JP2711884B2 - Method for producing acetal - Google Patents
Method for producing acetalInfo
- Publication number
- JP2711884B2 JP2711884B2 JP1052719A JP5271989A JP2711884B2 JP 2711884 B2 JP2711884 B2 JP 2711884B2 JP 1052719 A JP1052719 A JP 1052719A JP 5271989 A JP5271989 A JP 5271989A JP 2711884 B2 JP2711884 B2 JP 2711884B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- lower alcohol
- acetal
- weight
- charged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、定量的に反応をすすめるために改良された
アセタール類の工業的な製造方法に関する。Description: TECHNICAL FIELD The present invention relates to an industrial production method of an acetal which is improved for quantitatively promoting a reaction.
[従来の技術と課題] アセタール類の一種であるベンジリデンソルビトール
類は、特異な性能を有する物質として、現在までにポリ
プロピレン樹脂等の透明性改良剤、塗料、インキ、接着
剤等の流動性改良剤、揺変剤、接着剤、香粧品、医薬品
等の固形化剤等、幅広い用途が開発されている。[Prior art and problems] Benzilidene sorbitols, which are a kind of acetal, have been used as substances having a unique performance, and have been used to date as transparency improving agents such as polypropylene resins, fluidity improving agents such as paints, inks and adhesives. A wide variety of applications have been developed, such as thixotropic agents, adhesives, solidifying agents for cosmetics, pharmaceuticals and the like.
この化合物は、例えば、所定のベンズアルデヒド類と
ソルビトール、キシリトール等の多価アルコールとを酸
触媒の存在下又は無触媒下に縮合させることにより製造
されるが、その改良方法として、シクロヘキサン等の疎
水性有機溶媒と低級アルコール等の極性有機溶媒とを反
応媒体として用いる方法が提案され(例えば、特公昭48
-43748号)、既に工業的にも用いられている。This compound is produced, for example, by condensing a predetermined benzaldehyde with a polyhydric alcohol such as sorbitol and xylitol in the presence or absence of an acid catalyst. A method using an organic solvent and a polar organic solvent such as a lower alcohol as a reaction medium has been proposed (for example, Japanese Patent Publication No.
-43748), which is already used industrially.
当該アセタール化反応における低級アルコールの作用
は極めて複雑であるが、結果として、アルデヒド類との
エーテル化反応、アルデヒド類、多価アルコール類との
混合アセタール化反応に関与し、生成水の除去促進、反
応の選択性の向上等に寄与するものと考えられる。The action of the lower alcohol in the acetalization reaction is extremely complicated, but as a result, it is involved in the etherification reaction with aldehydes, the aldehydes, the mixed acetalization reaction with polyhydric alcohols, and the removal of generated water, It is thought to contribute to the improvement of the selectivity of the reaction.
しかしながら、この方法では、低級アルコールを多量
に必要とし、反応完結までに長時間を要し、しかも反応
率が頭打ちとなって定量的な反応率に至らない等、工業
的な製造方法としては、尚、改善の余地が認められる。However, this method requires a large amount of lower alcohol, takes a long time to complete the reaction, and the reaction rate reaches a plateau and does not reach a quantitative reaction rate. There is room for improvement.
[発明が解決しようとする課題] 本発明者らは、斯かる欠点を改善し、短時間で効率良
く目的とするアセタール類を製造するための工業的に優
れた製造方法を確立すべく、鋭意検討の結果、 (1)系中の低級アルコールの量が少なすぎた場合には
反応率が低くなり、反応の選択率も低下する、 (2)系中の低級アルコールの量が多すぎた場合は有効
に作用する低級アルコールの割合が低下し、反応完結ま
でに長時間を要し、反応率が頭打ちとなり、定量的に反
応することができない、 等の事実を認めた。[Problems to be Solved by the Invention] The present inventors have eagerly sought to improve such disadvantages and establish an industrially excellent production method for efficiently producing the desired acetal in a short time. As a result of the examination, (1) when the amount of the lower alcohol in the system is too small, the reaction rate decreases and the selectivity of the reaction also decreases. (2) When the amount of the lower alcohol in the system is too large The fact that the ratio of lower alcohols that work effectively decreased, it took a long time to complete the reaction, the reaction rate reached a plateau, and the reaction could not be performed quantitatively, was observed.
引き続く検討の中で、斯かる問題点は、低級アルコー
ルの仕込み方法を制御することによって解消され、所定
の目的が達成されることを見い出し、斯かる知見に基づ
いて本発明を完成するに至った。In subsequent studies, such problems were solved by controlling the method of charging the lower alcohol, and it was found that a predetermined object was achieved, and the present invention was completed based on such findings. .
即ち、本発明は、定量的に当該アセタール化反応をす
すめるために改良された工業的に優れたアセタール類の
製造方法を提供することを目的とする。That is, an object of the present invention is to provide an industrially excellent method for producing acetal which is improved to quantitatively promote the acetalization reaction.
[課題を解決するための手段] 本発明に係るアセタール類の製造方法は、疎水性有機
溶媒及び低級アルコールの存在下にアルデヒド類と多価
アルコールとを脱水縮合して一般式(I)で表わされる
アセタール類を製造するに際し、当該反応中において、
追加の低級アルコールを分割又は連続して仕込み、低級
アルコールと水との混合物を連続的に抜き出すことを特
徴とする。[Means for Solving the Problems] The method for producing an acetal according to the present invention is represented by the general formula (I) by dehydrating and condensing an aldehyde and a polyhydric alcohol in the presence of a hydrophobic organic solvent and a lower alcohol. During the production of the acetal,
It is characterized in that an additional lower alcohol is charged separately or continuously, and a mixture of the lower alcohol and water is continuously extracted.
[式中、A、Bは同一又は異なって、(X)n若しくは
(X′)mの置換基を有していてもよい、芳香環、ナフ
タレン環又はテトラヒドロナフタレン環を表わす。X、
X′は同一又は異なって、水素原子、炭素数1〜4のア
ルキル基、炭素数1〜4のアルコキシ基、ハロゲン原
子、カルボキシル基又はフェニル基を表わす。m及びn
は1〜5の整数、pは0又は1を表わす。] 一般式(I)で表わされるアセタール類の具体的製造
処方の一例を以下に示す。即ち、 (A)一般式(II)及び一般式(III)で表わされるベ
ンズアルデヒド化合物の少なくとも一種、 [式中、X及びnは一般式Iと同じである。] [式中、X′及びnは一般式Iと同じである。] (B)一般式(IV)で表わされる多価アルコール、 [式中、pは一般式Iと同じである。] (C)低級アルコール、必要に応じて (D)酸触媒、及び (E)疎水性有機溶媒 とを反応器中に仕込み、縮合反応を行ないつつ、別途、
低級アルコール(C)を分割して、又は連続的に仕込み
つつ、低級アルコールと水との混合物を連続的に系外に
抜き出すことにより反応を完結させる。 [In the formula, A and B are the same or different and each represents an aromatic ring, a naphthalene ring or a tetrahydronaphthalene ring which may have a substituent of (X) n or (X ') m . X,
X 'is the same or different and represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a halogen atom, a carboxyl group or a phenyl group. m and n
Represents an integer of 1 to 5, and p represents 0 or 1. An example of a specific production formulation of the acetal represented by the general formula (I) is shown below. That is, (A) at least one of the benzaldehyde compounds represented by the general formulas (II) and (III), [Wherein, X and n are the same as those in formula I. ] [Wherein X ′ and n are the same as in general formula I]. (B) a polyhydric alcohol represented by the general formula (IV), Wherein p is the same as in general formula I. ] (C) a lower alcohol, and if necessary, (D) an acid catalyst, and (E) a hydrophobic organic solvent, are charged into a reactor, and a condensation reaction is performed.
While the lower alcohol (C) is being divided or continuously charged, a mixture of the lower alcohol and water is continuously drawn out of the system to complete the reaction.
本発明に係る方法により製造され、一般式(I)で表
わされるアセタール類は、その2つの芳香核の置換基の
種類や数が同一の対称型、あるいはそれらが相互に異な
る非対称型の化合物も含まれ、更に夫々単独のみなら
ず、それらの任意の混合物も該当する。Acetals produced by the method according to the present invention and represented by the general formula (I) include symmetric compounds in which the types and numbers of the substituents of the two aromatic nuclei are the same, or asymmetric compounds in which these are different from each other. Included, as well as each alone, as well as any mixtures thereof.
本発明方法における1つの出発物質である一般式(I
I)又は(III)で表わされるベンズアルデヒド類(A)
としては、ベンズアルデヒド、炭素数1〜4のアルキル
基、ハロゲン原子、炭素数1〜4のアルコキシ基、カル
ボキシル基が1〜5個、特に1〜3個置換してなるベン
ズアルデヒド置換体及びそれらの任意の割合の混合物が
例示される。One starting material in the process of the present invention, the general formula (I
Benzaldehydes (A) represented by I) or (III)
A benzaldehyde, an alkyl group having 1 to 4 carbon atoms, a halogen atom, an alkoxy group having 1 to 4 carbon atoms, a benzaldehyde-substituted product obtained by substituting 1 to 5, especially 1 to 3 carboxyl groups, and any of them Are exemplified.
上記置換体において、特に好ましい置換基としては、
p−メチル、p−エチル、p−イソプロピル、p−ブチ
ル、p−フェニル、p−アルキル(C1〜C12)フェニ
ル、p−ハロゲン化フェニル、p−アルコキシフェニ
ル、2,4−ジメチル、3,4−ジメチル、2,4,5−トリメチ
ル、p−クロル、m−メチル、o−メチル、p−メトキ
シ、p−フルオロ等の核置換基が例示される。In the above substituent, particularly preferred substituents include
p-methyl, p-ethyl, p-isopropyl, p-butyl, p-phenyl, p-alkyl (C1-C12) phenyl, p-halogenated phenyl, p-alkoxyphenyl, 2,4-dimethyl, 3,4 Examples include nuclear substituents such as -dimethyl, 2,4,5-trimethyl, p-chloro, m-methyl, o-methyl, p-methoxy, p-fluoro and the like.
又、ナフタルデヒド、1,2,3,4−テトラヒドロ−6−
ナフタルデヒド及びそれらの上記と同様の基による置換
体も該当する。Also, naphthalaldehyde, 1,2,3,4-tetrahydro-6-
Also included are naphthalaldehydes and their substitutions with the same groups as above.
他方の出発物質である多価アルコール(B)は、ソル
ビトール又はキシリトールであり、又、これらの任意の
割合の混合物であってもよい。The other starting material, polyhydric alcohol (B), is sorbitol or xylitol, or may be a mixture of these in any proportion.
本発明に係る低級アルコール(C)として、具体的に
はメタノール、エタノール、n−プロパノール、イソプ
ロパノール、ブタノール等の炭素数1〜4の飽和脂肪族
アルコールが例示される。Specific examples of the lower alcohol (C) according to the present invention include saturated aliphatic alcohols having 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, isopropanol and butanol.
酸触媒(D)としては、通常のブレンステッド酸及び
ルイス酸のいずれもが使用でき、具体的には、硫酸、リ
ン酸、塩酸、パラトルエンスルホン酸、炭素数が2〜18
のアルキル基を有するベンゼンスルホン酸、ナフチルス
ルホン酸、G酸、R酸、塩化亜鉛等が例示される。As the acid catalyst (D), any of ordinary Bronsted acids and Lewis acids can be used, and specifically, sulfuric acid, phosphoric acid, hydrochloric acid, paratoluenesulfonic acid, having 2 to 18 carbon atoms
Benzene sulfonic acid, naphthyl sulfonic acid, G acid, R acid, zinc chloride and the like having an alkyl group of
疎水性有機溶媒(E)は分散媒体として作用し、その
種類としては沸点40〜200℃程度範囲内のものがよく、
特に水と低級アルコールを共沸物として反応系外に留去
せしめることの容易さから、例えば、ベンゼン、トルエ
ン、キシレン等の炭素数1〜4の低級アルキル基を1〜
3個置換基として有していてもよいベンゼン類、シクロ
ヘキサン、メチルシクロヘキサン、エチルシクロヘキサ
ン等の炭素数1〜4の低級アルキル基で置換されていて
もよいシクロヘキサン類、ヘキサン、ヘプタン、オクタ
ン、ノナン、デカン、ウンデカン、ドデカン等の炭素数
6〜16、好ましくは6〜12の直鎖又は分枝の飽和炭化水
素類が使用される。The hydrophobic organic solvent (E) acts as a dispersion medium, and its type is preferably a boiling point in the range of about 40 to 200 ° C.
In particular, from the ease of distilling water and a lower alcohol out of the reaction system as an azeotrope, for example, a lower alkyl group having 1 to 4 carbon atoms such as benzene, toluene, xylene and the like may be used.
Benzenes which may have three substituents, cyclohexanes which may be substituted with a lower alkyl group having 1 to 4 carbon atoms such as cyclohexane, methylcyclohexane and ethylcyclohexane, hexane, heptane, octane, nonane, Linear or branched saturated hydrocarbons having 6 to 16 carbon atoms, preferably 6 to 12 carbon atoms, such as decane, undecane and dodecane are used.
ベンズアルデヒド類(A)と多価アルコール(B)と
の仕込みモル比は、(A):(B)=1:1〜1:4程度の範
囲で適宜選択できるが、一般式(I)の化合物の選択率
向上の観点から、当該比率は、好ましくは1:1.5〜3程
度、より好ましくは1:1.8〜2.2程度とされる。以下、両
者を合せて「反応基質」という。The charge molar ratio of the benzaldehydes (A) and the polyhydric alcohol (B) can be appropriately selected in the range of (A) :( B) = 1: 1 to 1: 4, but the compound of the general formula (I) From the viewpoint of improving the selectivity, the ratio is preferably about 1: 1.5 to 3, more preferably about 1: 1.8 to 2.2. Hereinafter, both are collectively referred to as “reaction substrate”.
反応基質は、反応缶に初めから全量仕込んでもよい
し、低級アルコール(C)と混合し、均一溶液又は懸濁
液として仕込んでもよい。The reaction substrate may be initially charged in the reaction vessel in its entirety, or may be mixed with a lower alcohol (C) and charged as a homogeneous solution or suspension.
このときの低級アルコール(C)の使用量は、反応基
質1重量部に対して0.1〜5重量部程度の範囲で適宜選
択される。At this time, the amount of the lower alcohol (C) used is appropriately selected in the range of about 0.1 to 5 parts by weight based on 1 part by weight of the reaction substrate.
又、酸触媒(D)は、反応缶に初めから全量仕込んで
もよいし、上記均一溶液又は懸濁液に添加して仕込むこ
ともでき、その使用量は、特に限定されないが、一般的
には反応基質100重量部に対し0.05〜10重量部程度、好
ましくは0.2〜3重量部程度使用される。The acid catalyst (D) may be charged in its entirety to the reaction vessel from the beginning or may be added to the homogeneous solution or suspension to be charged. The amount of the acid catalyst (D) used is not particularly limited, but is generally not limited. It is used in an amount of about 0.05 to 10 parts by weight, preferably about 0.2 to 3 parts by weight, based on 100 parts by weight of the reaction substrate.
反応基質の濃度としては、約5〜90重量%の範囲内で
任意の濃度が選択でき、具体的には、用いる反応缶の形
態により反応基質濃度を選択して、系を低粘度スラリー
状態、ペースト状態、パウダー状態のいずれにも設定で
きる。反応基質濃度が上記範囲外であっても特に支障は
ないが、約5重量%を下回ると反応が緩慢になる傾向が
あり、約90重量%を超えると選択率が低下する傾向が認
められる。As the concentration of the reaction substrate, any concentration can be selected within a range of about 5 to 90% by weight. Specifically, the concentration of the reaction substrate is selected according to the form of the reaction vessel to be used, and the system is brought into a low viscosity slurry state. It can be set to either paste state or powder state. There is no particular problem even if the concentration of the reaction substrate is out of the above range, but if it is less than about 5% by weight, the reaction tends to be slow, and if it exceeds about 90% by weight, the selectivity tends to decrease.
反応基質濃度が20重量%程度以下の場合には系がスラ
リー状態のため、通常の撹拌翼による反応が可能であ
り、反応基質の全量一段仕込みでもよいが、それ以上の
濃度では、上記の均一溶液又は懸濁液の形態で分割又は
連続して仕込むことにより、撹拌翼に対する負荷が急激
に増大することもなく、一定した稼働状態を得ることが
でき、反応缶の壁面への内容物の固着を大幅に抑制する
ことができる。When the concentration of the reaction substrate is about 20% by weight or less, since the system is in a slurry state, it is possible to carry out the reaction with a normal stirring blade, and the entire amount of the reaction substrate may be charged in one step. By dividing or continuously charging in the form of a solution or a suspension, a constant operating state can be obtained without a sudden increase in the load on the stirring blade, and the contents are fixed to the wall of the reaction vessel. Can be greatly suppressed.
このとき、約50〜80℃程度に加温して当該均一溶液又
は懸濁液の粘度を低減した上で仕込むことも有効であ
る。At this time, it is also effective to heat the mixture to a temperature of about 50 to 80 ° C. to reduce the viscosity of the homogeneous solution or suspension before charging.
又、疎水性有機溶媒の仕込み方法は特に限定されるも
のではなく、初めから全量を仕込んでもよいし、反応の
進行に伴って分割して又は連続的に仕込んでもよい。The method of charging the hydrophobic organic solvent is not particularly limited, and the entire amount may be charged from the beginning, or may be charged separately or continuously as the reaction proceeds.
反応温度は、反応基質、疎水性有機溶媒等の種類によ
っても変り得るが、一般には40〜200℃程度、好ましく
は40〜130℃程度とすればよい。The reaction temperature may vary depending on the type of the reaction substrate, hydrophobic organic solvent, etc., but is generally about 40 to 200 ° C, preferably about 40 to 130 ° C.
本発明方法は、反応段階において追加の低級アルコー
ルを分割して、又は連続的に反応系内に追加し、低級ア
ルコールと水との混合物を連続的に抜き出すことを特徴
とする。The method of the present invention is characterized in that an additional lower alcohol is divided or added continuously into the reaction system in the reaction stage, and a mixture of the lower alcohol and water is continuously withdrawn.
この方法は、反応基質濃度の如何を問わず、反応速度
の向上と定量反応化のために有効であるが、とりわけ、
反応基質が20重量%以下のスラリー状態での反応には極
めて有効である。This method is effective for improving the reaction rate and for quantitative reaction regardless of the concentration of the reaction substrate.
It is extremely effective for a reaction in a slurry state in which the reaction substrate is 20% by weight or less.
反応開始時における低級アルコールの量は、反応基質
に対して約20〜150重量%程度、より好ましくは30〜100
重量%程度の範囲で任意に選択できる。The amount of the lower alcohol at the start of the reaction is about 20 to 150% by weight, more preferably 30 to 100% by weight based on the reaction substrate.
It can be arbitrarily selected within a range of about weight%.
分割して添加する低級アルコールの量は、反応基質に
対して3〜40重量%程度、より好ましくは8〜20重量%
程度の範囲内で適宜選択される。The amount of the lower alcohol to be added in portions is about 3 to 40% by weight, more preferably 8 to 20% by weight, based on the reaction substrate.
It is appropriately selected within the range of the degree.
反応完結までに添加される低級アルコールの添加回数
は、特に限定されないが、通常、2〜15回程度である。The number of times the lower alcohol is added until the completion of the reaction is not particularly limited, but is usually about 2 to 15 times.
反応基質濃度が20重量%以上で、反応基質を分割して
仕込む場合にも、この本発明に係る低級アルコールの仕
込み方法は有効である。即ち、反応の任意の段階、特に
好ましくは仕込んだ低級アルコール量の60〜95重量%程
度を抜き出した段階で、仕込み済みの反応基質に対して
上記と同様に1回当り3〜40重量%の低級アルコールを
添加し、低級アルコールと水の混合物を連続的に抜き出
す操作を繰り返すことにより、所定の効果を得ることが
できる。低級アルコールを連続的に添加する場合におい
ても、系内におけるアルコール量が上記分割仕込みの場
合と同様のアルコール濃度/反応基質の比率になるよう
に制御しながら仕込めばよい。例えば、反応基質の分割
又は連続仕込みが完了したときに反応率が80〜90%程度
であった場合にも、所定量の低級アルコールを1〜3回
程度仕込み/抜き出しを行なうことにより反応率をほぼ
100%にすることができる。The method for charging a lower alcohol according to the present invention is also effective when the reaction substrate is divided and charged at a reaction substrate concentration of 20% by weight or more. That is, at an optional stage of the reaction, particularly preferably at a stage of extracting about 60 to 95% by weight of the charged lower alcohol amount, 3 to 40% by weight per one time of the charged reaction substrate in the same manner as described above. A predetermined effect can be obtained by repeating the operation of adding a lower alcohol and continuously extracting a mixture of the lower alcohol and water. Even when the lower alcohol is continuously added, the lower alcohol may be charged while controlling so that the alcohol amount in the system becomes the same ratio of alcohol concentration / reaction substrate as in the case of the above-mentioned divided charging. For example, even when the reaction rate is about 80 to 90% when the division or continuous charging of the reaction substrate is completed, the reaction rate is reduced by charging / withdrawing a predetermined amount of lower alcohol about 1 to 3 times. Almost
Can be 100%.
反応は、窒素ガス等の不活性ガス雰囲気下で行なうこ
とが、目的物の着色を防止し、又、反応時の安全性を向
上せしめる上で好ましい。The reaction is preferably carried out in an atmosphere of an inert gas such as nitrogen gas in order to prevent coloring of the target substance and to improve safety during the reaction.
反応時間は、通常2〜10時間程度、特に3〜6時間程
度である。The reaction time is usually about 2 to 10 hours, especially about 3 to 6 hours.
スラリー状又は湿った粉体状の形態で得られる反応混
合物は、必要に応じてこれを濾過し、以下常法に従って
水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ
金属の水溶液に例示される中和剤により酸触媒を中和
し、次いで常温から90℃程度までの水により未反応の反
応基質、反応中間体等を洗浄除去し、乾燥し、必要に応
じて粉砕して製品とする。The reaction mixture obtained in the form of a slurry or a wet powder is filtered, if necessary, and is exemplified by an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide according to a conventional method. The acid catalyst is neutralized with a wetting agent, and then the unreacted reaction substrates, reaction intermediates and the like are washed away with water from room temperature to about 90 ° C., dried, and, if necessary, ground to obtain a product.
[実施例] 以下、実施例を掲げ、本発明を詳しく説明する。EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples.
実施例1 ソルビトール粉末38g(0.21モル)、ベンズアルデヒ
ド44g(0.42モル)、シクロヘキサン700ml、50%硫酸5g
及びメタノール70mlをデカンター付き冷却機、温度計、
撹拌機及び窒素ガス導入口を有する2lの4ツ口反応缶に
仕込み、撹拌しながら加熱した。系の温度が上昇するに
つれて還流が開始される。反応中、メタノール/生成水
を抜き出すにつれて温度は上昇し、反応温度が75℃に到
達するたびにメタノール15mlを繰り返して添加した。所
定時間ごとに試料を抜き出し、そのときのアセタール類
の組成(重量基準、ガスクロマトグラフフィーによる)
を求めた。得られた結果当該時点までに添加したメタノ
ールの量の及び添加回数と併せて第1表に掲げる。4.5
時間反応後、ジベンジリデンソルビトール74.8gを得た
(収率99.7重量%)。Example 1 Sorbitol powder 38 g (0.21 mol), benzaldehyde 44 g (0.42 mol), cyclohexane 700 ml, 50% sulfuric acid 5 g
70 ml of methanol and a cooler with a decanter, a thermometer,
It was charged into a 2 l 4-necked reaction vessel having a stirrer and a nitrogen gas inlet, and heated with stirring. Reflux begins as the temperature of the system increases. During the reaction, the temperature rose as methanol / produced water was withdrawn, and 15 ml of methanol was repeatedly added each time the reaction temperature reached 75 ° C. A sample is withdrawn at predetermined time intervals, and the composition of the acetal at that time (by weight, based on gas chromatography)
I asked. The results obtained are shown in Table 1 together with the amount of methanol added up to that point and the number of additions. 4.5
After the reaction for 7 hours, 74.8 g of dibenzylidene sorbitol was obtained (yield: 99.7% by weight).
実施例2 ベンズアルデヒドに代えて、p−メチルベンズアルデ
ヒド49.8g(0.42モル)を仕込む以外は実施例1と同様
に反応を行ない、メタノール全添加量220ml、メタノー
ル追加回数10回、反応時間3.5時間の条件下で、p−メ
チル置換ジベンジリデンソルビトール79.9gを得た(収
率99.2重量%)。Example 2 The reaction was carried out in the same manner as in Example 1 except that 49.8 g (0.42 mol) of p-methylbenzaldehyde was used instead of benzaldehyde. The conditions were as follows: total amount of methanol added: 220 ml, number of methanol additions: 10, and reaction time: 3.5 hours. Below, 79.9 g of p-methyl-substituted dibenzylidene sorbitol were obtained (yield 99.2% by weight).
実施例3 ベンズアルデヒドに代えて、p−エチルベンズアルデ
ヒド56.5g(0.42モル)を仕込む以外は実施例1と同様
に反応を行ない、メタノール全添加量220ml、メタノー
ル添加回数10回、反応時間3時間の条件下で、p−エチ
ル置換ジベンジリデンソルビトール86.2g(収率99.8重
量%)を得た。Example 3 A reaction was carried out in the same manner as in Example 1, except that 56.5 g (0.42 mol) of p-ethylbenzaldehyde was used instead of benzaldehyde. The conditions were as follows: total amount of methanol added: 220 ml, methanol added 10 times, reaction time: 3 hours. Under the conditions, 86.2 g (yield 99.8% by weight) of p-ethyl-substituted dibenzylidene sorbitol was obtained.
比較例1 反応開始時において250mlメタノールを一括して仕込
み、反応途中においてはメタノールを追加せずに反応し
た以外は実施例1に準じて目的とするアセタール類を調
製した。6時間反応後、第1表に示す組成を有するアセ
タール類を45g(収率60重量%)得た。Comparative Example 1 At the start of the reaction, 250 ml of methanol was charged all at once, and the target acetal was prepared in the same manner as in Example 1 except that the reaction was carried out without adding methanol during the reaction. After the reaction for 6 hours, 45 g of acetal having the composition shown in Table 1 was obtained (yield: 60% by weight).
比較例2 反応開始時においてメタノールを500ml仕込み、反応
途中においてはメタノールを追加せずに反応した以外は
実施例1に準じて目的とするアセタール類を調製した。
8時間反応後、第1表に示す組成を有するアセタール類
を49g(収率65重量%)得た。Comparative Example 2 The target acetal was prepared according to Example 1 except that 500 ml of methanol was charged at the start of the reaction, and the reaction was carried out without adding methanol during the reaction.
After the reaction for 8 hours, 49 g (yield: 65% by weight) of acetal having the composition shown in Table 1 was obtained.
比較例3 反応開始時においてメタノールを800ml仕込み、反応
途中においてはメタノールを追加せずに反応した以外は
実施例1に準じて目的とするアセタール類を調製した。
10時間反応後、第1表に示す組成を有するアセタール類
を64g(収率85重量%)得た。Comparative Example 3 At the start of the reaction, 800 ml of methanol was charged, and the target acetal was prepared in the same manner as in Example 1 except that the reaction was carried out without adding methanol during the reaction.
After the reaction for 10 hours, 64 g (yield: 85% by weight) of acetal having the composition shown in Table 1 was obtained.
比較例4 反応開始時においてメタノールを900ml仕込み、反応
途中においてはメタノールを追加せずに反応した以外は
実施例1に準じて目的とするアセタール類を調製した。
12時間反応後、第1表に示す組成を有するアセタール類
を68g(収率91重量%)得た。Comparative Example 4 The objective acetal was prepared according to Example 1 except that 900 ml of methanol was charged at the start of the reaction, and the reaction was carried out without adding methanol during the reaction.
After the reaction for 12 hours, 68 g (91% by weight) of acetal having the composition shown in Table 1 was obtained.
[発明の効果] 本発明方法を適用することにより、短時間に効率良く
目的とするアセタール類を製造することができる。[Effects of the Invention] By applying the method of the present invention, the desired acetal can be efficiently produced in a short time.
Claims (1)
下にアルデヒド類と多価アルコールとを脱水縮合して一
般式(I) [式中、A、Bは同一又は異なって、(X)n若しくは
(X′)mの置換基を有していてもよい、芳香環、ナフ
タレン環又はテトラヒドロナフタレン環を表す。X、
X′は同一又は異なって、水素原子、炭素数1〜4のア
ルキル基、炭素数1〜4のアルコキシ基、ハロゲン原
子、カルボキシル基又はフェニル基を表す。m及びnは
夫々1〜5の整数、pは0又は1を表す。] で表されるアセタール類を製造するに際し、当該反応中
において、追加の低級アルコールを分割又は連続して仕
込み、低級アルコールと水との混合物を連続的に抜き出
すことを特徴とするアセタール類の製造方法。An aldehyde and a polyhydric alcohol are dehydrated and condensed in the presence of a hydrophobic organic solvent and a lower alcohol to obtain a compound of the formula (I) [Wherein, A and B are the same or different and each represents an aromatic ring, a naphthalene ring or a tetrahydronaphthalene ring which may have a substituent of (X) n or (X ') m. X,
X 'is the same or different and represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a halogen atom, a carboxyl group or a phenyl group. m and n each represent an integer of 1 to 5, and p represents 0 or 1. In producing the acetal represented by the formula, during the reaction, an additional lower alcohol is divided or continuously charged, and a mixture of the lower alcohol and water is continuously extracted to produce an acetal. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1052719A JP2711884B2 (en) | 1989-03-03 | 1989-03-03 | Method for producing acetal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1052719A JP2711884B2 (en) | 1989-03-03 | 1989-03-03 | Method for producing acetal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02231488A JPH02231488A (en) | 1990-09-13 |
JP2711884B2 true JP2711884B2 (en) | 1998-02-10 |
Family
ID=12922728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1052719A Expired - Fee Related JP2711884B2 (en) | 1989-03-03 | 1989-03-03 | Method for producing acetal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2711884B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3067972B2 (en) * | 1995-03-03 | 2000-07-24 | 新日本理化株式会社 | Hexagonal crystal of diacetal, nucleating agent containing the hexagonal crystal, polyolefin resin composition and molded article containing the hexagonal crystal, and molding method of the composition |
WO2018021161A1 (en) | 2016-07-29 | 2018-02-01 | 新日本理化株式会社 | Crystal nucleating agent for polyolefin resin, method for producing crystal nucleating agent for polyolefin resin, and method for improving fluidity of crystal nucleating agent for polyolefin resin |
CN109661424B (en) | 2016-08-25 | 2022-04-19 | 新日本理化株式会社 | Crystal nucleating agent for polyolefin resin, method for producing crystal nucleating agent for polyolefin resin, and method for improving fluidity of crystal nucleating agent for polyolefin resin |
EP3604383B1 (en) * | 2017-03-31 | 2023-09-06 | NOF Corporation | Production method of polyoxyethylene derivative having plurality of hydroxyl groups at terminal |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4843748A (en) * | 1971-10-06 | 1973-06-23 | ||
JPS60184075A (en) * | 1984-03-01 | 1985-09-19 | Mitsui Petrochem Ind Ltd | Novel polycyclic acetal compound, its preparation, and curing agent for epoxy resin using it |
-
1989
- 1989-03-03 JP JP1052719A patent/JP2711884B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02231488A (en) | 1990-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07107067B2 (en) | Method for producing acetals | |
Scott et al. | Clean, efficient syntheses of cyclotriveratrylene (CTV) and tris-(O-allyl) CTV in an ionic liquid | |
JP2711884B2 (en) | Method for producing acetal | |
EP0421329B1 (en) | Process for preparation of diacetal compounds | |
RU2185368C2 (en) | Method of oxidation of aromatic compounds to hydroxyaromatic compounds | |
EP0497976B9 (en) | Method of producing acetals | |
WO1981003331A1 (en) | Process for preparing a dibenzylidenesorbitol or a dibenzylidenexylitol | |
JP2010254693A (en) | Method for producing substituted 1,4-quinone methide | |
JPH08245483A (en) | Method of simultaneously producing cyclopropyl alkyl ketone and alkyl-4,5-dihydro-2-alkyl- furan | |
JPH0899923A (en) | Preparation of unsaturated ether | |
CN108658803B (en) | Synthesis method of N, N-dialkyl diphenyl propionamide | |
CN109126880B (en) | Cerium salt-containing catalyst, preparation method thereof and application of catalyst in preparation of butyl propionate | |
Jagadale et al. | Crown ether complex cation like ionic liquids: synthesis and catalytic applications in organic reaction | |
JPH0229054B2 (en) | ||
US4120868A (en) | Cyclic 2-methyl-2,4-dialkoxy-3-buten-1-al-acetals, their preparation and use | |
CN111004122B (en) | Synthesis method of gem-difluoroallyl compound in aqueous phase | |
EP0651024B1 (en) | Method of producing polymethine dyes | |
US6743942B1 (en) | Process for the transesterification of keto ester with alcohol using polyaniline salts as catalyst | |
JP2872294B2 (en) | Diacetal manufacturing method | |
JP2003519679A (en) | Novel process for producing .alpha .- (2-4-disulfophenyl) -N-tert-butylnitrone and pharmaceutically acceptable salts thereof | |
CN118206440A (en) | Efficient and convenient preparation method of diaryl ketone | |
JPS5855440A (en) | Preparation of acetal | |
Sumpter | The Reaction of Phenylmagnesium Bromide with N-Phenylisatin | |
SU1735274A1 (en) | Method of 4,4-dinitrobiphenyl-oxide synthesis | |
JP2020508346A (en) | Preparation process of pentenoate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071031 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081031 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |