JP2708048B2 - Metal evaporation recovery method - Google Patents

Metal evaporation recovery method

Info

Publication number
JP2708048B2
JP2708048B2 JP63223277A JP22327788A JP2708048B2 JP 2708048 B2 JP2708048 B2 JP 2708048B2 JP 63223277 A JP63223277 A JP 63223277A JP 22327788 A JP22327788 A JP 22327788A JP 2708048 B2 JP2708048 B2 JP 2708048B2
Authority
JP
Japan
Prior art keywords
metal
melting point
crucible
concentration
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63223277A
Other languages
Japanese (ja)
Other versions
JPH0273927A (en
Inventor
豊彦 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63223277A priority Critical patent/JP2708048B2/en
Publication of JPH0273927A publication Critical patent/JPH0273927A/en
Application granted granted Critical
Publication of JP2708048B2 publication Critical patent/JP2708048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 近時、同位体金属を蒸発器内で電子ビーム等の高エネ
ルギー照射加熱手段により蒸発させ、蒸気状態のもとで
各同位体金属を分離する技術の研究開発が進められてい
る。この場合、分離された蒸気状態にある各同位体金属
は、該金属の融点以上に加熱した回収器で液化回収する
ことができる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application field] Recently, isotope metals are evaporated by high energy irradiation heating means such as an electron beam in an evaporator, and each isotope metal is separated under a vapor state. The research and development of the technology to be performed is proceeding. In this case, each separated isotope metal in a vapor state can be liquefied and recovered by a recovery device heated to a temperature equal to or higher than the melting point of the metal.

本発明は、上記した同位体金属の液化回収技術に関連
した金属の蒸発回収方法に係り、特に、ルツボ内の金属
を電子ビーム等で加熱溶融せしめて蒸発させた後、その
蒸気を回収器で液化して回収する際、熱経済性の向上及
び腐食の低減等に格別の効果を有する金属の蒸発回収方
法に関する。
The present invention relates to a method for evaporating and recovering metals related to the above-mentioned isotope metal liquefaction and recovery technology. The present invention relates to a method for evaporating and recovering a metal which has a special effect in improving thermal economy and reducing corrosion when liquefied and recovered.

[従来の技術] 金属等の表面を電子ビーム等で照射して加熱溶融し蒸
発させる方法は、エス.シラー他著、エレクトロン ビ
ーム テクノロジー、(1982年)第150頁ないし第254頁
(S.Schiller et el,ELECTRON BEAM TECHNOLOGI(198
2)pp150−254)にその一例が示されているように、冶
金あるいは蒸着の分野で汎用的に使用されている。この
方法では一般に冷却されるルツボ内に被蒸発物質を保持
するが、高温の蒸発部と冷却されるルツボ内面との間の
温度差に起因して、溶融した被蒸発物質の自然対流が発
生する。このため、被蒸発物質に入射された電子ビーム
等のエネルギーのうち大部分は対流伝熱によってルツボ
冷却用の冷媒へ放熱され、蒸発に有効に利用されるエネ
ルギーの割合は小さい。エネルギー利用効率を向上する
ことは、蒸発器の運転コスト低減上極めて重要である。
このためには、ルツボ内における対流を抑制することが
効果的である。対流抑制のための方法としては、障壁を
設けることにより対流を遮ぎる方法(例えば特開昭52−
2845号)、電磁石をルツボ近傍に設置し磁力によって対
流と逆方向の力を生成せしめて対流を抑制する方法(例
えば特開昭61−222984号)が公知である。しかし、前者
については障壁の耐熱性、及び特に腐食性の強い金属に
対しては、高温での耐食性が問題となる。又、後者につ
いては、対流抑制に適した磁力のコントロールが難しい
こと、設備が大がかりとなること等の問題がある。
[Prior Art] A method of irradiating a surface of metal or the like with an electron beam or the like to heat and melt and evaporate the surface is described in S.K. Schiller et al., Electron Beam Technology, (1982) pp. 150-254 (S. Schiller et el, ELECTRON BEAM TECHNOLOGI (198
2) As shown in pp150-254), it is widely used in the field of metallurgy or vapor deposition. In this method, a substance to be evaporated is generally held in a crucible to be cooled, but natural convection of the molten substance to be evaporated occurs due to a temperature difference between a high-temperature evaporating section and an inner surface of the crucible to be cooled. . For this reason, most of the energy of the electron beam or the like incident on the substance to be evaporated is radiated to the crucible cooling refrigerant by convection heat transfer, and the proportion of energy effectively used for evaporation is small. Improving the energy utilization efficiency is extremely important for reducing the operating cost of the evaporator.
For this purpose, it is effective to suppress convection in the crucible. As a method for suppressing convection, a method of blocking convection by providing a barrier (for example,
No. 2845) and a method in which an electromagnet is placed near a crucible to generate a force in a direction opposite to convection by magnetic force to suppress convection (for example, Japanese Patent Application Laid-Open No. Sho 61-222984) is known. However, in the former case, the heat resistance of the barrier and the corrosion resistance at a high temperature become a problem particularly for metals having high corrosiveness. In the latter case, there are problems such as difficulty in controlling magnetic force suitable for suppressing convection and large-scale equipment.

一方、蒸発した物質を回収器面上で液化して回収する
方法については、金属についてはあまり公知例はない
が、極力低温で動作することが、回収器の熱経済性を良
好ならしめる上からも、回収器の耐熱性及び耐食性の観
点からも好ましい。
On the other hand, as for the method of liquefying and recovering the evaporated substance on the surface of the recovery device, there are not many well-known examples of the metal, but from the viewpoint of improving the thermal economy of the recovery device, operating at the lowest possible temperature is preferable. Is also preferable from the viewpoint of heat resistance and corrosion resistance of the recovery device.

[発明が解決しようとする課題] 上記のように、従来の技術は、ルツボにおける対流の
抑制、回収器における作動温度の低温化の点で満足なも
のではなかった。
[Problems to be Solved by the Invention] As described above, the conventional technology is not satisfactory in terms of suppressing convection in a crucible and lowering the operating temperature in a recovery unit.

本発明の目的は、上記したような蒸発・回収器におけ
る問題点を解決し、熱経済性の良好な、かつ耐熱性、耐
食性等の問題の少ない、金属の蒸発・回収方法を提供す
ることにある。
An object of the present invention is to solve the above-mentioned problems in the evaporator / collector and to provide a method for evaporating / recovering metal which has good thermal economy and has few problems such as heat resistance and corrosion resistance. is there.

[課題を解決するための手段] 上記目的を達成するため、本発明による金属の蒸発回
収方法は、ルツボ等の蒸発器に保持した被蒸発金属を電
子ビーム等の加熱手段によって加熱溶融して蒸発させ、
その蒸気を回収器にて液化回収する金属の蒸発回収方法
において、前記被蒸発金属として、回収を目的とする金
属単体と1種以上の他の元素を含む添加元素とで合金化
した合金系を用い、添加元素濃度に依存する前記合金系
の融点特性と蒸発時における前記金属単体及び添加元素
の各蒸気圧との相互の関係を利用して、前記添加元素濃
度を適宜選定することにより、前記蒸発器においては合
金系の融点を可及的に上昇せしめると共に、前記回収器
においては合金系の融点を可及的に低下させるようにし
たことを特徴とするものである。即ち、本発明において
は、金属に適切な元素を適当量添加して合金化すること
により融点を金属単体の融点から変化させて、ルツボ中
では融点を高くし、逆に回収器では融点を低くして取扱
うものである。
[Means for Solving the Problems] In order to achieve the above object, a method for evaporating and recovering a metal according to the present invention comprises evaporating a metal to be evaporated held in an evaporator such as a crucible by heating and melting it by a heating means such as an electron beam. Let
In the method of evaporating and recovering the vapor by liquefying and recovering the vapor in a recovery device, the metal to be evaporated is an alloy system alloyed with a single metal to be recovered and an additional element containing at least one other element. By using the mutual relationship between the melting point characteristics of the alloy system depending on the concentration of the additive element and the vapor pressure of the metal alone and the additive element during evaporation, by appropriately selecting the additive element concentration, In the evaporator, the melting point of the alloy is raised as much as possible, and in the collector, the melting point of the alloy is lowered as much as possible. That is, in the present invention, the melting point is changed from the melting point of the metal alone by adding an appropriate amount of an appropriate element to the metal and alloying, so that the melting point is increased in the crucible, and conversely, the melting point is reduced in the recovery device. It is handled.

[作 用] 金属を合金化すると、添加元素の種類及び濃度に応じ
て融点の上昇あるいは降下を生じることは公知の事実で
あるが、本発明では、添加元素濃度に依存する合金系の
融点特性と蒸発時における金属単体及び添加元素の各蒸
気圧との相互の関係を利用して、添加元素の種類とその
濃度を適切に選ぶことによって、ルツボ内においては、
融点を可及的に上昇せしめて、固相領域を形成しやすく
することにより、対流を抑制する。これと同時に、金属
と添加元素の蒸気圧の差を利用して、回収器において
は、蒸気状態における添加元素濃度を蒸発器ルツボ内の
固体もしくは液体状態における添加元素濃度と異なる添
加元素濃度とすることで合金の融点を可及的に降下せし
めることにより、回収器の作動温度の低下を可能とす
る。
[Operation] It is a known fact that when a metal is alloyed, the melting point rises or falls depending on the type and concentration of the additive element. However, in the present invention, the melting point characteristic of the alloy system depending on the additive element concentration is known. In the crucible, by appropriately selecting the type and concentration of the additional element by utilizing the correlation between the elemental metal and the vapor pressure of the additional element at the time of evaporation,
Convection is suppressed by increasing the melting point as much as possible to facilitate the formation of the solid phase region. At the same time, using the difference in vapor pressure between the metal and the additive element, the concentration of the additive element in the vapor state is made different from the additive element concentration in the solid or liquid state in the evaporator crucible in the recovery device. As a result, the operating temperature of the collector can be lowered by lowering the melting point of the alloy as much as possible.

第2図において、本発明の作用を2元合金の場合を例
にとって説明する。第2図の合金系では、添加元素濃度
が零から増大するにつれて融点が金属単体の融点TMより
も低下し、ある濃度において極小点TBを生ずる、さらに
濃度を増大させると、融点は添加元素の融点Tmに向って
上昇し金属単体の融点を上まわるようになる。本発明で
は、添加元素として、上記のような融点特性を有すると
ともに蒸気圧Pmが金属単体の蒸気圧PMよりも低い元素を
用いることにより、第2図に示すようにまずルツボ内で
は、A点の濃度に設定することで融点を金属単体の融点
TMよりも高いTAへと上昇せしめる。一方、ルツボより蒸
発する合金蒸気の成分比は、近似的に金属と添加元素の
蒸気圧の比Pm/PM及びルツボ内における両者の成分比Xa m
/Xa Mの積に等しい(Raoultの法則)ので、ルツボ内にお
ける添加元素濃度点Aの位置を調節すれば、合金蒸気に
おける添加元素の濃度を丁度B点の位置にもってくるこ
とが可能となり、回収器における融点を金属単体の融点
TMよりも低い極小点の融点TBへと低下せしめることがで
きる。
In FIG. 2, the operation of the present invention will be described by taking a binary alloy as an example. In the alloy system shown in FIG. 2, as the concentration of the added element increases from zero, the melting point becomes lower than the melting point T M of the metal alone, and a minimum point T B is generated at a certain concentration. increases toward the melting point T m of a element is so exceed the melting points of the metal itself. In the present invention, as an additional element, by using a lower element than the vapor pressure P M of the vapor pressure P m is a simple metal which has a melting point above properties, first in the crucible as shown in FIG. 2, By setting the concentration at point A, the melting point will be
Increase to T A higher than T M. On the other hand, the component ratio of the alloy vapor evaporated from the crucible, approximately two component ratio of the ratio P m / P M and the crucible of the vapor pressure of the additive element and the metal X a m
/ X a M (Raoult's law), so by adjusting the position of the additive element concentration point A in the crucible, the concentration of the additive element in the alloy vapor can be exactly brought to the position of point B. The melting point of the recovery unit
It can be allowed to drop to the melting point T B of lower minimum points than T M.

なお、第2図においては液相線のみを表示したが、実
際の合金系の多くは第3図に概念を示すように液相線の
他に固相線を有し、両者の中間は液層と固相とが共有す
るいわゆる凝固区間となる。凝固区間内では、所定の合
金温度と添加元素濃度に対して固相の割合は次式で与え
られる。
Although only the liquidus is shown in FIG. 2, most of the actual alloy systems have a solidus in addition to the liquidus as shown in FIG. This is a so-called solidification section in which the layer and the solid phase are shared. In the solidification zone, the ratio of the solid phase to the predetermined alloy temperature and the added element concentration is given by the following equation.

但し、X,X1,X2は第3図内に表示したように、 X :合金中の添加元素濃度 X1:合金温度Tにおいて全て液相となる添加元素濃
度 X2:合金温度Tにおいて全て固相となる添加元素濃
度 である。
However, X, X 1 , and X 2 are as shown in FIG. 3, where X is the concentration of the additive element in the alloy X 1 : the concentration of the additive element that is all in the liquid phase at the alloy temperature T X 2 : the concentration of the additive element in the alloy All are additive element concentrations that become solid phase.

ルツボ内において固相が存在することに基づく対流抑
制降下について、第4図及び第5図を用いて説明する。
第4図に示す従来例では、ルツボ1内に金属2を充填
し、電子ビーム3を金属表面に照射することによって加
熱溶解せしめる。この場合電子ビームの照射領域が局所
的に加熱されて高温となり、金属の蒸発領域を形成する
とともに、金属の溶湯内の温度分布に誘起されて熱対流
4が生じる。この対流によって蒸発領域からルツボ内壁
に移送される熱量は、金属の蒸発に必要な正味熱量より
もはるかに大きく、蒸発のためのエネルギー効率を著し
く低下させる。さらに、上記の伝熱によってルツボ内壁
が高温にさらされるため、ルツボの耐熱性並びに金属に
よる腐食(高温の液体金属は一般的に腐食性が強く、ル
ツボ材を急速に浸食する)が問題となる。これを避ける
ためには、ルツボを冷媒流路5に流れる冷媒によりルツ
ボ内壁に金属の固相が形成される程度まで強制冷却する
必要があるが、その場合、ルツボ内壁の低温化によって
耐熱性及び耐食性の問題が緩和される反面、蒸発領域と
ルツボ内壁間の大きな温度差によって強い対流が形成さ
れる結果、熱損失が増加し、蒸発のためのエネルギー効
率はさらに低下する。
The convection suppression drop based on the presence of the solid phase in the crucible will be described with reference to FIGS.
In the conventional example shown in FIG. 4, a crucible 1 is filled with a metal 2 and an electron beam 3 is applied to the metal surface to be heated and melted. In this case, the region irradiated with the electron beam is locally heated to a high temperature to form a metal evaporation region, and a heat convection 4 is generated by the temperature distribution in the metal melt. The amount of heat transferred from the evaporation zone to the inner wall of the crucible by this convection is much larger than the net heat required for evaporating the metal, and significantly lowers the energy efficiency for evaporation. Further, since the inner wall of the crucible is exposed to high temperatures due to the above-described heat transfer, heat resistance of the crucible and corrosion by a metal (a high-temperature liquid metal is generally highly corrosive and rapidly erodes the crucible material) become problems. . In order to avoid this, it is necessary to forcibly cool the crucible to the extent that a solid phase of the metal is formed on the inner wall of the crucible by the refrigerant flowing through the refrigerant flow path 5. While the problem of corrosion resistance is alleviated, a large convection is formed due to a large temperature difference between the evaporation region and the inner wall of the crucible, so that heat loss increases and energy efficiency for evaporation further decreases.

これに対して、本発明では、金属をルツボ内で合金化
することによって金属単体の場合よりも融点を上昇せし
める。これによって、第5図に示すように、流路5を流
れる冷媒による過度の冷却なしにルツボの内壁面に固相
部11aを形成せしめる。固相部における伝熱は熱伝導が
主体であり、対流熱伝達と比較して伝熱量ははるかに小
さいため、熱損失の低減が得られるとともにルツボ内壁
の低温化に効果がある。さらに、第3図において説明し
たような凝固区間を有する合金系では、液状の金属合金
11に対して固相の浮遊物11bを生じる場合がある。即
ち、金属の比重が大きく、添加元素の比重が相対的に小
さい場合、凝固区間における固相は第3図におけるX
2の、また液相はX1の添加元素濃度を有するので、金属
の割合の小さい固相の方が相対に液相よりも比重が小さ
く、浮く可能性が大きい。浮遊物11bは対流4に対して
障壁として作用し、これを抑制せしめることが期待され
る。
On the other hand, in the present invention, the metal is alloyed in the crucible to increase the melting point as compared with the case of a single metal. As a result, as shown in FIG. 5, the solid phase portion 11a is formed on the inner wall surface of the crucible without excessive cooling by the refrigerant flowing through the flow path 5. The heat transfer in the solid phase portion is mainly conducted by heat, and the amount of heat transfer is much smaller than that of convective heat transfer. Therefore, heat loss can be reduced and the temperature of the crucible inner wall can be reduced. Further, in an alloy system having a solidification section as described in FIG.
In some cases, a suspended solid 11b of the solid phase 11 may be generated. That is, when the specific gravity of the metal is large and the specific gravity of the additive element is relatively small, the solid phase in the solidification section is X in FIG.
2, and since the liquid phase has an additional element concentration of X 1, towards the smaller the solid phase of the proportion of metal is lower specific gravity than the liquid phase relative, but are likely to float. The floating substance 11b acts as a barrier against the convection 4 and is expected to suppress the convection.

[実 施 例] 以下、本発明の一実施例を第1図により説明する。第
1図は金属(以下Mと略す)に添加元素(以下mと略
す)を添加したときの濃度と合金状態の関係すなわち状
態図を示す。本系においては、添加元素mの濃度がB点
にあるとき融点は極小の値TBとなり、金属単体の融点TM
に対して低い値を与える。さらに濃度を増加させると、
例えば添加元素mの濃度がA点にあるときは金属単体の
融点を越える温度においても固相を有するようになる。
Embodiment An embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows a relationship between a concentration and an alloy state, that is, a phase diagram when an additive element (hereinafter abbreviated as m) is added to a metal (hereinafter abbreviated as M). In this system, when the concentration of the additive element m is at the point B , the melting point becomes a minimum value T B , and the melting point T M
To a low value. When the concentration is further increased,
For example, when the concentration of the additive element m is at the point A, the solid phase becomes solid even at a temperature exceeding the melting point of the metal simple substance.

今、ルツボ内に金属と添加元素の合金を入れて、所定
温度に加熱して蒸発させる場合を考える。蒸発する蒸気
中の両者の成分比はRaoultの法則によれば ここで、 Pm :添加元素の蒸気圧(Torr) PM :金属の蒸気圧(Torr) Xa m:ルツボ内の添加元素濃度(−) Xa M:ルツボ内の金属の濃度(−) 一例として、Pm=1Torr,PM=16Torrであるとし、Xa m
=0.8とすると、(1)式から 上式を変形すると 即ち、ルツボ内においてA点(mの濃度80%、融点TA
>TM)であったものが、蒸気においてはB点(mの濃度
20%、融点TB<TM)に変化する。実際の合金はRaoultの
法則から多少ずれるが、A点の位置を調整することで容
易にB点を融点の極小点の近傍に一致させることが可能
である。また、蒸発温度が上記より異なる場合でもその
温度に対応する蒸気圧を用いて、(1)式の関係から適
切なA点の位置を求めることができる。
Now, consider a case where an alloy of a metal and an additive element is put in a crucible and heated to a predetermined temperature to evaporate. According to Raoult's law, the ratio of the two components in the evaporating vapor is Here, P m: vapor pressure (Torr) P M of added elements: metal vapor pressure (Torr) X a m: additive element concentration in the crucible (-) X a M: the concentration of the metal in the crucible (-) As an example, assume that P m = 1 Torr and P M = 16 Torr, and X a m
Assuming that = 0.8, from equation (1) When the above formula is transformed That is, point A (concentration of m: 80%, melting point T A ) in the crucible
> T M ), but point B (concentration of m
20%, melting point T B <T M ). Although the actual alloy slightly deviates from Raoult's law, it is possible to easily match the point B to the vicinity of the minimum melting point by adjusting the position of the point A. Further, even when the evaporation temperature is different from the above, an appropriate position of the point A can be obtained from the relationship of the equation (1) using the vapor pressure corresponding to the temperature.

本実施例によれば、ルツボ内で金属単体の場合よりも
融点の高い合金を形成せしめることができ、固相部が生
じることにより対流抑制に効果がある。一方、蒸気は融
点の低い合金成分となるため、回収器における液化回収
温度を金属単体の場合よりも低下させることができ、放
熱による熱損失や高温による腐食等を低減できるという
効果がある。また、ルツボに合金を溶解供給する場合も
蒸気の合金成分のものを供給すればよいので低温で溶解
すればよく、回収器におけるのと同様の効果が期待でき
る。
According to the present embodiment, it is possible to form an alloy having a higher melting point in the crucible than in the case of a single metal, and there is an effect of suppressing convection by forming a solid phase portion. On the other hand, since the vapor is an alloy component having a low melting point, the liquefaction and recovery temperature in the recovery device can be lowered as compared with the case of a single metal, and there is an effect that heat loss due to heat radiation and corrosion due to high temperature can be reduced. Also, when dissolving and supplying the alloy to the crucible, it is only necessary to supply the alloy component of the vapor, so that the melting may be performed at a low temperature, and the same effect as in the recovery device can be expected.

第6図は第1図の実施例の変形例を示したものであ
る。本系では、添加元素濃度の増大に伴い融点は単調に
増加し、かつ添加元素の蒸気圧Pmが金属の蒸気圧PMより
も低い2元合金系が該当する。本変形例では融点の極小
点が存在しないため、回収器の低温作動化が期待できな
い点で不利であるが、添加元素に高融点かつ極く低蒸気
圧の元素を選べば、ルツボ内での添加元素の濃度点Aを
比較的低濃度に設定しても、ルツボ内合金の融点を容易
に高温に上昇できる一方、蒸気には金属の融点TMに近い
融点TBに対応する極微量の添加元素しか混入しないよう
にできるので、金属精製等の後処理が容易で、添加元素
の供給量が少なくてすむ等の効果もある。
FIG. 6 shows a modification of the embodiment of FIG. In this system, the melting point along with the additive element concentration increases monotonously increases, and the vapor pressure P m of the additional element is binary alloy system falls below the vapor pressure P M of the metal. In this modification, there is no minimum point of the melting point, which is disadvantageous in that it is not possible to expect a low-temperature operation of the recovery device.However, if an element having a high melting point and an extremely low vapor pressure is selected as an additive element, the temperature in the crucible can be reduced. be set to a relatively low concentration the density point a of the additive element, whereas it increased to a high temperature facilitates the melting point of the crucible alloy, the steam of trace corresponding to the melting point T B close to the melting point T M of the metal Since it is possible to prevent only the additional element from being mixed, post-treatment such as metal purification is easy, and there is an effect that the supply amount of the additional element can be reduced.

第7図は他の変形例を示したものである。本系では添
加元素濃度の増大に伴い融点の極小点を生ずる点は第1
図の実施例と同様であるが、添加元素の蒸気圧Pmが金属
の蒸気圧PMよりも高い2元合金系が該当する。本変形例
では、ルツボ内は添加元素濃度の小さいA点として、回
収器では融点の極小点に近いB点の添加元素濃度となる
ように操作する。本変形例はルツボにおける融点上昇に
は大きい効果を望めないが、回収器及び供給装置の低温
作動化が可能という効果は充分に期待できる。
FIG. 7 shows another modification. In this system, the point where the minimum point of the melting point occurs with the increase in the concentration of the added element is the first point.
Is similar to the embodiment shown, the vapor pressure P m of the additional element is binary alloy system is applicable above the vapor pressure P M of the metal. In this modified example, the crucible is operated such that the concentration of the additional element is point A, which is low, and the recovery device is operated so that the concentration of the additional element at point B is close to the minimum point of the melting point. Although this modification cannot expect a great effect on the melting point rise in the crucible, the effect that the recovery device and the supply device can be operated at a low temperature can be sufficiently expected.

第8図は同様に他の変形例を示したものである。本系
では、添加元素濃度の増大に伴い融点の極大点を生ずる
とともに、添加元素の融点Tmが金属の融点TMよりも低く
且つ蒸気圧Pmが金属の蒸気圧PMよりも高い2元合金系が
該当する。本変形例では、ルツボ内は合金の融点が極大
に近いA点に添加元素濃度を設定し、回収器では合金の
融点が添加元素の融点に高い濃度になるように操作す
る。本変形例では、金属自体の蒸発量の比率が小さいこ
と、回収金属の精製等の後処理が難しいこと、添加元素
の供給量を多くする必要があること等の問題があるが、
添加元素に低融点のものを用いれば、回収器の極く低温
での作動が可能であるという効果がある。
FIG. 8 shows another modified example. In this system, together with the results in the maximum point of the melting point with increasing additive element concentration is higher than the vapor pressure P M melting point T m is and vapor pressure P m lower than the melting point T M of the metal is a metal of the additional element 2 The original alloy type is applicable. In this modification, the concentration of the additional element is set at a point A in the crucible where the melting point of the alloy is close to the maximum, and the recovery device is operated so that the melting point of the alloy is higher than the melting point of the additional element. In this modification, there are problems such as a low ratio of the evaporation amount of the metal itself, difficulty in post-treatment such as purification of the recovered metal, and a need to increase the supply amount of the additional element.
If a low melting point element is used as an additive element, there is an effect that the recovery device can be operated at an extremely low temperature.

以上の実施例及び変形例は2元合金系を主体に示した
が、3元以上の合金系で同等な特性を示すものを用いた
としても本発明の趣旨は何ら損なわれない。
Although the above embodiments and modified examples mainly show a binary alloy system, the gist of the present invention is not impaired even if a ternary or higher alloy system having the same characteristics is used.

[発明の効果] 本発明によれば、蒸発器により蒸発せしめられる被蒸
発金属として、回収を目的とする金属単体と1種以上の
他の元素を含む添加元素とで合金化した合金系を用い、
添加元素濃度に依存する前記合金系の融点特性と蒸発時
における前記金属単体及び添加元素の各蒸気圧との相互
の関係を利用して、前記添加元素濃度を適宜選定するこ
とにより、前記蒸発器においては合金系の融点を可及的
に上昇せしめると共に、前記回収器においては合金系の
融点を可及的に低下させるようにしたことにより、蒸発
器のルツボ中における被蒸発金属の融点が上昇するた
め、固相部の形成により対流抑制に効果がある。又、回
収器における融点が低下するため低温作動が可能とな
る。これらの効果により熱経済性の向上及び腐食の低減
等の効果がある。
[Effects of the Invention] According to the present invention, as the metal to be evaporated to be evaporated by the evaporator, an alloy system alloyed with a simple metal to be recovered and an additional element containing at least one other element is used. ,
By appropriately selecting the additive element concentration by utilizing the mutual relationship between the melting point characteristics of the alloy system depending on the additive element concentration and the vapor pressures of the metal simple substance and the additive element during evaporation, the evaporator is appropriately selected. In the above, the melting point of the alloy system is raised as much as possible, and the melting point of the metal to be evaporated in the crucible of the evaporator is raised by reducing the melting point of the alloy system as much as possible in the recovery unit. Therefore, the formation of the solid phase portion is effective in suppressing convection. Further, since the melting point in the recovery device is reduced, low-temperature operation becomes possible. These effects have the effects of improving thermoeconomic efficiency and reducing corrosion.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を説明する合金系の状態図、
第2図及び第3図は本発明の作用を説明するための2元
合金系の状態図例、第4図は従来の蒸発器の作動を示す
断面図、第5図は本発明による蒸発器における固相の存
在が対流に及ぼす抑制効果を説明するための断面図、第
6図から第8図は夫々本発明の変形例を示す2元合金系
の状態図である。 A……ルツボ内における添加元素濃度点 B……蒸発蒸気における添加元素濃度点 1……ルツボ、2……金属 3……電子ビーム、4……熱対流 5……冷媒流路、11……合金 11a……固相部、11b……固相の浮遊物
FIG. 1 is a phase diagram of an alloy system illustrating one embodiment of the present invention,
2 and 3 are examples of a phase diagram of a binary alloy system for explaining the operation of the present invention, FIG. 4 is a sectional view showing the operation of a conventional evaporator, and FIG. 5 is an evaporator according to the present invention. 6 to 8 are cross-sectional views for explaining the effect of suppressing the convection due to the presence of the solid phase in FIG. 6, and FIGS. 6 to 8 are state diagrams of a binary alloy system showing a modification of the present invention. A: concentration point of additional element in crucible B: concentration point of additional element in vaporized vapor 1 ... crucible, 2 ... metal 3 ... electron beam, 4 ... thermal convection 5 ... refrigerant channel, 11 ... Alloy 11a: Solid phase part, 11b: Solid suspended matter

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ルツボ等の蒸発器に保持した被蒸発金属を
電子ビーム等の加熱手段によって加熱溶融して蒸発さ
せ、その蒸気を回収器にて液化回収する金属の蒸発回収
方法において、 前記被蒸発金属として、回収を目的とする金属単体と1
種以上の他の元素を含む添加元素とで合金化した合金系
を用い、添加元素濃度に依存する前記合金系の融点特性
と蒸発時における前記金属単体及び添加元素の各蒸気圧
との相互の関係を利用して、前記添加元素濃度を適宜選
定することにより、前記蒸発器においては合金系の融点
を可及的に上昇せしめると共に、前記回収器においては
合金系の融点を可及的に低下させるようにしたことを特
徴とする金属の蒸発回収方法。
1. A method for evaporating and recovering a metal held in an evaporator such as a crucible by heating and melting it by a heating means such as an electron beam and evaporating the vapor, and liquefying and recovering the vapor in a collector. As a vaporized metal, a single metal for the purpose of recovery and 1
Using an alloy system alloyed with an additional element containing at least one or more other elements, the melting point characteristics of the alloy system depending on the concentration of the additional element and the mutual vapor pressure of the single metal and the additional element during evaporation during evaporation. By utilizing the relationship and appropriately selecting the additive element concentration, the melting point of the alloy system is raised as much as possible in the evaporator, and the melting point of the alloy system is lowered as much as possible in the recovery unit. A method for evaporating and recovering a metal, characterized in that the method comprises:
JP63223277A 1988-09-06 1988-09-06 Metal evaporation recovery method Expired - Fee Related JP2708048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63223277A JP2708048B2 (en) 1988-09-06 1988-09-06 Metal evaporation recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63223277A JP2708048B2 (en) 1988-09-06 1988-09-06 Metal evaporation recovery method

Publications (2)

Publication Number Publication Date
JPH0273927A JPH0273927A (en) 1990-03-13
JP2708048B2 true JP2708048B2 (en) 1998-02-04

Family

ID=16795607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63223277A Expired - Fee Related JP2708048B2 (en) 1988-09-06 1988-09-06 Metal evaporation recovery method

Country Status (1)

Country Link
JP (1) JP2708048B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559618B2 (en) * 2000-12-20 2010-10-13 東京電力株式会社 Gadolinium isotope separation method and apparatus

Also Published As

Publication number Publication date
JPH0273927A (en) 1990-03-13

Similar Documents

Publication Publication Date Title
Gourlay et al. Nucleation and growth of tin in Pb-free solder joints
Chen et al. Effects of Ti addition to Sn–Ag and Sn–Cu solders
Walker et al. Laser surface alloying of titanium substrates with carbon and nitrogen
US4122240A (en) Skin melting
Ali et al. A microstructural study of some amorphous transition metal-metalloid surface alloys formed by ion implantation
Elliott et al. Metastable phases produced by laser melt quenching
CN101801588B (en) Lead-free solder for vehicle, and in-vehicle electronic circuit
Straumal et al. First measurement of the heat effect of the grain boundary wetting phase transition
JP2708048B2 (en) Metal evaporation recovery method
Kim et al. Oxidation resistant effects of Ag2S in Sn–Ag–Al solder: A mechanism for higher electrical conductivity and less whisker growth
KR100287978B1 (en) MG evaporation method with increased evaporation rate
JP4672559B2 (en) Silicon purification apparatus and silicon purification method
JPS63149347A (en) Copper alloy for high sleeve abrasion resistance for laser build-up welding
Zhang et al. In Situ Observation of Electromigration-Induced Anomalous Precipitation of Ag 3 Sn Phase in Ag-Containing Solder Joints
Nakamura et al. Microstructure of solder joints with electronic components in lead‐free solders
Tanabe et al. On the utilization of high Z materials as a plasma facing component
Huang et al. Migration behavior of indium atoms in Cu/Sn–52In/Cu interconnects during electromigration
Hajbagheri et al. Microstructure and wear assessment of TIG surface alloying of CP-titanium with silicon
Westerberg et al. Finite element analysis of flow, heat transfer, and free interfaces in an electron‐beam vaporization system for metals
Yue et al. Microstructure and phase evolution in laser cladding of Ni/Cu/Al multilayer on magnesium substrates
Wang et al. Band-like distribution of grains in selective laser melting track under keyhole mode
Zhong et al. In situ study on the effect of Cu5Zn8 intermetallic layer on the Cu-Ni cross-interaction in Cu/Sn-9Zn/Ni interconnect under temperature gradient
Sui et al. Wetting of Cu and Cu-Sn IMCs by Sn-Bi alloys over wide composition at 350° C
Folkes et al. Laser surface melting and alloying of titanium
Zhu et al. Real time imaging on dendrite morphology evolution during alloy solidification under electric field

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees