JP2703900B2 - Light switch - Google Patents

Light switch

Info

Publication number
JP2703900B2
JP2703900B2 JP62159670A JP15967087A JP2703900B2 JP 2703900 B2 JP2703900 B2 JP 2703900B2 JP 62159670 A JP62159670 A JP 62159670A JP 15967087 A JP15967087 A JP 15967087A JP 2703900 B2 JP2703900 B2 JP 2703900B2
Authority
JP
Japan
Prior art keywords
light
light source
array
decomposition
optical switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62159670A
Other languages
Japanese (ja)
Other versions
JPS644724A (en
Inventor
滋 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62159670A priority Critical patent/JP2703900B2/en
Publication of JPS644724A publication Critical patent/JPS644724A/en
Application granted granted Critical
Publication of JP2703900B2 publication Critical patent/JP2703900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光を用いて並列高速に演算を行うために必
要な光スイッチに関するものである。 〔従来技術とその問題点〕 大規模な情報を処理するために、高速に演算を実行す
る計算機の研究が進んでいるが、電気回路を用いた逐次
処理による方法では、すでに性能限界に近づいている。
そこで、スーパーコンピュータやアレイプロセッサな
ど、複数の演算を同時に実行する並列処理アーキテクチ
ャの研究が進んでいる。一方、光は空間的な拡がりを持
ち、その物理的性質は互いに干渉し合わないため、光を
用いた演算は並列性に優れている。 しかし、これまで、データを高速に任意の場所へスイ
ッチングする方法が無く、光を使って高速にデータを処
理できなかった。 〔発明の目的〕 本発明の目的は、光の振幅透過率を変化させ、データ
を任意の場所へスイッチングさせるための光スイッチを
提供することにある。 〔問題点を解決するための手段〕 本発明の光スイッチは、光源が2次元マトリクス状に
配列されたアレイ状光源と、入力信号によって前記光源
を発光せしめる光源駆動手段と、光検出器が2次元マト
リクス状に配列された光検出アレイと、前記アレイ状光
源と同数の分解領域を有し、さらに1つの分解領域の中
に前記光検出アレイと同数の分解領域を有し、前記分解
領域の各で前記光源から出射された光の強度を変えるた
め振幅透過率を変化させる光変調手段と、前記光変調手
段を制御する制御手段と、前記光変調手段からの透過光
を前記光検出アレイに分岐,集光する手段を備える特徴
とする。 〔作用〕 第2図に示すように、2次元2値入力データに対応さ
せて入力面101の光源を発光させ、ホログラム104によっ
て出力面103の所望の位置へ光が集光するように、パタ
ーンマスク102の開口の位置を設定する。 第3図は、2×2の入力データに対する第2図の入力
面101,パターンマスク102,出力面103の構造を示したも
のである。(a)は入力面101の光源の位置、(b)は
パターンマスク102の開口の位置、(c)は出力面103の
光検出器の位置を示す。入力面101の光源11,12,21,22
は、等間隔の格子の交点に2×2の配列で並ぶように2
次元的に配置されている。パターンマスク102は、入力
面101の光源の数(この場合、4個)の2乗倍である16
個の分割領域(パターン)aa,ab,ba,bb,ac,ad,bc,bd,c
a,cb,da,db,cc,cd,dc,ddを有している。出力面103は、
入力面101の光源の個数と同数の光検出器AA,AB,BA,BBを
有している。 例えば、パターンマスク102のパターンaaを透過した
光が出力面103の光検出器AAに、パターンabを透過した
光が光検出器ABに集光するように、ホログラム104を製
作すれば、2×2の入力データを並列,独立に2×2の
出力先へスイッチングできる。第1表に、パターン透過
後のホログラムの集光先を示す。 以上、入力データが2×2の場合について述べたが、
例えば4×4の場合には、入力面101は4×4個の光源
を、パターンマスク102は16×16個のパターンを、出力
面103は4×4個の光検出器を有し、ホログラム104によ
って、入力面101の光源と出力面103の光検出器が、それ
ぞれ1対1に対応している。一般に、入力データがn×
nの場合には、パターンの数は少なくともn2×n2、出力
面の光検出器の数はn×nであれば、本発明の光スイッ
チを実現できる。 〔実施例〕 以下、本発明の実施例を説明する。 第1図は、本発明の光スイッチの一実施例を示す斜視
図である。本実施例では入力面,パターンマスク,出力
面の構成が、第3図に示したものに相当している。従っ
て、対応する要素には第3図と同一の符号を用いる。 この光スイッチは、等間隔の格子の交点に配置された
2×2個の例えば半導体レーザである高速変調可能な発
散光源から構成されるアレイ状光源1と、それぞれの発
散光源に電圧を印加する回路より構成され発散光源を点
滅させる入力データを制御する駆動装置4と、アレイ状
光源1から出射した発散光を透過する4×4個の分割領
域を有する例えば液晶TVなどの空間光変調器2と、出射
光が所望の出力先へ分岐するように、空間光変調器2の
開口の位置を制御する制御装置5と、空間光変調器2を
透過した光を集光する例えば4×4個のホログラム8よ
りなるアレイ状ホログラム7と、2次元CCDなどのディ
テクタアレイ3と、ディテクタアレイ3の出力を2値化
して出力するしきい素子6とから構成されている。 次に、この光スイッチの動作を、発散光源11からの光
が空間光変調器2のパターンbbを通り光検出器BBへスイ
ッチングされる場合について説明する。駆動装置4によ
りアレイ状光源1の発散光源11を点灯させる。発散光源
11から出射した発散光は、空間光変調器2を透過する。
この時、制御装置5によって出射光がディテクタアレイ
3の所望の出力先BBへ分岐するように、空間光変調器2
の開口の位置を制御する。すなわち、空間光変調器2の
パターンbbを開口とする。これによりパターンbbでの光
の透過率は1、パターンaa,ab,baでの光の透過率は0に
変化せしめられる。パターンbbを透過した光は、アレイ
状ホログラム7の中のパターンbbの直後にあるホログラ
ム8によってディテクタアレイ3の光検出器BBに集光さ
れる。ディテクタによって受光した光は、しきい素子6
によって2値化される。 〔発明の効果〕 以上詳述したように、本発明の光スイッチを用いるこ
とによって、データを並列,高速に任意の場所へ分岐,
集光することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical switch required for performing parallel high-speed operations using light. [Prior art and its problems] In order to process large-scale information, research on computers that perform high-speed operations is progressing. However, the sequential processing method using electric circuits is already approaching the performance limit. I have.
Therefore, research on a parallel processing architecture, such as a supercomputer or an array processor, for simultaneously executing a plurality of operations has been advanced. On the other hand, light has a spatial spread, and its physical properties do not interfere with each other. Therefore, the calculation using light has excellent parallelism. However, until now, there has been no method for switching data to an arbitrary place at high speed, and data cannot be processed at high speed using light. [Object of the Invention] An object of the present invention is to provide an optical switch for changing the amplitude transmittance of light and switching data to an arbitrary place. [Means for Solving the Problems] An optical switch according to the present invention includes an array-like light source in which light sources are arranged in a two-dimensional matrix, light source driving means for causing the light source to emit light by an input signal, and a photodetector. A photodetection array arranged in a dimensional matrix, having the same number of decomposition areas as the array-like light source, and further having the same number of decomposition areas as the light detection array in one decomposition area; A light modulating means for changing an amplitude transmittance for changing an intensity of light emitted from the light source at each, a control means for controlling the light modulating means, and a transmitted light from the light modulating means to the light detection array. It is characterized by having means for branching and condensing. [Operation] As shown in FIG. 2, the light source on the input surface 101 is made to emit light in accordance with the two-dimensional binary input data, and the hologram 104 is used to focus the light on a desired position on the output surface 103. The position of the opening of the mask 102 is set. FIG. 3 shows the structure of the input surface 101, the pattern mask 102, and the output surface 103 of FIG. 2 for 2 × 2 input data. (A) shows the position of the light source on the input surface 101, (b) shows the position of the opening of the pattern mask 102, and (c) shows the position of the photodetector on the output surface 103. Light source 11, 12, 21, 22 on input surface 101
Are arranged so as to be arranged in a 2 × 2 array at the intersections of the grid at equal intervals.
They are arranged dimensionally. The pattern mask 102 is the square of the number of light sources on the input surface 101 (four in this case) 16
Divided areas (patterns) aa, ab, ba, bb, ac, ad, bc, bd, c
a, cb, da, db, cc, cd, dc, dd. The output surface 103 is
The same number of light detectors AA, AB, BA, and BB as the number of light sources on the input surface 101 are provided. For example, if the hologram 104 is manufactured such that the light transmitted through the pattern aa of the pattern mask 102 is focused on the photodetector AA on the output surface 103 and the light transmitted through the pattern ab is focused on the photodetector AB, 2 × 2 input data can be switched to 2 × 2 output destinations in parallel and independently. Table 1 shows the hologram focusing destinations after the pattern transmission. As described above, the case where the input data is 2 × 2 has been described.
For example, in the case of 4 × 4, the input surface 101 has 4 × 4 light sources, the pattern mask 102 has 16 × 16 patterns, the output surface 103 has 4 × 4 photodetectors, and a hologram. By 104, the light source on the input surface 101 and the photodetector on the output surface 103 correspond one-to-one. Generally, the input data is nx
In the case of n, if the number of patterns is at least n 2 × n 2 and the number of photodetectors on the output surface is n × n, the optical switch of the present invention can be realized. Examples Examples of the present invention will be described below. FIG. 1 is a perspective view showing one embodiment of the optical switch of the present invention. In this embodiment, the configuration of the input surface, the pattern mask, and the output surface corresponds to that shown in FIG. Therefore, the same reference numerals are used for the corresponding elements as in FIG. This optical switch applies an voltage to each of the divergent light sources, and an array-like light source 1 composed of 2 × 2 divergent light sources capable of high-speed modulation, for example, semiconductor lasers arranged at intersections of equally spaced gratings. A driving device 4 which is constituted by a circuit and controls input data for blinking a divergent light source, and a spatial light modulator 2 such as a liquid crystal TV having 4 × 4 divided areas for transmitting divergent light emitted from the array light source 1 And a control device 5 for controlling the position of the opening of the spatial light modulator 2 so that the emitted light is branched to a desired output destination, and, for example, 4 × 4 light condensing light transmitted through the spatial light modulator 2 The hologram 8 is composed of an array hologram 7, a detector array 3 such as a two-dimensional CCD, and a threshold element 6 for binarizing the output of the detector array 3 and outputting it. Next, the operation of the optical switch will be described for the case where light from the divergent light source 11 is switched to the photodetector BB through the pattern bb of the spatial light modulator 2. The diverging light source 11 of the array light source 1 is turned on by the driving device 4. Divergent light source
The divergent light emitted from 11 passes through the spatial light modulator 2.
At this time, the spatial light modulator 2 is controlled by the control device 5 so that the emitted light is branched to a desired output destination BB of the detector array 3.
Control the position of the opening. That is, the pattern bb of the spatial light modulator 2 is used as an opening. As a result, the light transmittance of the pattern bb is changed to 1 and the light transmittance of the patterns aa, ab, and ba is changed to 0. The light transmitted through the pattern bb is collected on the photodetector BB of the detector array 3 by the hologram 8 immediately after the pattern bb in the array hologram 7. The light received by the detector is the threshold element 6
Is binarized. [Effects of the Invention] As described in detail above, by using the optical switch of the present invention, data can be branched in parallel, at high speed,
Light can be collected.

【図面の簡単な説明】 第1図は本発明の光スイッチの一実施例を示す斜視図、 第2図は本発明の原理を示す図、 第3図は入力面,パターンマスク,出力面を示す図であ
る。 1……アレイ状光源 2……空間光変調器 3……ディテクタアレイ 4……駆動装置 5……制御装置 6……しきい素子 7……アレイ状ホログラム 8……ホログラム 101……入力面 102……パターンマスク 103……出力面
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an embodiment of the optical switch of the present invention, FIG. 2 is a diagram showing the principle of the present invention, and FIG. 3 is a diagram showing an input surface, a pattern mask, and an output surface. FIG. 1. Array light source 2 Spatial light modulator 3 Detector array 4 Driving device 5 Control device 6 Threshold element 7 Array hologram 8 Hologram 101 Input surface 102 …… Pattern mask 103 …… Output surface

Claims (1)

(57)【特許請求の範囲】 1.光源が2次元マトリクス状に配列されたアレイ状光
源と、入力信号によって前記光源を発光せしめる光源駆
動手段と、光検出器が2次元マトリクス状に配列された
光検出アレイと、前記アレイ状光源と同数の分解領域を
有し、さらに1つの分解領域の中に前記光検出アレイと
同数の分解領域を有し、前記分解領域の各で前記光源か
ら出射された光の強度を変えるため振幅透過率を変化さ
せる光変調手段と、前記光変調手段を制御する制御手段
と、前記光変調手段からの透過光を前記光検出アレイに
分岐,集光する手段を備える特徴とする光スイッチ。
(57) [Claims] An array light source in which light sources are arranged in a two-dimensional matrix, light source driving means for causing the light source to emit light by an input signal, a light detection array in which photodetectors are arranged in a two-dimensional matrix, and the array light source An amplitude transmittance for changing the intensity of the light emitted from the light source in each of the decomposition areas, having the same number of decomposition areas, and further having the same number of decomposition areas as the light detection array in one decomposition area; An optical switch, comprising: a light modulating means for changing the light modulating means; a control means for controlling the light modulating means;
JP62159670A 1987-06-29 1987-06-29 Light switch Expired - Lifetime JP2703900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62159670A JP2703900B2 (en) 1987-06-29 1987-06-29 Light switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62159670A JP2703900B2 (en) 1987-06-29 1987-06-29 Light switch

Publications (2)

Publication Number Publication Date
JPS644724A JPS644724A (en) 1989-01-09
JP2703900B2 true JP2703900B2 (en) 1998-01-26

Family

ID=15698767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62159670A Expired - Lifetime JP2703900B2 (en) 1987-06-29 1987-06-29 Light switch

Country Status (1)

Country Link
JP (1) JP2703900B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363631A (en) * 1989-08-01 1991-03-19 Ricoh Co Ltd Spatial optical matrix switching device
CN108698883A (en) 2015-12-18 2018-10-23 贺利氏石英玻璃有限两合公司 The mist projection granulating of silica in quartz glass preparation
WO2017103166A2 (en) 2015-12-18 2017-06-22 Heraeus Quarzglas Gmbh & Co. Kg Production of a silica glass article in a multichamber furnace
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
CN109153593A (en) 2015-12-18 2019-01-04 贺利氏石英玻璃有限两合公司 The preparation of synthetic quartz glass powder
EP3390308A1 (en) 2015-12-18 2018-10-24 Heraeus Quarzglas GmbH & Co. KG Glass fibers and preforms made of quartz glass having low oh, cl, and al content
TWI812586B (en) 2015-12-18 2023-08-21 德商何瑞斯廓格拉斯公司 Quartz glass body, manufacturing process and application thereof, and process for controlling a dew point at an outlet of an oven
CN108698880B (en) 2015-12-18 2023-05-02 贺利氏石英玻璃有限两合公司 Preparation of opaque quartz glass bodies

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958422A (en) * 1982-09-28 1984-04-04 Yoshiki Ichioka Parallel optical logical operating method
JPS60216336A (en) * 1984-04-12 1985-10-29 Canon Inc Parallel optical arithmetic device
JPS61231530A (en) * 1985-04-05 1986-10-15 Nec Corp Optical switch circuit
JPS61179424A (en) * 1984-12-28 1986-08-12 Nec Corp Parallel optical operator

Also Published As

Publication number Publication date
JPS644724A (en) 1989-01-09

Similar Documents

Publication Publication Date Title
JP2703900B2 (en) Light switch
KR900003660A (en) Light beam scanning device having control means for varying the scanning beam scanning interval of a plurality of light beams
KR930013922A (en) Programmable Optical Crossbar Switch
JP3115589B2 (en) Neural network
JPS61179424A (en) Parallel optical operator
JP2556487B2 (en) Optical branching method and device
JP2003204566A (en) Optical crossbar switching and/or routing system
JPH0810307B2 (en) Light calculator
JP2658155B2 (en) Light switch
JPH0676092A (en) Optical neural processor
JP2658157B2 (en) Optical arithmetic method and optical arithmetic device
JPH0711652B2 (en) Light arithmetic
JPH0517536B2 (en)
JP2643521B2 (en) Arithmetic unit
US4791306A (en) Method and apparatus for converting image into electrical signals
JPS644723A (en) Optical switch
WO2023042304A1 (en) Reception control device, reception control method, and recording medium
JP2681477B2 (en) Ray-type object detection device
JP2658156B2 (en) Optical operation method and optical operation device
JP2624301B2 (en) Light switch
JPH0351830A (en) Optical arithmetic method and optical arithmetic unit
JP2778176B2 (en) Optical arithmetic unit
JP2570894B2 (en) Optical connection device
JPH0220833A (en) Optical arithmetic unit
JP2926753B2 (en) Optical connection device