JP2704352B2 - Magnetic field generator - Google Patents

Magnetic field generator

Info

Publication number
JP2704352B2
JP2704352B2 JP5027225A JP2722593A JP2704352B2 JP 2704352 B2 JP2704352 B2 JP 2704352B2 JP 5027225 A JP5027225 A JP 5027225A JP 2722593 A JP2722593 A JP 2722593A JP 2704352 B2 JP2704352 B2 JP 2704352B2
Authority
JP
Japan
Prior art keywords
magnetic field
dipole ring
magnets
magnet
ring magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5027225A
Other languages
Japanese (ja)
Other versions
JPH06224027A (en
Inventor
祐仁 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP5027225A priority Critical patent/JP2704352B2/en
Publication of JPH06224027A publication Critical patent/JPH06224027A/en
Application granted granted Critical
Publication of JP2704352B2 publication Critical patent/JP2704352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明に係る磁場発生装置は、均
一磁場を必要とし、かつ、磁場強度を変える必要のある
分野に用いられる。たとえば、加速器での偏向用磁石で
は粒子のエネルギーに応じて、プラズマエッチングでは
磁性を持ったターゲットの厚みに応じて、磁場強度を変
える必要があるし、また、磁場配向した試料のX線回折
においても磁場強度変化の要望がある。
BACKGROUND OF THE INVENTION The magnetic field generator according to the present invention is used in fields requiring a uniform magnetic field and requiring a change in magnetic field strength. For example, it is necessary to change the magnetic field strength according to the energy of particles in a deflecting magnet in an accelerator, and to the thickness of a magnetic target in plasma etching. There is also a demand for a change in magnetic field strength.

【0002】[0002]

【従来の技術】ある一定の空間内に均一磁場を発生させ
る技術は、磁気共鳴断層装置などの医療関係、加速器で
の偏向用磁石、半導体プロセスのプラズマエッチング及
びスパッタ、磁場配向した試料のX線回折などの分野に
必要とされる。
2. Description of the Related Art Techniques for generating a uniform magnetic field in a certain space include medical fields such as a magnetic resonance tomography apparatus, a magnet for deflection in an accelerator, plasma etching and sputtering in a semiconductor process, and X-rays of a sample oriented in a magnetic field. Required for fields such as diffraction.

【0003】上記の分野の中には、発生する均一磁場の
強度を変化させたいという要望のある分野がある。たと
えば、上記の産業上の利用分野の欄で述べたように、加
速器での偏向用磁石では粒子のエネルギーに応じて、プ
ラズマエッチングでは磁性を持ったターゲットの厚みに
応じて磁場強度を変えたいという要望があり、また、磁
場配向した試料のX線回折においても磁場強度変化の要
望がある。
[0003] Among the above fields, there is a field in which it is desired to change the intensity of the generated uniform magnetic field. For example, as mentioned in the above-mentioned industrial application field, we want to change the magnetic field strength according to the energy of particles in the deflecting magnet in the accelerator and according to the thickness of the magnetic target in the plasma etching. There is a demand, and there is also a demand for a change in magnetic field intensity in X-ray diffraction of a sample oriented in a magnetic field.

【0004】均一磁場を発生させる磁場発生装置には、
たとえば、双極子リング磁石型磁場発生装置、永久磁石
対向型磁場発生装置、電磁石あるいは超伝導磁石を用い
た磁場発生装置などがある。
[0004] A magnetic field generator for generating a uniform magnetic field includes:
For example, there are a dipole ring magnet type magnetic field generator, a permanent magnet facing type magnetic field generator, a magnetic field generator using an electromagnet or a superconducting magnet, and the like.

【0005】ところが、従来の双極子リング磁石型磁場
発生装置では磁場強度を変えることができなかった。
However, the conventional dipole ring magnet type magnetic field generator cannot change the magnetic field strength.

【0006】また、永久磁石対向型磁場発生装置の場合
は、磁場強度を変えるために対向磁石間の間隔を変更し
なければならず、均一磁場空間の大きさも変化してしま
うという問題があった。
Further, in the case of a permanent magnet opposed type magnetic field generator, there is a problem that the interval between the opposed magnets must be changed in order to change the magnetic field strength, and the size of the uniform magnetic field space also changes. .

【0007】一方、電磁石あるいは超伝導磁石を用いた
磁場発生装置の場合は、均一磁場を発生させ、装置に流
す電流量を変化させることにより、その均一磁場空間の
大きさを変えずに磁場強度を変えることができる。しか
し、電磁石あるいは超伝導磁石を用いた磁場発生装置は
安定な電源、冷却手段などを必要とするために、装置全
体が大がかりになるという問題があった。
On the other hand, in the case of a magnetic field generator using an electromagnet or a superconducting magnet, a uniform magnetic field is generated and the amount of current flowing through the device is changed, so that the magnetic field strength is maintained without changing the size of the uniform magnetic field space. Can be changed. However, a magnetic field generator using an electromagnet or a superconducting magnet requires a stable power supply, cooling means, and the like, and thus has a problem that the entire device becomes large.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、均一
磁場空間の大きさを一定に保ちながら磁場強度を変化さ
せることのできる、永久磁石を用いた磁場発生装置を提
供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic field generator using permanent magnets, which can change the magnetic field strength while keeping the size of the uniform magnetic field space constant.

【0009】[0009]

【課題を解決するための手段】複数の異方性磁石の磁化
方向の角度を変えながらリング状に配置して双極子リン
グ磁石を構成し、該双極子リング磁石を複数個使用して
磁場を発生させる装置において、上記複数の双極子リン
グ磁石を二重以上に配置し、かつ、該双極子リング磁石
の各々が独立して回転することを特徴とする磁場発生装
置を提供する。
Means for Solving the Problems A plurality of anisotropic magnets are arranged in a ring shape while changing the angle of the magnetization direction to form a dipole ring magnet, and a magnetic field is generated by using a plurality of the dipole ring magnets. An apparatus for generating a magnetic field, wherein the plurality of dipole ring magnets are arranged in two or more, and each of the dipole ring magnets independently rotates.

【0010】[0010]

【実施例】本発明では、均一磁場を発生させる装置とし
て双極子リング磁石型磁場発生装置を用い、これを二重
以上に配置して、磁場強度を変化させることのできる磁
場発生装置を作製する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a dipole ring magnet type magnetic field generator is used as a device for generating a uniform magnetic field, and this is arranged in two or more to produce a magnetic field generator capable of changing the magnetic field intensity. .

【0011】本発明の磁場発生装置を説明する前に、一
重の双極子リング磁石型磁場発生装置について説明す
る。この装置の例を図4に示す。図4(a)は装置を上
からみた図、図4(b)は図4(a)のAA’断面を示
した図である。
Before describing the magnetic field generator of the present invention, a single dipole ring magnet type magnetic field generator will be described. An example of this device is shown in FIG. FIG. 4A is a diagram of the device viewed from above, and FIG. 4B is a diagram illustrating a cross section taken along the line AA ′ of FIG. 4A.

【0012】図4の例では16個の永久磁石2をリング
枠4の中に配置して、双極子リング磁石6を構成してい
る。磁石2内の矢印は、各々の磁石の磁化の向きを示し
ている。
In the example of FIG. 4, 16 permanent magnets 2 are arranged in a ring frame 4 to form a dipole ring magnet 6. Arrows in the magnets 2 indicate the directions of magnetization of the respective magnets.

【0013】図のように磁化された永久磁石2をリング
状に配置することにより、双極子リング磁石6の中心部
分に矢印8の向きの磁場が発生する。この時、リング枠
4内がすべて均一磁場となるわけではなく、中心部分の
みが均一磁場となる。図4の装置における均一磁場領域
は、空間10(通常、均一磁場領域は球体となるよう、
磁場発生装置は設計される)である。
By arranging the magnetized permanent magnets 2 in a ring shape as shown in the figure, a magnetic field in the direction of arrow 8 is generated at the center of the dipole ring magnet 6. At this time, the inside of the ring frame 4 does not always have a uniform magnetic field, but only the central portion has a uniform magnetic field. The uniform magnetic field region in the apparatus of FIG. 4 is the space 10 (usually, the uniform magnetic field region is a sphere,
The magnetic field generator is designed).

【0014】発生する磁場の強度と均一磁場空間10の
体積は、双極子リング磁石に用いる各磁石の大きさ(長
さL及び厚さ(図4では直径)W)で決まる。
The strength of the generated magnetic field and the volume of the uniform magnetic field space 10 are determined by the size (length L and thickness (diameter in FIG. 4) W) of each magnet used for the dipole ring magnet.

【0015】また、双極子リング磁石型磁場発生装置は
磁石のみで磁気回路が構成されている。すなわち、永久
磁石対向型磁場発生装置のように継鉄が用いられてはい
ない。このため、装置の外部で発生した磁場が、その向
きを変えることなく双極子リング磁石の内側にまで浸透
することができる。よって、外部で発生した磁場を、双
極子リング磁石内に発生している磁場と重ね合わせるこ
とができる。本発明は、この点に着目したものである。
In the dipole ring magnet type magnetic field generator, a magnetic circuit is composed of only magnets. That is, a yoke is not used unlike the permanent magnet facing type magnetic field generator. Therefore, the magnetic field generated outside the device can penetrate inside the dipole ring magnet without changing its direction. Therefore, the magnetic field generated outside can be superimposed on the magnetic field generated in the dipole ring magnet. The present invention focuses on this point.

【0016】本発明の磁場発生装置の例を図1に示す。
図1(a)は装置を上からみた図、図1(b)は、図1
(a)のBB’断面とCC’断面を便宜上まとめて示し
た図である。
FIG. 1 shows an example of the magnetic field generator of the present invention.
FIG. 1A is a diagram of the apparatus viewed from above, and FIG.
It is the figure which combined BB 'cross section and CC' cross section of (a) for convenience.

【0017】本発明の装置は、双極子リング磁石を二重
に配置している。二重の双極子リング磁石の中に発生す
る磁場は、外側の双極子リング磁石20による磁場と内
側の双極子リング磁石22による磁場とを重ね合わせた
ものとなる。
The device of the present invention has a double arrangement of dipole ring magnets. The magnetic field generated in the double dipole ring magnet is a superposition of the magnetic field generated by the outer dipole ring magnet 20 and the magnetic field generated by the inner dipole ring magnet 22.

【0018】図1(a)のように永久磁石24及び26
の磁化を図の矢印の向きに向けて配置した場合には、双
極子リング磁石20も22も中心部分に上向き(図1
(a)において)の磁場を発生する。したがって、重ね
合わせられた磁場は矢印28の向きとなる。
As shown in FIG. 1A, the permanent magnets 24 and 26
Are arranged in the direction of the arrow in the figure, both the dipole ring magnets 20 and 22 face upward (FIG. 1).
(In (a)). Thus, the superposed magnetic field is in the direction of arrow 28.

【0019】ここで、外側の双極子リング磁石20を内
側の双極子リング磁石22に対して回転させていくと
(または、その逆を行うと)、両方の双極子リング磁石
の作る磁場の向きがずれ、回転を進めるにつれて、双極
子リング磁石20と22との磁場を重ね合わせた磁場
は、その向きと強度が変化する。
Here, when the outer dipole ring magnet 20 is rotated with respect to the inner dipole ring magnet 22 (or vice versa), the directions of the magnetic fields generated by both the dipole ring magnets are changed. As the rotation proceeds, the magnetic field obtained by superposing the magnetic fields of the dipole ring magnets 20 and 22 changes its direction and intensity.

【0020】例として、双極子リング磁石20を双極子
リング磁石22に対してある角度だけ回転させた場合に
ついて、図2を用いて説明する。図2(a)の矢印3
4、36は、双極子リング磁石20、22が作る磁場の
向きを表わしている。各々の磁場の大きさと向きを考慮
してベクトル表示すると、図2(b)のベクトル37、
38となる。図2(b)に示したように、各々の双極子
リング磁石20、22が作る磁場(ベクトル37、3
8)を加えた(ベクトル合成した)もの(ベクトル3
9)が、双極子リング磁石20と22との合成磁場にな
っている。
As an example, a case where the dipole ring magnet 20 is rotated by a certain angle with respect to the dipole ring magnet 22 will be described with reference to FIG. Arrow 3 in FIG.
Numerals 4 and 36 indicate the directions of the magnetic fields created by the dipole ring magnets 20 and 22. When a vector is displayed in consideration of the magnitude and direction of each magnetic field, the vector 37 in FIG.
38. As shown in FIG. 2B, the magnetic fields (vectors 37, 3) generated by the respective dipole ring magnets 20, 22 are shown.
8) (vector synthesized) (vector 3)
9) is the combined magnetic field of the dipole ring magnets 20 and 22.

【0021】したがって、外側の双極子リング磁石20
と内側の双極子リング磁石22との作る磁場の向きが同
じ場合には二重リング内に発生する磁場の強度は最大に
なり、反対の場合には最小となる。
Therefore, the outer dipole ring magnet 20
When the direction of the magnetic field produced by the inner ring and the inner dipole ring magnet 22 is the same, the intensity of the magnetic field generated in the double ring becomes maximum, and when the direction is opposite, it becomes minimum.

【0022】合成磁場による均一磁場空間の大きさは、
外側の双極子リング磁石20が作る均一磁場空間30と
内側の双極子リング磁石22が作る均一磁場空間32の
うち、どちらか小さい方の空間の大きさとなる(図1の
場合は空間32となる)。
The size of the uniform magnetic field space due to the synthetic magnetic field is
The size of the smaller one of the uniform magnetic field space 30 formed by the outer dipole ring magnet 20 and the uniform magnetic field space 32 formed by the inner dipole ring magnet 22 (the space 32 in the case of FIG. 1). ).

【0023】以上のように、外側あるいは内側の双極子
リング磁石を回転させることにより、装置内の磁場の強
度を変化させることができる。しかも、均一磁場空間
(図1の場合は空間32)の大きさは変わらないという
利点もある。ただし、磁場強度を変えるために双極子リ
ング磁石を回転させていくと、合成磁場の向きが変化し
てしまう。ところが、通常は磁場の向きを一定にしてお
きたい場合が多いので、その場合は磁場発生装置全体の
向きを磁場の向きに合わせて回転させるか、または後述
するような三重リング構成とすれば良い。
As described above, by rotating the outer or inner dipole ring magnet, the intensity of the magnetic field in the device can be changed. Moreover, there is an advantage that the size of the uniform magnetic field space (the space 32 in FIG. 1) does not change. However, if the dipole ring magnet is rotated to change the magnetic field strength, the direction of the synthesized magnetic field changes. However, usually, there are many cases where it is desired to keep the direction of the magnetic field constant. .

【0024】以下に本発明の実施例を示す。本実施例で
は、次のような二重の双極子リング磁石型磁場発生装置
を用いた。
An embodiment of the present invention will be described below. In this embodiment, the following double dipole ring magnet type magnetic field generator was used.

【0025】永久磁石として、 Nd2Fe14B系の磁石
を用いた。外側のリングには直径W1が42mm、長さ
L1が300mmの円柱状磁石24を16個配置し、上
から見たとき(図1(a)の状態のとき)に、磁石24
の中心が円を描き、その直径R1が450mmとなるよ
うにした。一方、内側のリングには直径W2が42m
m、長さL2が150mmの円柱状磁石26を16個配
置し、磁石26の中心が描く円の直径R2が250mm
となるようにした。
As the permanent magnet, an Nd 2 Fe 14 B-based magnet was used. Sixteen columnar magnets 24 having a diameter W1 of 42 mm and a length L1 of 300 mm are arranged on the outer ring, and when viewed from above (in the state of FIG. 1A), the magnets 24
Was drawn in a circle, and its diameter R1 was set to 450 mm. On the other hand, the inner ring has a diameter W2 of 42 m.
m, and 16 cylindrical magnets 26 having a length L2 of 150 mm are arranged, and the diameter R2 of a circle drawn by the center of the magnet 26 is 250 mm.
It was made to become.

【0026】以上の設定により、外側の双極子リング磁
石20による、磁束密度400Gの均一磁場空間30
(直径R3が100mmの球体)と、内側の双極子リン
グ磁石22による、磁束密度1600Gの均一磁場空間
32(直径R4が50mmの球体)とが得られた。よっ
て、合成磁場の均一磁場空間は直径R4(=50mm)
の球体空間32となり、合成磁場の磁束密度の最大値は
2000G、最小値は1200Gとなる。
With the above setting, the uniform magnetic field space 30 having a magnetic flux density of 400 G by the outer dipole ring magnet 20.
(A sphere having a diameter R3 of 100 mm) and a uniform magnetic field space 32 (a sphere having a diameter R4 of 50 mm) having a magnetic flux density of 1600 G by the inner dipole ring magnet 22 were obtained. Therefore, the uniform magnetic field space of the synthetic magnetic field has a diameter R4 (= 50 mm).
, And the maximum value of the magnetic flux density of the synthetic magnetic field is 2000 G and the minimum value is 1200 G.

【0027】上で述べたように、本実施例における二重
の双極子リング磁石型磁場発生装置は、均一磁場空間を
直径R4=50mmの球体空間32に保ったまま、発生
磁場の磁束密度を1200Gから2000Gまで変える
ことができる。
As described above, the double dipole ring magnet type magnetic field generator of this embodiment reduces the magnetic flux density of the generated magnetic field while maintaining the uniform magnetic field space in the spherical space 32 having a diameter of R4 = 50 mm. It can be changed from 1200G to 2000G.

【0028】以上の説明よりわかるように、本発明に係
る磁場発生装置の特徴は、均一磁場空間を一定に保ちな
がら、発生磁場の強度を変えることができる点にある。
As can be seen from the above description, the feature of the magnetic field generator according to the present invention is that the intensity of the generated magnetic field can be changed while keeping the uniform magnetic field space constant.

【0029】また、使用する磁石は永久磁石であるた
め、電磁石・超伝導磁石のように安定な電源・冷却装置
を必要とはせず、したがって、装置が複雑にならないの
でメンテナンスがほとんど必要ないという利点がある。
Further, since the magnets used are permanent magnets, there is no need for a stable power supply / cooling device unlike electromagnets and superconducting magnets. Therefore, the device is not complicated, so that almost no maintenance is required. There are advantages.

【0030】さらにまた、合成磁場の強度は、各々の双
極子リング磁石の作る磁場の大きさと、各磁場同士のな
す角度より簡単に計算で求めることができる。合成磁場
の大きさを求めることは、従来の、たとえば永久磁石対
向型磁場発生装置では、計算機を用いても難しいもので
あった。よって、本発明の、簡単に計算できるという点
は画期的なことであり、磁場発生装置を設計する上で大
変便利な点である。
Further, the strength of the composite magnetic field can be easily calculated from the magnitude of the magnetic field produced by each dipole ring magnet and the angle between the magnetic fields. Determining the magnitude of the combined magnetic field has been difficult even with a conventional computer, for example, with a permanent magnet facing magnetic field generator using a computer. Therefore, the point that the present invention can be easily calculated is an epoch-making point, and is a very convenient point in designing a magnetic field generator.

【0031】例として、上記の実施例の場合の合成磁場
強度の計算値と測定値を図3に示す。横軸は外側の双極
子リング磁石20が作る磁場(磁束密度400G)と内
側の双極子リング磁石22が作る磁場(磁束密度160
0G)とのなす角度、縦軸は合成磁場の磁束密度の大き
さを表わす。計算値40が測定値42をよく再現してい
ることがわかる。
As an example, FIG. 3 shows calculated values and measured values of the synthetic magnetic field strength in the above embodiment. The horizontal axis represents the magnetic field (magnetic flux density 400 G) generated by the outer dipole ring magnet 20 and the magnetic field (magnetic flux density 160 G) generated by the inner dipole ring magnet 22.
0G), and the vertical axis represents the magnitude of the magnetic flux density of the composite magnetic field. It can be seen that the calculated value 40 well reproduces the measured value 42.

【0032】図1に示した例の場合、一定の向きの磁場
を得るためには、磁場装置全体の向きを回転させる必要
がある。しかし、たとえば、双極子リング磁石を三重に
した磁場発生装置を作製し、そのうち2つの双極子リン
グ磁石の作る磁場強度を等しくして、この2つのリング
をお互い反対方向に等しい角度だけ回転させるようにす
れば、合成磁場の向きを一定の向きに固定し、さらにも
うひとつのリングで磁場強度をバイアスとして与えたま
ま磁場強度を変化させることができる。
In the case of the example shown in FIG. 1, it is necessary to rotate the direction of the entire magnetic field device in order to obtain a magnetic field having a fixed direction. However, for example, a magnetic field generating device in which dipole ring magnets are tripled is manufactured, and two dipole ring magnets among them are made equal in magnetic field strength, and these two rings are rotated in opposite directions by the same angle. In this case, the direction of the synthetic magnetic field can be fixed at a fixed direction, and the magnetic field strength can be changed while the magnetic field strength is given as a bias by another ring.

【0033】[0033]

【発明の効果】本発明に係る双極子リング磁石型磁場発
生装置により、永久磁石を用いた装置で、均一磁場空間
の大きさを一定に保ちながら磁場強度を変化させること
ができるようになった。
According to the dipole ring magnet type magnetic field generator according to the present invention, it is possible to change the magnetic field strength while keeping the size of the uniform magnetic field constant in a device using permanent magnets. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の二重の双極子リング磁石型磁場発生装
置の例。
FIG. 1 shows an example of a double dipole ring magnet type magnetic field generator of the present invention.

【図2】本発明において2つの双極子リング磁石のうち
の一方がある角度だけ回転した場合の合成磁場を説明す
る図。
FIG. 2 is a diagram illustrating a combined magnetic field when one of two dipole ring magnets rotates by an angle in the present invention.

【図3】本発明の二重の双極子リング磁石型磁場発生装
置が作る磁場の強度の計算値および測定値の例。
FIG. 3 shows an example of a calculated value and a measured value of the magnetic field intensity generated by the double dipole ring magnet type magnetic field generator of the present invention.

【図4】双極子リング磁石の説明図。FIG. 4 is an explanatory view of a dipole ring magnet.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の異方性磁石の磁化方向の角度を変
えながらリング状に配置して双極子リング磁石を構成
し、該双極子リング磁石を複数個使用して磁場を発生さ
せる装置において、 上記双極子リング磁石を二重以上に配置し、かつ、該双
極子リング磁石の各々が独立して回転することを特徴と
する磁場発生装置。
1. An apparatus for forming a dipole ring magnet by arranging a plurality of anisotropic magnets in a ring shape while changing the angle of magnetization direction thereof, and generating a magnetic field using a plurality of the dipole ring magnets. A magnetic field generator, wherein the dipole ring magnets are arranged in two or more, and each of the dipole ring magnets independently rotates.
JP5027225A 1993-01-22 1993-01-22 Magnetic field generator Expired - Fee Related JP2704352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5027225A JP2704352B2 (en) 1993-01-22 1993-01-22 Magnetic field generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5027225A JP2704352B2 (en) 1993-01-22 1993-01-22 Magnetic field generator

Publications (2)

Publication Number Publication Date
JPH06224027A JPH06224027A (en) 1994-08-12
JP2704352B2 true JP2704352B2 (en) 1998-01-26

Family

ID=12215153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5027225A Expired - Fee Related JP2704352B2 (en) 1993-01-22 1993-01-22 Magnetic field generator

Country Status (1)

Country Link
JP (1) JP2704352B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885267B2 (en) 2003-03-17 2005-04-26 Hitachi Metals Ltd. Magnetic-field-generating apparatus and magnetic field orientation apparatus using it

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3705861B2 (en) * 1996-03-21 2005-10-12 株式会社日立メディコ Superconducting magnet device and method for adjusting magnetization thereof
SE511139C2 (en) 1997-11-20 1999-08-09 Hana Barankova Plasma processing apparatus with rotatable magnets
CN100568461C (en) * 2000-09-01 2009-12-09 信越化学工业株式会社 Produce the field generator for magnetic of magnetopasma
DE10216865A1 (en) * 2001-04-17 2002-12-12 Hitachi Metals Ltd Heat treatment furnace with magnetic field and heat treatment method using the same
GB2425842A (en) * 2005-05-05 2006-11-08 Plant Bioscience Ltd Magnetic resonance sensor with rotatable magnetic rods placed around the sample
DE102006031425A1 (en) * 2006-07-05 2008-01-10 Forschungszentrum Jülich GmbH Magnetic system with variable field strength
DE102007039888B4 (en) * 2007-08-23 2010-01-28 Zenergy Power Gmbh Method and device for induction heating of a metallic workpiece
JP5910656B2 (en) * 2014-03-25 2016-04-27 Tdk株式会社 Sputtering deposition system
DE102016014192A1 (en) * 2016-11-29 2018-05-30 Sekels Gmbh Device for moving magnetic particles in a room by means of magnetic forces
CN113366329A (en) * 2018-11-29 2021-09-07 爱普斯陶有限公司 Lightweight asymmetric magnet array with mixed phase magnet rings
CN113348372A (en) 2018-11-29 2021-09-03 爱普斯陶有限公司 Lightweight asymmetric magnet array with theta magnet ring
JP7170068B2 (en) * 2019-01-23 2022-11-11 株式会社日立製作所 Permanent magnet device and magnetic field generator
US20230400535A1 (en) * 2022-06-13 2023-12-14 International Business Machines Corporation Multi-axis magnetic field vector generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885267B2 (en) 2003-03-17 2005-04-26 Hitachi Metals Ltd. Magnetic-field-generating apparatus and magnetic field orientation apparatus using it

Also Published As

Publication number Publication date
JPH06224027A (en) 1994-08-12

Similar Documents

Publication Publication Date Title
JP2704352B2 (en) Magnetic field generator
US4862128A (en) Field adjustable transverse flux sources
US4994777A (en) Enhanced magnetic field within enclosed cylindrical cavity
US8860539B2 (en) Magnetised structure inducing a homogeneous field, in the centre thereof, with a pre-determined orientation
US9128167B2 (en) Cylindrical permanent magnet device generating a controlled magnetic field at a distance from the surface thereof
US20240120138A1 (en) Lightweight asymmetric magnet arrays with mixed-phase magnet rings
US4839059A (en) Clad magic ring wigglers
JP2002289425A (en) Magnetic field generator
JPH02501002A (en) Permanent magnet accessible from the equator
CN110857970B (en) Magnet assembly and method for manufacturing a magnet assembly
US10679781B1 (en) Lightweight asymmetric magnet arrays with theta magnet rings
US5075662A (en) Enhanced magnetic field within enclosed annular cavity
USH1615H (en) Magnetic fields for chiron wigglers
WO2020109894A1 (en) Lightweight asymmetric magnet arrays
EP1079399A1 (en) Uniform magnetic force generating magnet
JP3532888B2 (en) Strong magnetic field generator
JP2596836B2 (en) Magnetic field generator
US6429655B1 (en) MR apparatus provided with a gradient coil system
US20230305088A1 (en) Lightweight magnet arrays for mri applications
JPH0244482Y2 (en)
JPH01283905A (en) Method for deviating uniform magnetic field for mri apparatus and magnetostatic field generating apparatus using the method
JPH03141619A (en) Magnet for generating magnetic field uniform in wide region
JPS63222406A (en) Magnetic field generating apparatus
JP2002272699A (en) Magnetic field generating apparatus for mri
JPS62140398A (en) Magnetic field generator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees