JP2704526B2 - Conductive iron oxide particle powder and method for producing the same - Google Patents

Conductive iron oxide particle powder and method for producing the same

Info

Publication number
JP2704526B2
JP2704526B2 JP63211436A JP21143688A JP2704526B2 JP 2704526 B2 JP2704526 B2 JP 2704526B2 JP 63211436 A JP63211436 A JP 63211436A JP 21143688 A JP21143688 A JP 21143688A JP 2704526 B2 JP2704526 B2 JP 2704526B2
Authority
JP
Japan
Prior art keywords
iron oxide
particles
sno
particle powder
hematite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63211436A
Other languages
Japanese (ja)
Other versions
JPH0259429A (en
Inventor
勉 片元
節弘 蔵田
七生 堀石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP63211436A priority Critical patent/JP2704526B2/en
Priority to US07/248,986 priority patent/US4917952A/en
Priority to EP88308954A priority patent/EP0310340B1/en
Priority to DE88308954T priority patent/DE3886158T2/en
Publication of JPH0259429A publication Critical patent/JPH0259429A/en
Application granted granted Critical
Publication of JP2704526B2 publication Critical patent/JP2704526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、安定性と導電性に優れている赤紫色〜暗紫
色又は茶褐色を呈する導電性酸化鉄粒子粉末及びその製
造法である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to conductive iron oxide particles exhibiting reddish purple to dark purple or brownish brown which are excellent in stability and conductivity, and a method for producing the same.

本発明に係る導電性酸化鉄粒子粉末の主な用途は、帯
電防止材料である。
The main use of the conductive iron oxide particle powder according to the present invention is as an antistatic material.

〔従来の技術〕[Conventional technology]

近年、安全面、衛生面や精度面からクリーンルームの
使用が多くなり、クリーンルームのほこりやごみを極力
少なくする為、クリーンルームに帯電防止された素材や
使用され始めている。また、ICやLSIの放電破壊を防ぐ
為にも帯電防止が必要となっている。
In recent years, the use of clean rooms has increased in terms of safety, hygiene, and accuracy, and in order to minimize dust and dirt in clean rooms, antistatic materials and clean rooms have begun to be used. In addition, antistatic is required to prevent discharge destruction of ICs and LSIs.

一般に、帯電防止された素材は、帯電性材料粒子粉末
を塗料、ゴム、プラスチック等に分散させて導電性を付
与することにより製造されている。帯電防止された素材
は、製造に際して、出来るだけ塗料等の特性を劣化させ
ないことが重要であり、その為には、塗料等の分散させ
る導電性材料粒子粉末自身の導電性が優れていることに
よって出来るだけ少ない含有量で所望の導電性を付与で
きることが要求される。この事実は、例えば、色材協会
関東支部、顔料技術研究会、日本顔料技術協会関東支部
主催「第24回顔料工学講座−導電材料とその応用−」
(1986年)第1〜19頁の「‥‥導電フィラーとして望ま
しい特性を図−2に示したが、低含有量で導電性が出
せ、かつ、樹脂の特性を劣化することが少ないものが要
求されることは言うまでもない。」なる記載の通りであ
る。
Generally, an antistatic material is manufactured by dispersing a chargeable material particle powder in a paint, rubber, plastic, or the like to impart conductivity. It is important that antistatic materials do not degrade the properties of paints, etc. as much as possible during manufacturing. It is required that the desired conductivity can be imparted with as little content as possible. This fact is, for example, the 24th pigment engineering lecture-conductive materials and their applications-sponsored by the Color Material Association Kanto Chapter, the Pigment Technology Research Group, the Japan Pigment Technology Association Kanto Chapter
(1986) "‥‥ Desirable properties as conductive fillers are shown in Fig. 2 on pages 1 to 19. However, it is required that the conductive fillers have a low content and that the properties of the resin do not deteriorate much. It goes without saying that this is done. "

また、導電性材料粒子粉末は、塗料等の作成時におけ
るビヒクル中の酸に対する耐性が大きく、また、環境汚
染等に対する耐候性も優れていることが要求される。こ
の事実は、前出資料中の「図−2」の「好ましい導電フ
ィラーの特性‥‥安定性‥‥」なる記載の通りである。
Further, the conductive material particle powder is required to have high resistance to acids in a vehicle at the time of preparing a paint or the like, and also to have excellent weather resistance against environmental pollution and the like. This fact is as described in “Characteristics of preferred conductive fillers {stability}” of “FIG. 2” in the above-mentioned document.

一方、近年、文化、生活の向上により、商品の機能品
質の向上にとどまらず、感覚的、趣味的な面からの外観
特性が要求されており、色彩に関して言えば、種々多様
な色彩が強く要求されており、特に、黒色、灰色等の無
彩色以外の美麗な有彩色が要求されている。
On the other hand, in recent years, with the improvement of culture and lifestyle, not only the improvement of functional quality of products, but also the appearance characteristics from sensory and hobby aspects have been demanded. In particular, beautiful chromatic colors other than achromatic colors such as black and gray are required.

現在、導電性材料粒子粉末としては、種々のものが使
用されており、例えば、カーボンブラック等のカーボン
系粉末、銅粉末、アルミニウム粉末、ニッケル粉末等の
金属系粉末、還元酸化チタン粉末、Sb固溶SnO2やTiO2
被覆された雲母粉末、Sb固溶SnO2で被覆された酸化チタ
ン粉末等の金属酸化物系粉末等が知られている。
At present, various types of conductive material particles are used, for example, carbon-based powders such as carbon black, metal-based powders such as copper powder, aluminum powder, nickel powder, reduced titanium oxide powder, and Sb solids. Metal oxide powders such as mica powder coated with dissolved SnO 2 and TiO 2 and titanium oxide powder coated with Sb solid solution SnO 2 are known.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

安定性と導電性に優れた導電性材料粒子粉末は、現在
最も要求されているところであるが、上述した通りの公
知方法による場合、カーボン系粉末は、安定性に優れて
はいるが色彩が黒色である為、感覚的、趣味的な面にお
ける難点があり、また、金属系粉末は、優れた導電性を
有するものではあるがビヒクル中の酸に対する耐性が小
さく、環境汚染等に対する耐候性も劣り、安定性に欠け
るという問題があった。更に、金属酸化物系粉末は、酸
化物である為、安定性においては優れているが、導電性
の点で不十分であり、例えば、金属酸化物顔料として最
も代表的な酸化鉄粒子粉末の電気抵抗では108〜109Ω−
cm程度である。そこで、金属酸化物系粉末を還元した
り、各種物質で被覆することにより導電性を付与するこ
とが行われているが、前出公知の金属酸化物系導電性材
料粒子粉末は、いずれも白又は灰色〜黒色の無彩色であ
る。
The conductive material particle powder having excellent stability and conductivity is the most demanded at present, but according to the known method as described above, the carbon-based powder is excellent in stability but has a black color. Therefore, there are difficulties in terms of sensory and hobby, and the metal powder has excellent conductivity, but has low resistance to acid in the vehicle and poor weather resistance to environmental pollution and the like. However, there is a problem of lack of stability. Further, since the metal oxide-based powder is an oxide, it is excellent in stability, but is insufficient in terms of conductivity. For example, the most typical iron oxide particle powder as a metal oxide pigment is 10 8 to 10 9 Ω−
It is about c m. Therefore, it has been practiced to impart conductivity by reducing the metal oxide-based powder or coating it with various substances. However, the above-mentioned known metal oxide-based conductive material particles are all white. Or a gray to black achromatic color.

そこで、安定性と導電性に優れており、しかも、黒色
以外の美麗な有彩色を有する導電性材料粒子粉末を得る
為の技術手段の確立が強く要望されている。
Therefore, there is a strong demand for establishing a technical means for obtaining conductive material particles having excellent stability and conductivity and having a beautiful chromatic color other than black.

〔問題点を解決する為の手段〕 本発明者は、安定性と導電性に優れており、しかも、
黒色以外の美麗な有彩色を有する導電性材料粒子粉末を
得るべく種々検討を重ねた結果、本発明に到達したので
ある。
[Means for Solving the Problems] The present inventor has excellent stability and conductivity, and
The inventors of the present invention have conducted various studies to obtain a conductive material particle powder having a beautiful chromatic color other than black, and as a result, have reached the present invention.

即ち、酸化鉄粒子表面にSbが固溶したSnO2粒子が存在
しており、且つ、体積固有抵抗が5×106Ω−cm以下で
あるヘマタイト及びマグヘマイトから選ばれた酸化鉄粒
子からなる導電性酸化鉄粒子粉末及びヘマタイト及びマ
グヘマイトから選ばれた酸化鉄粒子とSbを含有するSnO2
水和物粒子とを含む水懸濁液を混合撹拌することによ
り、前記酸化鉄粒子の粒子表面にSbを含有するSnO2水和
物粒子を沈着させ、次いで、過、水洗、乾燥した後、
400〜800℃の温度範囲で加熱焼成することからなり酸化
鉄粒子表面にSbが固溶しSnO2粒子が存在しており、且
つ、体積固有抵抗が5×106Ω−cm以下であるヘマイト
及びマグヘマイトから選ばれた酸化鉄粒子からなる導電
性酸化鉄粒子粉末の製造法である。
That is, there are SnO 2 particles in which Sb is dissolved as a solid solution on the surface of the iron oxide particles, and a conductive material composed of iron oxide particles selected from hematite and maghemite whose volume resistivity is 5 × 10 6 Ω-cm or less. SnO 2 containing iron oxide particles and Sb selected from sexual iron oxide particles and hematite and maghemite
By mixing and stirring an aqueous suspension containing the hydrate particles, depositing the SnO 2 hydrate particles containing Sb on the particle surfaces of the iron oxide particles, then over, washed with water, dried,
Hemite which is heated and calcined in the temperature range of 400 to 800 ° C., in which Sb forms a solid solution on the surface of the iron oxide particles and SnO 2 particles are present, and the volume resistivity is 5 × 10 6 Ω-cm or less. And a method for producing conductive iron oxide particle powder comprising iron oxide particles selected from maghemite.

〔作用〕[Action]

先ず、本発明において最も重要な点は、ヘマタイト及
びマグヘマイトから選ばれた酸化鉄粒子とSbを含有する
SnO2水和物粒子とを含む水懸濁液を混合撹拌することに
より、前記酸化鉄粒子の粒子表面にSbを含有するSnO2
和物粒子を沈着させ、次いで過、水洗、乾燥した後、
400〜800℃の温度範囲で加熱焼成した場合には、酸化鉄
粒子表面にSbがSnO2粒子を存在させることができ、その
結果、安定性と導電性に優れており、しかも、出発原料
である酸化鉄粒子の色彩を維持することによって赤紫色
〜暗紫色又は茶褐色を呈する導電性酸化鉄粒子粉末が得
られるという事実である。
First, the most important point in the present invention contains iron oxide particles selected from hematite and maghemite and Sb.
By mixing and stirring an aqueous suspension containing the SnO 2 hydrate particles, wherein depositing the SnO 2 hydrate particles containing Sb on the particle surfaces of the iron oxide particles and then over, washed with water, dried ,
When heated and fired in a temperature range of 400 to 800 ° C., Sb can cause SnO 2 particles to exist on the surface of the iron oxide particles, and as a result, it is excellent in stability and conductivity, and moreover, it can be used as a starting material. This is the fact that by maintaining the color of certain iron oxide particles, conductive iron oxide particles having a reddish purple to dark purple or brown color can be obtained.

本発明に係る導電性酸化鉄粒子粉末は、酸化物である
為、塗料等の作成時におけるビヒクル中の酸に対する耐
性が大きく、また環境汚染等に対する耐候性も優れてい
る。
Since the conductive iron oxide particle powder according to the present invention is an oxide, it has high resistance to acids in a vehicle at the time of preparing a paint or the like, and also has excellent weather resistance to environmental pollution and the like.

本発明に係る導電性酸化鉄粒子粉末の電気抵抗が小さ
い理由について、本発明者は、酸化鉄粒子の大きさや形
状を選択することによって、酸化鉄粒子にSbを含有する
SnO2水和物粒子を沈着させるに際して、当該SnO2水和物
を生成させる為の塩化スズや塩化アンチモンの加水分解
に伴って生成するHClによって酸化鉄粒子中のFeが溶解
する割合を可及的に小さくし、その結果、酸化鉄粒子表
面にSbを含むSnO2水和物粒子を沈着させることができ、
且つ、酸化鉄粒子の大きさや形状及び加熱焼成温度を制
御することによって、加水焼成時における酸化鉄粒子中
のFeとSbを含有するSnO2中のSbやSnとの固相拡散を出来
るだけ防止して、Fe、Sb及びSnからなる固溶体の生成を
妨げることができ、その結果、電気を通りやすくする為
の電荷の調整やドナーの生成に寄与しているSbの作用・
効果が発現されるものと考えている。
Regarding the reason why the electric resistance of the conductive iron oxide particles according to the present invention is small, the present inventors include Sb in the iron oxide particles by selecting the size and shape of the iron oxide particles.
When depositing SnO 2 hydrate particles, the rate of dissolution of Fe in iron oxide particles by HCl generated due to the hydrolysis of tin chloride or antimony chloride to form the SnO 2 hydrate should be as high as possible. to small, so that it is possible to deposit SnO 2 hydrate particles containing Sb in the iron oxide particle surface,
In addition, by controlling the size and shape of the iron oxide particles and the heating and firing temperature, the solid phase diffusion of Sb and Sn in the SnO 2 containing Fe and Sb in the iron oxide particles during the sintering by water is prevented as much as possible. As a result, the formation of a solid solution composed of Fe, Sb and Sn can be prevented, and as a result, the action of Sb contributing to the adjustment of electric charge for facilitating electricity and the generation of donors can be prevented.
We believe that the effect will be exhibited.

本発明に係る導電性酸化鉄粒子粉末は、電気抵抗が5
×106Ω−cm以下である。
The conductive iron oxide particles according to the present invention have an electric resistance of 5
× 10 6 Ω-cm or less.

本発明に係る導電性材料粒子粉末は、ヘマタイト粒子
を用いた場合には赤紫色〜暗紫色であり、マグヘマイト
粒子を用いた場合には茶褐色である。
The conductive material particle powder according to the present invention is reddish purple to dark purple when hematite particles are used, and brownish when maghemite particles are used.

尚、従来、赤紫色〜暗紫色又は茶褐色を呈する導電性
金属酸化物粒子粉末は知られていない。
Heretofore, there has not been known a conductive metal oxide particle powder exhibiting reddish purple to dark purple or brownish brown.

次に、本発明実施にあたっての諸条件について述べ
る。
Next, conditions for implementing the present invention will be described.

本発明における酸化鉄粒子としては、針状、立方状、
球状のいかなる形態の粒子でもよい。針状粒子として
は、長軸の平均径が0.2〜3.0μm、殊に0.3〜0.7μm、
立方状粒子や球状粒子としては、平均径0.1〜5.0μm、
殊に0.2〜1.0μmの粒子が使用できる。この平均径より
も小さい場合には、酸化鉄粒子中のFeの溶解する割合が
多くなる為、Sbを含有するSnO2水和物粒子の沈着が困難
となり、また、加熱焼成時におけるFeとSbやSnとの固相
拡散が促進される為、本発明の目的とする導電性に優れ
た酸化鉄粒子粉末を得ることができない。
As the iron oxide particles in the present invention, acicular, cubic,
The particles may be spherical in any form. As the acicular particles, the average diameter of the major axis is 0.2 to 3.0 μm, particularly 0.3 to 0.7 μm,
As cubic or spherical particles, the average diameter is 0.1 to 5.0 μm,
In particular, particles of 0.2 to 1.0 μm can be used. If the average diameter is smaller than this, the dissolution ratio of Fe in the iron oxide particles increases, making it difficult to deposit Sb-containing SnO 2 hydrate particles. Since solid phase diffusion with Sn and Sn is promoted, it is not possible to obtain iron oxide particles having excellent conductivity, which is the object of the present invention.

平均径0.3〜0.4μmのヘマタイト粒子は、通常、赤紫
色であり、平均径0.4〜0.8μmのヘマタイト粒子は、通
常、暗紫色である。
Hematite particles having an average diameter of 0.3 to 0.4 μm are usually red purple, and hematite particles having an average diameter of 0.4 to 0.8 μm are generally dark purple.

本発明におけるSbを含有するSnO2水和物粒子は、塩化
スズ(SnCl4)と塩化アンチモン(SnCl3)とを含むアル
コール水溶液を70℃以上に加熱して上記塩化スズを加水
分解させることにより得られる。
SnO 2 hydrate particles containing Sb in the present invention, by hydrolyzing the tin chloride by heating the alcohol solution containing the antimony chloride and tin chloride (SnCl 4) (SnCl 3) to 70 ° C. or higher can get.

本発明においては、別に作成したSbを含有するSnO2
和物粒子を含むアルコール水溶液を酸化鉄粒子を含む水
懸濁液に添加して混合してもよいし、また、70℃以上に
保持した酸化鉄粒子を含む水懸濁液中に塩化スズと塩化
アンチモンとを含むアルコール水溶液を添加して、該水
懸濁液中で塩化スズを加水分解させてSbを含有するSnO2
水和物粒子を生成沈着させてもよい。
In the present invention, may be added and mixed alcohol solution containing SnO 2 hydrate particles containing Sb created separately in water suspension containing the iron oxide particles, also held at least 70 ° C. An alcohol aqueous solution containing tin chloride and antimony chloride is added to the aqueous suspension containing the iron oxide particles thus obtained, and tin chloride is hydrolyzed in the aqueous suspension to obtain SnO 2 containing Sb.
Hydrate particles may be formed and deposited.

本発明においては、酸化鉄粒子とSbを含有するSnO2
和物とを含む水懸濁液を混合撹拌することにより前記酸
化鉄粒子の粒子表面にSbを含有するSnO2水和物粒子を沈
着させることができる。
In the present invention, by mixing and stirring an aqueous suspension containing iron oxide particles and SnO 2 hydrate containing Sb, SnO 2 hydrate particles containing Sb on the particle surfaces of the iron oxide particles. Can be deposited.

水懸濁液のpHを3〜12の範囲に調製した場合には、酸
化鉄粒子の粒子表面にSbを含有するSnO2水和物粒子を特
に均一且つ強固に沈着させることができる。
When the pH of the aqueous suspension was adjusted to a range of 3 to 12 is, SnO 2 hydrate particles containing Sb on the particle surfaces of the iron oxide particles can be particularly uniformly and firmly deposit.

本発明においては、添加したSbを含有するSnO2水和物
粒子は略全量が酸化鉄粒子上に沈着する。
In the present invention, SnO 2 hydrate particles containing the added Sb has substantially the total amount deposited on the iron oxide particles.

本発明における粒子表面にSbを含有するSnO2水和物粒
子が沈着した酸化鉄粒子の加熱焼成温度は、400〜800℃
である。この加熱焼成により、酸化鉄粒子の粒子表面に
沈着したSbを含有するSnO2水和物粒子は、Sbを固溶した
SnO2粒子となり、電気抵抗が5×106Ω−cm以下とな
る。加熱焼成時におけるFeとSbやSnとの固相拡散を防止
する為には、酸化鉄粒子の大きさが小さくなる程加熱焼
成温度を低下させればよい。電気抵抗を考慮した場合、
500〜600℃の範囲が特に好ましい。
Firing temperature of iron oxide particles SnO 2 hydrate particles deposited containing Sb on the particle surface in the present invention, 400 to 800 ° C.
It is. This firing, SnO 2 hydrate particles containing Sb was deposited on the particle surfaces of the iron oxide particles were dissolved and Sb
It becomes SnO 2 particles and the electric resistance becomes 5 × 10 6 Ω-cm or less. In order to prevent solid-phase diffusion of Fe and Sb or Sn during heating and firing, the heating and firing temperature may be reduced as the size of the iron oxide particles decreases. When electric resistance is considered,
A range from 500 to 600 ° C. is particularly preferred.

本発明におけるSbが固溶したSnO2粒子中のSb量はSnO2
に対し0.1〜40.0重量%であり、電気抵抗を考慮すれ
ば、4.0〜12.0重量%が好ましい。
The amount of Sb in the SnO 2 particles in which Sb is dissolved in the present invention is SnO 2
0.1 to 40.0% by weight, and preferably 4.0 to 12.0% by weight in consideration of electric resistance.

本発明におけるSbが固溶したSnO2量は、酸化鉄粒子に
対し、5.0〜200重量%である。5重量%未満の場合に
は、電気抵抗を下げる効果が不十分であり、本発明の目
的を達成することができない。200重量%を越える場合
にも、本発明の目的を達成することができるが、必要以
上に沈着させる意味がない。実用上には、10〜100重量
%の範囲内で選定することが好ましい。
In the present invention, the amount of SnO 2 in which Sb forms a solid solution is 5.0 to 200% by weight based on the iron oxide particles. If the amount is less than 5% by weight, the effect of lowering the electric resistance is insufficient, and the object of the present invention cannot be achieved. If it exceeds 200% by weight, the object of the present invention can be achieved, but there is no point in depositing more than necessary. Practically, it is preferable to select within the range of 10 to 100% by weight.

〔実施例〕〔Example〕

次に、実施例並びに比較例により、本発明を説明す
る。
Next, the present invention will be described with reference to Examples and Comparative Examples.

尚、以下の実施例並びに比較例における粒子の平均径
は電子顕微鏡写真から測定した数値の平均値で示したも
のでる。
The average diameter of the particles in the following Examples and Comparative Examples is indicated by the average value of numerical values measured from electron micrographs.

また、L値(明度)、a値及びb値は、測色用
試料片をカラーマシンCM−1500−A型(カラーマシン
(株)製)を用いてHuterのLab空間により L値、a値、b値をそれぞれ測色し、国際照明
委員会(Commission Internatinal de 1′ Eclairage、
CIE)1976(L,a,b)均等知覚色空間に従って表
示した値で示した。
The L * value (brightness), a * value, and b * value were obtained by using a color machine CM-1500-A (manufactured by Color Machine Co., Ltd.) on a colorimetric sample piece in the Lab space of Huter . Value, a * value, and b * value, respectively, and measured by the International Commission on Illumination (Commission Internatinal de 1 'Eclairage,
CIE) 1976 (L * , a * , b * ). Values expressed according to the uniform perceived color space.

測定用試料片は、酸化鉄粒子粉末0.5gとヒマシ油1.0c
cをフーバー式マーラーで練ってペースト状とし、この
ペーストにクリヤラッカー4.5gを加え混練し塗料化し
て、キャストコート紙上に6milのアプリケータを用いて
塗布することによって得た。
The measurement sample pieces were 0.5 g of iron oxide particle powder and 1.0 c of castor oil.
c was kneaded with a Hoover-type muller into a paste, and 4.5 g of clear lacquer was added to the paste, kneaded to form a coating, and applied to a cast-coated paper using a 6-mil applicator.

体積固有抵抗は、粒子粉末を温度25℃、湿度60%の条
件下に24時間放置して安定化させた後、該粒子粉末を上
下一対のステンレス製電極間に挟んで面積2.57cm2×厚
み2mmの円柱状試料とし、次いで、該試料部の荷重圧力
が0.47kg/cm2となるように、1.2kgの荷重を加えた後、
前記一対のステンレス製電極間に生じる電気抵抗をホイ
ーストンブリッヂ(WHEATSTONE BRIDGE)タイプ2768
(横河北辰電機(株)製)で測定し、当該測定値から下
記式に従って求めた値で示した。
The volume resistivity is obtained by stabilizing the particle powder by leaving it at a temperature of 25 ° C. and a humidity of 60% for 24 hours, and then sandwiching the particle powder between a pair of upper and lower stainless steel electrodes to have an area of 2.57 cm 2 × thickness. and 2mm cylindrical sample, followed, as the load pressure of the sample portion is 0.47 kg / cm 2, after applying a load of 1.2 kg,
The electrical resistance generated between the pair of stainless steel electrodes is determined by WHEATSTONE BRIDGE type 2768.
(Manufactured by Yokogawa Hokushin Electric Co., Ltd.), and the values were obtained from the measured values according to the following formula.

R:測定した電気抵抗値(Ω) d:電極間距離(cm) S:電極面積 実施例1 試料Aの立方状を呈したヘマタイト粒子粉末(平均径
0.3μm、L値29、色相40、彩度37、体積固有抵抗5
×108Ω−cm)25gを含む水懸濁液2.0を70℃に30分間
保持した後、該水懸濁液中に混合撹拌しながら、SnCl
40.4molとSbCl30.01molとを含むイソブチルアルコール
水溶液200mlを滴下し、次いでNaOHを添加してpHを6.5に
調整することにより、前記立方状を呈したヘマタイト粒
子の表面にSbを含むSnO2水和物を沈着させた。
R: measured electric resistance (Ω) d: distance between electrodes (cm) S: electrode area Example 1 Sample A cubic hematite particle powder (average diameter
0.3 μm, L * value 29, hue 40, saturation 37, volume resistivity 5
× 10 8 Ω-cm) A water suspension 2.0 containing 25 g was kept at 70 ° C. for 30 minutes, and then mixed with the water suspension while stirring with SnCl 2.
200 mL of an isobutyl alcohol aqueous solution containing 4 0.4 mol and 0.01 mol of SbCl 3 was added dropwise, and then the pH was adjusted to 6.5 by adding NaOH, whereby SnO 2 containing Sb was added to the surface of the cubic hematite particles. The hydrate was deposited.

上記粒子表面にSbを含むSnO2水和物が沈着している立
方状を呈したヘマタイト粒子を含む懸濁液を、常法によ
り過、水洗、乾燥した後、500℃で0.5時間加熱焼成し
た。
The suspension containing the hematite particles SnO 2 hydrate exhibited cubic shape are deposited containing Sb to the particle surface by a conventional method over, washed with water, dried, and heated and fired at 500 ° C. 0.5 hours .

得られた加熱焼成後の粒子粉末は、L値28、色相4
0、彩度36であり、体積固有抵抗は2×106Ω−cmであっ
た。
The obtained heat-fired particle powder has an L * value of 28 and a hue of 4
The saturation was 36, and the volume resistivity was 2 × 10 6 Ω-cm.

得られた粒子粉末表面に存在しているSnO2量は螢光X
線分析の結果、ヘマタイト粒子に対しSnO2換算で56重量
%であり、Sb量は、Sb換算で4.8重量%であった。
The amount of SnO 2 present on the surface of the obtained particle powder is determined by fluorescence X
As a result of the line analysis, the content was 56% by weight in terms of SnO 2 and the amount of Sb was 4.8% by weight in terms of Sb based on the hematite particles.

実施例1で得られたSb固溶したSnO2で被覆されたヘマ
タイト粒子粉末のX線回折図を図1に示す。図中、ピー
クAはヘマタイト、ピークBはSnO2である。
FIG. 1 shows an X-ray diffraction diagram of the hematite particle powder coated with SnO 2 in which Sb was dissolved as obtained in Example 1. In the figure, peak A is hematite and peak B is SnO 2 .

実施例2 SnCl40.1molとSbCl30.004molとを含むエタノール水溶
液0.5を75℃に10分間保持してSnO2水和物を生成させ
た。
EXAMPLE 2 SnCl 4 0.1 mol and SbCl 3 aqueous ethanol solution 0.5 containing an 0.004mol held in 75 ° C. 10 minutes to produce a SnO 2 hydrate.

一方、別に作成した試料Bの針状ヘマタイト粒子粉末
(長軸径1.0μm、L値31、色相41、彩度40、体積固
有抵抗7×108Ω−cm)25gを含む水懸濁液1.0を75℃
に30分間保持し、次いで、該水懸濁液中に混合撹拌しな
がら、前記SnO2水和物を含むエタノール水溶液500mlを
滴下した後、更にKOHを添加してpHを7.5に調整すること
により、前記針状ヘマタイト粒子の表面にSbを含むSnO2
水和物を沈着させた。
On the other hand, an aqueous suspension containing 25 g of a separately prepared needle-like hematite particle powder of sample B (major axis diameter 1.0 μm, L * value 31, hue 41, saturation 40, volume resistivity 7 × 10 8 Ω-cm) 1.0 to 75 ° C
To hold for 30 minutes, then, while mixing and stirring the aqueous suspension was added dropwise an aqueous ethanol solution 500ml including the SnO 2 hydrate by further adjusted to 7.5 and the pH by addition of KOH SnO 2 containing Sb on the surface of the acicular hematite particles
The hydrate was deposited.

上記粒子表面にSbを含むSnO2水和物が沈着している針
状ヘマタイト粒子を含む懸濁液を、常法により過、水
洗、乾燥した後、600℃で2.0時間加熱焼成した。
The suspension containing the acicular hematite particles SnO 2 hydrate containing Sb to the particle surface is deposited, by conventional methods over, washed with water, dried, and heated and calcined 2.0 hours at 600 ° C..

得られた加熱焼成後の粒子粉末は、L値30、色相4
0、彩度39であり、体積固有抵抗は8×105Ω−cmであっ
た。
The resulting heat-fired particle powder has an L * value of 30, a hue of 4
0, saturation 39, and volume resistivity of 8 × 10 5 Ω-cm.

得られた粒子粉末表面に存在しているSnO2量は螢光X
線分析の結果、ヘマタイト粒子に対しSnO2換算で54.0重
量%であり、Sb量は、Sb換算で2.0重量%であった。
The amount of SnO 2 present on the surface of the obtained particle powder is determined by fluorescence X
As a result of a line analysis, the content was 54.0% by weight in terms of SnO 2 and the amount of Sb was 2.0% by weight in terms of Sb with respect to the hematite particles.

また、X線回折の結果、ヘマタイトとSnO2のピークの
みが認められることからSbが固溶しているものと認めら
れる。
Also, as a result of X-ray diffraction, only hematite and SnO 2 peaks were observed, indicating that Sb was dissolved.

実施例3〜5 試料の種類、Sn化合物の量、Sb化合物の量、加水分解
の方法及び温度並びに加熱処理温度及び時間を種々変化
させた以外は、実施例1と同様にしてSbが固溶したSnO2
で被覆された酸化鉄粒子粉末を得た。この時の主要製造
条件及び諸特性を表1及び表2に示す。
Examples 3 to 5 Sb was dissolved in the same manner as in Example 1 except that the type of the sample, the amount of the Sn compound, the amount of the Sb compound, the hydrolysis method and temperature, and the heat treatment temperature and time were variously changed. SnO 2
To obtain iron oxide particle powder coated with. Tables 1 and 2 show the main production conditions and various characteristics at this time.

X線回折の結果、実施例3〜5で得られたSbが固溶し
たSnO2で被覆された酸化鉄粒子粉末は、いずれもヘマタ
イト又はマグヘマイトとSnO2のピークのみが認められる
ことからSbが固溶しているものと認められる。
As a result of X-ray diffraction, the iron oxide particle powder coated with SnO 2 in which Sb was obtained as a solid solution obtained in Examples 3 to 5 showed hematite or maghemite and SnO 2 because only peaks of SnO 2 were recognized. The solid solution is recognized.

〔発明の効果〕 本発明に係る導電性酸化鉄粒子粉末は、前出実施例に
示した通り、酸化鉄粒子表面にSbが固溶したSnO2粒子が
存在しており、且つ、体積固有抵抗が5×106Ω−cm以
下であるヘマタイト及びマグヘマイトから選ばれる酸化
鉄粒子であることに起因して安定性と導電性に優れてお
り、しかも、赤紫色〜暗紫色又は茶褐色という美麗な有
彩色を呈する粒子であるので、帯電防止材料として好適
である。
[Effect of the Invention] The conductive iron oxide particle powder according to the present invention has SnO 2 particles in which Sb is dissolved as a solid solution on the surface of the iron oxide particles, as described in the above Examples, and has a specific volume resistivity. Is excellent in stability and conductivity due to being iron oxide particles selected from hematite and maghemite having a density of 5 × 10 6 Ω-cm or less. Are suitable as an antistatic material.

【図面の簡単な説明】[Brief description of the drawings]

図1は、実施例1で得られたSbが固溶したSnO2で被覆さ
れたヘマタイト粒子粉末のX線回折図である。図中ピー
クAはヘマタイト、ピークBはSnO2である。
FIG. 1 is an X-ray diffraction diagram of the hematite particle powder coated with SnO 2 in which Sb is dissolved as obtained in Example 1. In the figure, peak A is hematite, and peak B is SnO 2 .

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化鉄粒子表面にSbが固溶したSnO2粒子が
存在しており、且つ、体積固有抵抗が5×106Ω−cm以
下であるヘマタイト及びマグヘマイトから選ばれた酸化
鉄粒子からなる導電性酸化鉄粒子粉末。
1. An iron oxide particle selected from hematite and maghemite having SnO 2 particles containing Sb as a solid solution on the surface of the iron oxide particles and having a volume resistivity of 5 × 10 6 Ω-cm or less. A conductive iron oxide particle powder comprising:
【請求項2】ヘマタイト及びマグヘマイトからえらばれ
た酸化鉄粒子Sbを含有するSnO2水和物粒子とを含む水懸
濁液を混合撹拌することにより、前記酸化鉄粒子の粒子
表面にSbを含有するSnO2水和物粒子を沈着させ、次い
で、過、水洗、乾燥した後、400〜800℃の温度範囲で
加熱焼成することを特徴とする酸化鉄粒子表面にSbが固
溶したSnO2粒子が存在しており、且つ、体積固有抵抗が
5×106Ω−cm以下であるヘマタイト及びマグヘマイト
から選ばれた酸化鉄粒子からなる導電性酸化鉄粒子粉末
の製造法。
2. By mixing and stirring an aqueous suspension containing the SnO 2 hydrate particles containing hematite and iron oxide particles Sb was selected from maghemite, contain Sb on the particle surfaces of the iron oxide particles depositing the SnO 2 hydrate particles, then over, washed with water, dried, SnO 2 particles Sb is dissolved in the iron oxide particle surface, characterized by heating and firing at a temperature range of 400 to 800 ° C. And a method for producing a conductive iron oxide particle powder comprising iron oxide particles selected from hematite and maghemite having a volume resistivity of 5 × 10 6 Ω-cm or less.
JP63211436A 1987-09-29 1988-08-25 Conductive iron oxide particle powder and method for producing the same Expired - Fee Related JP2704526B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63211436A JP2704526B2 (en) 1988-08-25 1988-08-25 Conductive iron oxide particle powder and method for producing the same
US07/248,986 US4917952A (en) 1987-09-29 1988-09-26 Electroconductive iron oxide particles
EP88308954A EP0310340B1 (en) 1987-09-29 1988-09-27 Electroconductive iron oxide particles
DE88308954T DE3886158T2 (en) 1987-09-29 1988-09-27 Electrically conductive iron oxide particles.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63211436A JP2704526B2 (en) 1988-08-25 1988-08-25 Conductive iron oxide particle powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0259429A JPH0259429A (en) 1990-02-28
JP2704526B2 true JP2704526B2 (en) 1998-01-26

Family

ID=16605922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63211436A Expired - Fee Related JP2704526B2 (en) 1987-09-29 1988-08-25 Conductive iron oxide particle powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP2704526B2 (en)

Also Published As

Publication number Publication date
JPH0259429A (en) 1990-02-28

Similar Documents

Publication Publication Date Title
EP0025583B1 (en) Electroconductive powder and process for production thereof
EP0310340B1 (en) Electroconductive iron oxide particles
US5997775A (en) Electrically conductive barium sulfate-containing composition and process of producing
KR0136789B1 (en) Electrically conductive pigment platelets
US5945035A (en) Conductive pigments
KR100394889B1 (en) Needle-shaped electrically conductive tin oxide fine particles and preparation method thereof
JPH08231882A (en) Grey interference color pigment,its preparation,and its application
AU643017B2 (en) Electrically conductive barium sulfate and process of producing it
US5322561A (en) Conductive flaky pigments
JPH08109341A (en) Conductive pigment
JP4389368B2 (en) Conductive pigment powder and transparent conductive film made using the same
JP2704526B2 (en) Conductive iron oxide particle powder and method for producing the same
JP2583077B2 (en) Conductive iron oxide particle powder and method for producing the same
JPS6021553B2 (en) White conductive coated powder and its manufacturing method
JP2704527B2 (en) Conductive iron oxide particle powder and method for producing the same
JPH06279618A (en) Rodlike fine particulate electrically conductive titanium oxide and production thereof
JP2583076B2 (en) Conductive iron oxide particle powder and method for producing the same
JPH08507036A (en) Method for producing conductive powder
CN1132885C (en) Process for preparing conducting light colour flaky pigment
JP4046785B2 (en) Non-conductive carbonaceous powder and method for producing the same
JPH0781093B2 (en) Mica coated with titanium compound
JPS6052090B2 (en) white conductive coated powder
JPH0292824A (en) Acicular low oxidized titanium and production thereof
JPH07133374A (en) Electroconductive flaky barium sulfate filler and its production
JPH0832561B2 (en) Composite conductive powder and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees