JP2712865B2 - Polishing method of ceramic - Google Patents

Polishing method of ceramic

Info

Publication number
JP2712865B2
JP2712865B2 JP3082163A JP8216391A JP2712865B2 JP 2712865 B2 JP2712865 B2 JP 2712865B2 JP 3082163 A JP3082163 A JP 3082163A JP 8216391 A JP8216391 A JP 8216391A JP 2712865 B2 JP2712865 B2 JP 2712865B2
Authority
JP
Japan
Prior art keywords
ceramic
polishing
indenter
roughness
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3082163A
Other languages
Japanese (ja)
Other versions
JPH04317483A (en
Inventor
雄二 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3082163A priority Critical patent/JP2712865B2/en
Publication of JPH04317483A publication Critical patent/JPH04317483A/en
Application granted granted Critical
Publication of JP2712865B2 publication Critical patent/JP2712865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、硬質なセラミック材料
の表面を研磨するセラミックの研磨方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic polishing method for polishing the surface of a hard ceramic material.

【0002】[0002]

【従来の技術】一般に、セラミック材料はその高い機械
的強度と耐熱性とから工業材料として大きな注目を受け
ている。特に、近年熱間静水圧法が確立し、極めて硬質
なセラミックが得られ、その多孔率を1パーセント以下
にする緻密な成形が可能となり、さらに機械的強度の向
上が達成されることから、セラミックの応用範囲が格段
に広がったとされている。
2. Description of the Related Art In general, ceramic materials have received great attention as industrial materials because of their high mechanical strength and heat resistance. In particular, in recent years, the hot isostatic method has been established, and extremely hard ceramics can be obtained, dense molding with the porosity of 1% or less is possible, and further improvement in mechanical strength is achieved. It is said that the application range of has greatly expanded.

【0003】しかし、実際の機械部品への適用例は未だ
数が少ないのが現状である。その多くの原因には、セラ
ミック材料が脆性材料である故、応力集中となる切欠き
部が存在すると、機械的強度をいちじるしく低下させる
からである。表面粗さにおける急峻な凹みをなくす、す
なわち表面粗さを極めて平滑にする必要があるという点
に集約される。
However, at present, there are only a few applications to actual mechanical parts. Many of the reasons are that the ceramic material is a brittle material, and the presence of a notch that causes stress concentration significantly reduces the mechanical strength. The point is that the sharp depression in the surface roughness is eliminated, that is, the surface roughness needs to be extremely smooth.

【0004】また、塚本雄二他:微小付着力測定装置の
開発(1989年春期第36回応用物理関係連合講演会
予稿集、第2分冊、513ページ)に記載されているよ
うに、ジルコン・チタン酸鉛セラミック(PZTセラミ
ック)の硬質性と圧電性(圧力あるいは振動が作用する
とそのエネルギーを電気エネルギーに変換する。)に滝
目して、押込み式の硬度計や付着力測定装置の押込み圧
子として用いるような特殊な用途も報告されている。こ
のような使用例においてもセラミック圧子の表面粗さは
重要な因子であり、極めて平滑な表面粗さが要求され
る。
[0004] Also, as described in Yuji Tsukamoto et al .: Development of a Micro-adhesion Force Measurement Apparatus (Proceedings of the 36th Lecture Meeting on Applied Physics in the Spring of 1989, second volume, p. 513), zircon titanium Lead-acid ceramic (PZT ceramic) is hard and piezoelectric (when pressure or vibration is applied, the energy is converted to electric energy). Special uses have also been reported. Even in such a use example, the surface roughness of the ceramic indenter is an important factor, and extremely smooth surface roughness is required.

【0005】このようなセラミック材料の加工技術に関
しては、例えば、通商産業省ファインセラミック室編:
ファインセラミックハンドブック(オーム社、1986
年)のページ68から71に網羅的に解説されている。
特に、この表面性を向上させる研磨方法に関しては、ダ
イヤモンド研削加工、ラッピング、ポリシングなどの機
械的加工がほとんどである。また、最近MEEC(Me
chanicalgrーinding Electro
lyzing Electrodiscargーing
Combined)加工と呼ばれる機械加工と電解・
放電効果を利用した加工を組合わせることによって、加
工能率向上を図った複合加工法も検討されている。
[0005] Regarding such a ceramic material processing technology, for example, the Fine Ceramics Room of the Ministry of International Trade and Industry:
Fine Ceramic Handbook (Ohm, 1986
Years) on pages 68-71.
In particular, most of the polishing methods for improving the surface properties include mechanical processing such as diamond grinding, lapping, and polishing. Recently, MEEC (Me
chemicalgr-inding Electro
lyzing Electrodiscarging
Combined machining and electrolysis
A combined machining method for improving machining efficiency by combining machining utilizing the discharge effect is also being studied.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た加工方法には以下のような欠点が指摘されている。
However, the following disadvantages have been pointed out in the above-mentioned processing method.

【0007】1.加工能率が低く、加工能率を向上を図
ると、加工精度が悪化する。
[0007] 1. When the processing efficiency is low and the processing efficiency is improved, the processing accuracy deteriorates.

【0008】2.複合加工法にしても、その基本は機械
加工であり、加工時に加わる局部的な集中応力により表
面に亀裂が発生し易く、その部分でセラミックの強度が
いちじるしく低下する。
[0008] 2. Even in the case of the composite processing method, the basic method is machining, and a crack is easily generated on the surface due to local concentrated stress applied during the processing, and the strength of the ceramic is significantly reduced at that portion.

【0009】3.前述した熱間静水圧法の出現で、かな
り複雑な形状のセラミック製機械部品の製造が可能にな
ったが、このような複雑な形状の表面加工はほとんど不
可能である。
3. The advent of the hot isostatic method described above has made it possible to produce ceramic mechanical parts of rather complex shapes, but surface machining of such complicated shapes is almost impossible.

【0010】4.また、従来技術である機械的な研磨加
工で得られる表面粗さは、その最大粗さで1μm程度で
ある。しかし、最近の精密機械に使用される機械部品、
例えば、前述した圧子などは、サブミクロンの粗さが要
求され、従来の加工技術では満足しない。
[0010] 4. Further, the surface roughness obtained by the conventional mechanical polishing is about 1 μm in maximum roughness. However, machine parts used in recent precision instruments,
For example, the above-described indenter and the like require a submicron roughness, which is not satisfied by the conventional processing technology.

【0011】本発明は、かかる問題を鑑み、加工能率が
良く、表面粗さが細かく研磨できるセラミックの研磨方
法を提供することである。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for polishing ceramics which has good processing efficiency and can be polished with fine surface roughness.

【0012】[0012]

【課題を解決するための手段】本発明のセラミックの研
磨方法は、被加工面をイオンの照射方向に対して25度
から50度の角度に傾け、イオンを照射して前記被加工
面を研磨することを特徴としている。
According to the ceramic polishing method of the present invention, the surface to be processed is set at 25 degrees with respect to the ion irradiation direction.
The surface to be processed is polished by irradiating with ions at an angle of 50 degrees from the surface.

【0013】[0013]

【作用】このようなセラミックの研磨方法を得るため
に、本発明は、ガスをイオン化して、表面にイオン照射
して加工するイオンによる加工法に着目したことであ
る。この加工法の特徴としては、以下に掲げる利点があ
る。
In order to obtain such a ceramic polishing method, the present invention focuses on a method of processing by ionizing a gas by ionizing a gas and irradiating the surface with ions. The features of this processing method include the following advantages.

【0014】1.機械加工に比し、表面に与える衝撃力
が無視できる。従って、表面に亀裂など発生しない。
1. Impact force on the surface is negligible compared to machining. Therefore, no crack is generated on the surface.

【0015】2.イオン照射の陰にならないかぎり、被
加工物の形状は問はない。
2. The shape of the workpiece does not matter as long as it is not shadowed by ion irradiation.

【0016】3.イオンという小さい粒子で加工される
ので、加工面の粗さが小さくできる。すなわち、精密な
面仕上げが期待できる。
3. Since it is processed with small particles called ions, the roughness of the processed surface can be reduced. That is, precise surface finishing can be expected.

【0017】また、本発明は、この利点に加え、さらに
加工能率を向上することを考慮したものである。このた
めに、種々の実験を試みたところ、イオンの照射方向に
対して加工面の傾きが、25度から50度であるとき、
最も加工能率が高く、照射方向に垂直である場合は、加
工能率も低くく、その表面粗さも悪いという知見を得
た。さらに、この角度は、加工面の緻密度によって左右
されることも判明した。このような事象を利用して、本
発明のセラミックの研磨方法を得ることが出来た。
Further, the present invention has been made in consideration of further improving the processing efficiency in addition to this advantage. For this reason, when various experiments were attempted, when the inclination of the processing surface was 25 degrees to 50 degrees with respect to the ion irradiation direction,
It has been found that when the processing efficiency is highest and is perpendicular to the irradiation direction, the processing efficiency is low and the surface roughness is poor. Further, it has been found that this angle depends on the density of the processed surface. By utilizing such a phenomenon, the ceramic polishing method of the present invention could be obtained.

【0018】[0018]

【実施例】次に、本発明について図面を参照して説明す
る。
Next, the present invention will be described with reference to the drawings.

【0019】図1は本発明のセラミックの研磨方法の一
実施例を説明するための図である。この実施例では、前
述のPZTセラミック圧子の研磨例で延る。この圧子の
形状は、図1に示すように、その直径が4mm、長さ8
mmで、先端の頂角が90度であり、円錐形としたもの
である。この緻密な圧子を成形するのに、前述した熱間
静水プレスを用いて行なった。次に、粗仕上げとして、
ダイヤモンンド研削加工機により、先端となる円錐部分
を研磨し、先端の曲率半径を5μm、表面粗さ最大1.
1μm程度に仕上げた。次に、図1に示すように、圧子
1をイオンエッチング装置の陰極に取付ける。なお、こ
の圧子1の取付けは、イオンの方向2に対して、圧子1
の中心軸が平行になるようにしたことである。すなわ
ち、円錐面がイオンの方向に対して45度となってい
る。
FIG. 1 is a view for explaining one embodiment of the method for polishing ceramics according to the present invention. This embodiment extends to the above-mentioned polishing example of the PZT ceramic indenter. As shown in FIG. 1, this indenter has a diameter of 4 mm and a length of 8 mm.
mm, the apex angle of the tip is 90 degrees, and the shape is conical. This dense indenter was formed using the hot isostatic press described above. Next, as a rough finish,
The conical portion serving as the tip is polished by a diamond grinding machine, the radius of curvature of the tip is 5 μm, and the surface roughness is 1.
Finished to about 1 μm. Next, as shown in FIG. 1, the indenter 1 is attached to the cathode of the ion etching apparatus. The indenter 1 is attached with respect to the direction 2 of the ion.
Are made parallel to each other. That is, the conical surface is at 45 degrees to the direction of the ions.

【0020】このように取り付けられた圧子1の周囲を
所定の真空度にし、アルゴンを10パーセントを含む酸
素ガスを導入し、圧力を13.3mPaとし、イオン加
速電圧を500Vとし、圧子1を回転しながら3時間程
度エッチングした。この結果、圧子1の先端部の曲率半
径を5μmを維持し、円錐面の表面粗さ最大0.1μm
程度に仕上げることができた。
The periphery of the indenter 1 thus mounted is set to a predetermined degree of vacuum, oxygen gas containing 10% of argon is introduced, the pressure is set to 13.3 mPa, the ion acceleration voltage is set to 500 V, and the indenter 1 is rotated. While etching for about 3 hours. As a result, the radius of curvature of the tip of the indenter 1 is maintained at 5 μm, and the surface roughness of the conical surface is at most 0.1 μm.
I was able to finish it to the extent.

【0021】また、同様にして、タングステンカーバイ
ト製で、直径5mm、長さ12mm及び頂角70度の圧
子についてアルゴンと水素ガス雰囲気で行なったとこ
ろ、先端部の曲率半径3μmを維持し、円錐面の表面粗
さ最大0.08μm程度に仕上げることができた。
Similarly, when a tungsten carbide indenter having a diameter of 5 mm, a length of 12 mm and an apex angle of 70 ° was subjected to argon and hydrogen gas atmosphere, the radius of curvature at the tip was maintained at 3 μm, It was possible to finish the surface to a maximum surface roughness of about 0.08 μm.

【0022】図2はアルミナ基板を取り付けた状態を示
す図である。また、別の材料である磁気ディスクの基板
であるPTZより緻密度が粗いアルミナ基板についても
行なってみた。この基板は、直径130mm、内径40
mmの円盤状である。そして一次の機械研磨で、表面の
粗さ最大0.1μm、2乗平均あらさで0.025μ
m、うねり9μmに仕上げる。次に、図2に示すよう
に、アルミナ基板3をイオンの方向に対して60度に傾
けて試料台に取り付ける。次に、所定の真空度に真空排
気し、アルゴンガスを導入し、13.3mPの圧力にし
てイオンを照射して、3時間エッチングした。その結
果、最大粗さは0.05μm、2乗平均あらさで0.0
21μmとより鏡面に近い表面に仕上げることが出来
た。
FIG. 2 is a view showing a state where an alumina substrate is attached. Further, an alumina substrate having a higher density than PTZ, which is another material of a magnetic disk substrate, was also tested. This substrate has a diameter of 130 mm and an inner diameter of 40 mm.
mm disk shape. Then, by primary mechanical polishing, the maximum surface roughness is 0.1 μm and the root mean square roughness is 0.025 μm.
m, undulation 9 μm. Next, as shown in FIG. 2, the alumina substrate 3 is attached to the sample table at an angle of 60 degrees with respect to the direction of the ions. Next, the chamber was evacuated to a predetermined degree of vacuum, an argon gas was introduced therein, ions were irradiated at a pressure of 13.3 mP, and etching was performed for 3 hours. As a result, the maximum roughness was 0.05 μm and the root-mean-square roughness was 0.0
It was possible to finish the surface closer to a mirror surface with 21 μm.

【0023】[0023]

【発明の効果】以上説明したように本発明は、材料の緻
密度を考慮して、イオンの照射方向に対して所定の角度
に被加工面を所定の角度に傾け、イオンを照射すること
によって、より粗さの細かく、加工能率の良いセラミッ
クの研磨方法が得られるという効果がある。
As described above, according to the present invention, the work surface is inclined at a predetermined angle with respect to the ion irradiation direction at a predetermined angle in consideration of the density of the material, and the ions are irradiated. In addition, there is an effect that a method of polishing a ceramic having finer roughness and high processing efficiency can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセラミックの研磨方法の一実施例を説
明するための図である。
FIG. 1 is a view for explaining one embodiment of a method for polishing a ceramic according to the present invention.

【図2】アルミナ基板を取り付けた状態を示す図であ
る。
FIG. 2 is a view showing a state where an alumina substrate is attached.

【符号の説明】[Explanation of symbols]

1 圧子 2 イオンの方向 3 アルミナ基板 1 Indenter 2 Direction of ion 3 Alumina substrate

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被加工面をイオンの照射方向に対して
5度から50度の角度に傾け、イオンを照射して前記被
加工面を研磨することを特徴とするセラミックの研磨方
法。
1. A processing surface is set at 2 with respect to an ion irradiation direction.
A method for polishing a ceramic, wherein the surface to be processed is polished by irradiating ions at an angle of 5 to 50 degrees .
JP3082163A 1991-04-15 1991-04-15 Polishing method of ceramic Expired - Fee Related JP2712865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3082163A JP2712865B2 (en) 1991-04-15 1991-04-15 Polishing method of ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3082163A JP2712865B2 (en) 1991-04-15 1991-04-15 Polishing method of ceramic

Publications (2)

Publication Number Publication Date
JPH04317483A JPH04317483A (en) 1992-11-09
JP2712865B2 true JP2712865B2 (en) 1998-02-16

Family

ID=13766763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3082163A Expired - Fee Related JP2712865B2 (en) 1991-04-15 1991-04-15 Polishing method of ceramic

Country Status (1)

Country Link
JP (1) JP2712865B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994027930A1 (en) * 1993-06-01 1994-12-08 Sumitomo Electric Industries, Ltd. Ceramic sintered body and method of processing surface of body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290246A (en) * 1989-04-28 1990-11-30 Tokyo Rika Univ Processing method for hard and fragile material

Also Published As

Publication number Publication date
JPH04317483A (en) 1992-11-09

Similar Documents

Publication Publication Date Title
Xu et al. Effect of grinding on strength of tetragonal zirconia and zirconia-toughened alumina
Bhattacharyya et al. Modern machining technology: Advanced, hybrid, micro machining and super finishing technology
US5994250A (en) Sintered ceramic bodies and ceramic working tools
Sihag et al. Analysis of surface finish improvement during ultrasonic assisted magnetic abrasive finishing on chemically treated tungsten substrate
Bains et al. Magnetic field assisted EDM: New horizons for improved surface properties
US6517688B2 (en) Method of smoothing diamond coating, and method of manufacturing diamond-coated body
JP3697543B2 (en) Ceramic surface toughening method and ceramic product
US20190115244A1 (en) Suction member
CN1221950C (en) Magnetic head and process for producing the head
JP2712865B2 (en) Polishing method of ceramic
Kumar et al. Review on optimization parametrs in Abrasive Jet Machining process
Huang et al. Grinding characteristics of engineering ceramics in high speed regime
US6448700B1 (en) Solid diamond field emitter
Bandyopadhyay et al. Ductile regime mirror finish grinding of ceramics with electrolytic in-process dressing (ELED) grinding
Kawai Effect of grain size distribution on the strength of porous Si3N4 ceramics composed of elongated β-Si3N4 grains
JP4624690B2 (en) Cutting tool insert and method of manufacturing the same
JPH1072249A (en) Alumina ceramic sintered compact and alumina ceramic parts
Babu et al. Experimental study on abrasive jet drilling on glass
JP2007111824A (en) Method and device for machining workpiece
JPH07232981A (en) Method for machining ceramics
Miyamoto et al. Polishing and sharpening of diamond point tools by ion sputter-machining
Rice The effect of sputtering on surface topography and strength of ceramics
Yeo et al. High-speed grinding using thin abrasive disks for microcomponents
JPH08108318A (en) Electric discharge machining method for electrically insulating ceramics
JP3402773B2 (en) Electrode plate for plasma etching

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees