDC類に対し、10重
量%以下で用いるのが良い。10重量%を越えた量では、
使用量の増加に伴い反応時間は短縮するが、触媒をリサ
イクル使用することが不可欠であること、また、アンモ
ニアにより触媒劣化が起こることなどのために、操作
的、経済的に好ましくない。好ましくは0.05〜5重量
%、特に好ましくは0.1〜2.0重量%、の範囲で用いられ
るのが良い。
The amount of Raney nickel catalyst used is preferably 10% by weight or less based on NDCs. For amounts exceeding 10% by weight,
Although the reaction time is shortened as the amount used is increased, it is not preferable in terms of operation and economy because the catalyst must be recycled and used, and the catalyst is deteriorated by ammonia. Preferably, it is used in the range of 0.05 to 5% by weight, particularly preferably 0.1 to 2.0% by weight.

本発明に用いられる有機溶媒は、ラネーニッケル触媒
の活性の安定化とゼリー状で流動化しにくいNDC類及び
反応終了液の工業的規模での取り扱い易さを提供するた
めに使用されるものであり、反応に不活性なものが良
い。
The organic solvent used in the present invention is used in order to stabilize the activity of the Raney nickel catalyst and to provide easy handling of the NDCs and the reaction-terminated liquid that are difficult to fluidize in a jelly state on an industrial scale, Those inert to the reaction are preferred.

具体的には、例えばベンゼン、トルエン、キシレン、
エチルベンゼン、ジエチルベンゼン、アミルベンゼン、
ジアミルベンゼン、アミルトルエン、ジフェニルエタ
ン、テトラリン等の芳香族炭化水素類、メタノール、エ
タノール、n−プロパノール、イソプロパノール、n−
ブタノール、イソブタノール、tert−ブタノールなどの
アルコール類、ジオキサン、テトラヒドロフラン等の環
状エーテル類及びこれらの類似化合物などが好ましい。
特に好ましくは、芳香族炭化水素類、及びアルコール類
である。かかる有機溶剤を用い、NDC類は自由に濃度を
設定し得るが、5〜95重量%、好ましくは10〜80重量%
の範囲の溶液として反応に供するのが良い。5重量%未
満では、得られたBAN類が、希薄溶液として得られるた
め、溶媒を留去する際、エネルギーを多大に消費するた
め経済的に好ましくない。一方、95%越えると、溶液の
流動性が低下すると共に、触媒劣化が起き易い。
Specifically, for example, benzene, toluene, xylene,
Ethylbenzene, diethylbenzene, amylbenzene,
Aromatic hydrocarbons such as diamylbenzene, amyltoluene, diphenylethane and tetralin, methanol, ethanol, n-propanol, isopropanol, n-
Alcohols such as butanol, isobutanol and tert-butanol, cyclic ethers such as dioxane and tetrahydrofuran, and similar compounds thereof are preferred.
Particularly preferred are aromatic hydrocarbons and alcohols. Using such an organic solvent, the concentration of NDCs can be freely set, but is 5 to 95% by weight, preferably 10 to 80% by weight.
It is preferable to provide the solution as a solution in the range described above. If the content is less than 5% by weight, the obtained BANs are obtained as a dilute solution, so that when distilling off the solvent, a large amount of energy is consumed, which is not economically preferable. On the other hand, if it exceeds 95%, the fluidity of the solution decreases, and the catalyst tends to deteriorate.

本発明に用いられるアンモニアはイミン類及びポリア
ミン類の副生を抑制するためにもちいられる。その使用
量は、NDC類に対し0.1〜50モル比、好ましくは、0.5〜3
0モル比の範囲で用いられるのが良い。
Ammonia used in the present invention is used for suppressing by-products of imines and polyamines. The amount used is 0.1 to 50 molar ratio with respect to NDCs, preferably 0.5 to 3
It is preferable to use it in the range of 0 mole ratio.

0.1モル比未満ではアンモニアの添加効果は見られ
ず、一方、50モル比を越える量では、添加量の増大に伴
う添加効果は期待出来なくなる。
If the molar ratio is less than 0.1, the effect of adding ammonia is not observed, while if the molar ratio is more than 50, the effect of increasing the amount of addition cannot be expected.

本発明における接触水素化の反応温度は80〜250℃、
好ましくは、130〜200℃の範囲が良い。
The reaction temperature of the catalytic hydrogenation in the present invention is 80 to 250 ° C,
Preferably, the range is 130 to 200 ° C.

80℃未満の温度では、反応完結に長時間を要し一方、
250℃を越える温度では、NDC類の分解及びイミン類の副
生が著しく多くなる。
At temperatures below 80 ° C, it takes a long time to complete the reaction,
At a temperature exceeding 250 ° C., decomposition of NDCs and by-products of imines are significantly increased.

接触水素化に使用される水素は、通常100%純度のも
のが好ましいが、反応に不活性であるもの、例えば、窒
素、アルゴン、ヘリウム等を含有していても差し支えな
い。
The hydrogen used for the catalytic hydrogenation is usually preferably 100% pure, but may contain those inert to the reaction, for example, nitrogen, argon, helium and the like.

また、水素圧力は1〜200Kg/cm2Gの範囲で接触水素化
は行われるが、本発明においては50Kg/cm2Gの水素圧力
で短時間で反応は完結する。
The hydrogen pressure is the catalytic hydrogenation in the range of 1~200Kg / cm 2 G takes place, the reaction in a short time at a hydrogen pressure of 50 Kg / cm 2 G in the present invention is completed.

本発明におけるNDC類の接触水素化の反応形式として
は、回分式及び流通式のどちらでも選択し得る。
The reaction type of the catalytic hydrogenation of NDCs in the present invention can be selected from either a batch type or a flow type.

〔実施例〕〔Example〕

以下、本発明を実施例により、さらに具体的に説明す
る。なお、反応液の分析はガスクロマトグラフィーによ
り実施した。
Hereinafter, the present invention will be described more specifically with reference to examples. The analysis of the reaction solution was performed by gas chromatography.

実施例1 内容積1のステンレス製電磁攪拌式オートクレーブ
にNDC類150g、溶媒トルエン460g及びラネーニッケル触
媒2.0gを仕込んだ後、系内を窒素にて十分置換した後、
液体アンモニア31.2gを注入し、さらに、初期水素圧力
が30Kg/cm2Gになるように、水素を圧入し、攪拌下、150
℃にて接触水素化をおこなつた。
Example 1 After charging 150 g of NDCs, 460 g of solvent toluene and 2.0 g of Raney nickel catalyst into a stainless steel electromagnetically stirred autoclave having an internal volume of 1 and sufficiently replacing the system with nitrogen,
Inject 31.2 g of liquid ammonia, further pressurize hydrogen so that the initial hydrogen pressure is 30 kg / cm 2 G, and stir 150
The catalytic hydrogenation was carried out at ° C.

反応の進行と共に、水素吸収のため圧力降下が生じる
が水素圧力が30〜50Kg/cm2G範囲に維持されるように水
素を供給しながら、反応をおこなつた。1.5時間で水素
吸収はなくなり反応が終了した。オートクレーブを室温
まで冷却後、水素及びアンモニアを追い出し触媒を濾別
した後、反応液を分析した。
As the reaction progressed, a pressure drop was caused by hydrogen absorption, but the reaction was carried out while supplying hydrogen so that the hydrogen pressure was maintained in the range of 30 to 50 kg / cm 2 G. After 1.5 hours, the hydrogen absorption disappeared and the reaction was completed. After cooling the autoclave to room temperature, hydrogen and ammonia were expelled and the catalyst was filtered off, and the reaction solution was analyzed.

その結果、NDC類転化率100%、BAN類選択率92.3%、
イミン類選択率0.3%であつた。
As a result, NDC conversion rate 100%, BAN selectivity 92.3%,
The imine selectivity was 0.3%.

実施例2、3 実施例1において、液体アンモニアの使用量を第1表
に示すように変えること以外、実施例1と全く同じ仕込
みで同様に反応させた。その結果を第1表に示す。
Examples 2 and 3 The same reaction as in Example 1 was carried out except that the amount of liquid ammonia used was changed as shown in Table 1. Table 1 shows the results.

実施例4、 実施例2において溶媒をイソプロパノールに変えるこ
との他全く実施例1と同じ仕込みで同様に反応させた。
その結果1.7時間で反応は終了し、NDC類転化率100%、B
AN類選択率97.8%、イミン類選択率0.3%を得た。
The reaction was carried out in the same manner as in Example 1 except that the solvent was changed to isopropanol in Examples 4 and 2.
As a result, the reaction was completed in 1.7 hours, NDC conversion was 100%, B
An AN selectivity of 97.8% and an imine selectivity of 0.3% were obtained.

〔発明の効果〕〔The invention's effect〕

本発明によるBAN類の製造方法は、実施例に見られる
ようにラネーニッケル触媒を用いることによって低圧水
素でも充分、反応時間が短く、高収率でBAN類を製造で
きるため、工業的に非常に有利な方法である。
The method for producing BANs according to the present invention is very industrially advantageous because the use of a Raney nickel catalyst can sufficiently produce BANs in a short reaction time and a high yield by using a Raney nickel catalyst, as shown in Examples. It is a way.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機溶媒及びアンモニアの存在下、一般式
(I) (式中、X,Yは水素もしくはシアノ基であり、同一でな
い。)で表されるノルカンファンジカルボニトリル類
を、該ノルカンファンジカルボニトリル類に対し0.05〜
5重量%のラネーニッケル触媒を用いて接触水素化する
ことを特徴とする一般式(II) (式中、R1,R2は水素もしくはアミノメチル基であり、
同一でない。)で表されるビス(アミノメチル)ノルカ
ンファン類の製造方法。
1. A compound of the formula (I) in the presence of an organic solvent and ammonia (Wherein X and Y are hydrogen or cyano groups and are not the same). The norcamphandicarbonitrile represented by the formula:
General formula (II) characterized by catalytic hydrogenation using 5% by weight of Raney nickel catalyst (Wherein R 1 and R 2 are hydrogen or an aminomethyl group;
Not identical. )), A method for producing bis (aminomethyl) norcamphans.
JP1245184A 1989-09-22 1989-09-22 Method for producing bis (aminomethyl) norcamphans Expired - Lifetime JP2713615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245184A JP2713615B2 (en) 1989-09-22 1989-09-22 Method for producing bis (aminomethyl) norcamphans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245184A JP2713615B2 (en) 1989-09-22 1989-09-22 Method for producing bis (aminomethyl) norcamphans

Publications (2)

Publication Number Publication Date
JPH03109361A JPH03109361A (en) 1991-05-09
JP2713615B2 true JP2713615B2 (en) 1998-02-16

Family

ID=17129862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245184A Expired - Lifetime JP2713615B2 (en) 1989-09-22 1989-09-22 Method for producing bis (aminomethyl) norcamphans

Country Status (1)

Country Link
JP (1) JP2713615B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631332A (en) * 1995-01-17 1997-05-20 Mitsui Toatsu Chemicals, Inc. Curing agents for epoxy resins comprising bis(aminomethyl)bicyclo[2.2.1]heptane adducts
JPH09235352A (en) * 1995-12-27 1997-09-09 Mitsui Toatsu Chem Inc Curing agent for resin
JP3930207B2 (en) 1999-09-27 2007-06-13 三井化学株式会社 Method for producing norbornanedimethyleneamines

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2515486C2 (en) * 1975-04-09 1984-05-24 Bayer Ag, 5090 Leverkusen Bicyclo [2.2.1] heptane triamines and process for their preparation

Also Published As

Publication number Publication date
JPH03109361A (en) 1991-05-09

Similar Documents

Publication Publication Date Title
JP3287565B2 (en) Selective low-pressure hydrogenation of dinitrile to aminonitrile
CN103228614A (en) Process for preparing 3-aminomethyl-3,5,5-trimethylcyclohexylamine
KR20070105382A (en) Method for producing a xylylenediamine
JPH06279368A (en) Production of bisaminomethylcyclohexane
CN110813281B (en) Application of nano-carbon supported cluster-state palladium-based catalyst in preparation of primary amine by catalytic hydrogenation of nitrile compound
JPH0940630A (en) Production of aromatic cyanomethylamine
JP2713615B2 (en) Method for producing bis (aminomethyl) norcamphans
JP2713612B2 (en) Method for producing bis (aminomethyl) norcamphans
EP0908447B1 (en) Process for the preparation of cyanoarylmethylamine
US2504024A (en) Process of producing hexamethylenediamine
JP2713623B2 (en) Method for producing bis (aminomethyl) norcamphans
JP4291483B2 (en) Method for producing cyclohexanebis (methylamine) s
CN1854124B (en) Process for producing cycloalkanone oximes
EP1086943B1 (en) A process for producing norbornane dimethylene amines
CN110790669A (en) Application of nano-carbon-supported single-atom palladium-based catalyst in preparation of secondary amine by catalytic hydrogenation of nitrile compound
CN111925341B (en) Preparation method of piperazine
JP2944793B2 (en) Amine production method
CA2250770C (en) Process for preparing cyano group-containing aromatic methylamines
KR100549701B1 (en) Method for producing cyano group-containing aromatic methylamine
나재후 et al. Reductive Amination of Ketones and Aldehydes with Hydrazine Using Borohydride Exchange Resin (BER)-Nickel Acetate in Methanol
JPH02180856A (en) Nitroamine
JP2764621B2 (en) Method for producing α- (3-aminophenyl) ethylamine
JP2003238499A (en) Method for producing benzylamines
JPS58140079A (en) Preparation of 2-alkyl-4-amino-5-aminomethylpyrimidine
JPH02202856A (en) Production of bis(aminomethyl)cyclohexanes

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 12

EXPY Cancellation because of completion of term