JP2703036B2 - Superconducting material - Google Patents

Superconducting material

Info

Publication number
JP2703036B2
JP2703036B2 JP1049836A JP4983689A JP2703036B2 JP 2703036 B2 JP2703036 B2 JP 2703036B2 JP 1049836 A JP1049836 A JP 1049836A JP 4983689 A JP4983689 A JP 4983689A JP 2703036 B2 JP2703036 B2 JP 2703036B2
Authority
JP
Japan
Prior art keywords
substance
crystal
substance according
superconducting
site
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1049836A
Other languages
Japanese (ja)
Other versions
JPH02229716A (en
Inventor
俊哉 土井
孝明 鈴木
吉田  隆
厚子 添田
友一 加茂
瀞士 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1049836A priority Critical patent/JP2703036B2/en
Publication of JPH02229716A publication Critical patent/JPH02229716A/en
Application granted granted Critical
Publication of JP2703036B2 publication Critical patent/JP2703036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新しい酸化物超伝導体に係り、臨界濃度の
高い、安定な超伝導物質に関する。
Description: TECHNICAL FIELD The present invention relates to a new oxide superconductor, and to a stable superconductor having a high critical concentration.

〔従来の技術〕[Conventional technology]

比較的高い温度で超伝導状態を示すペロブスカイト型
銅酸化物(K2NiF4型のLa2-xBaxCuO4)がBednorzとMl
lerにより1986年に発明された。その後、ペロブスカイ
トの基本構造、ABO3において、大きいイオン半径を有す
るAサイトイオン(上記の例では、La3+とBa2+)を置換
することにより、各種の超伝導体が合成された。代表的
な例を挙げると、La−Sr−Cu−O(臨界温度TC=40
K)、Y−Ba−Cu−O(TC=90K)である。さらに高いTC
を有する物質としては、BサイトイオンのCuの一部をTl
あるいはBiで置換した、Ba−Ca−Tl−Cu−O(TC=120
K),Sr−Ca−Bi−Cu−O(TC=105K)及びTl−Sr−Cr−
Cu−O(TC=110K)超伝導体が発明された。
Perovskite-type copper oxide (La 2-x Ba x CuO 4 of K 2 NiF 4 type) which shows a superconducting state at a relatively high temperature is formed by Bednorz and Ml
Invented in 1986 by ler. Thereafter, various superconductors were synthesized by substituting A-site ions (La 3+ and Ba 2+ in the above example) having a large ionic radius in the basic structure of perovskite, ABO 3 . As a typical example, La-Sr-Cu-O (critical temperature T C = 40
K) and Y-Ba-Cu-O (T C = 90K). Higher T C
As a substance having, a part of Cu of B site ion is Tl
Or substituted with Bi, Ba-Ca-Tl- Cu-O (T C = 120
K), Sr-Ca-Bi -Cu-O (T C = 105K) and Tl-Sr-Cr-
Cu-O (T C = 110K ) superconductors have been invented.

La−Sr−Cu−OあるいはY−Ba−Cu−O超伝導体は、
その合成方法は比較的容易であるが、TCが低く、研究の
中心はTl−Ba−Ca−Cu−O,Tl−Sr−Ca−Cu−O及びBi−
Sr−Ca−Cu−O超伝導体に移りつつある。しかしBi−Sr
−Ca−Cu−O系超伝導体は、1つの結晶粒子の中に、TC
の低い相が共存し易く、単一相を得るのが非常に困難
で、結果的に、臨界電流密度が大きく出来ないという欠
点があつた。Tl−Ba−Ca−Cu−O系及びTl−Sr−Ca−Cu
−O系超伝導体は、焼成するときにTlの蒸発が起きて、
最終生成物の組成をコントロールするのが難しいという
欠陥があつた。
La-Sr-Cu-O or Y-Ba-Cu-O superconductor is
Although the synthesis method is relatively easy, the TC is low, and the main research focuses on Tl-Ba-Ca-Cu-O, Tl-Sr-Ca-Cu-O and Bi-.
Moving to Sr-Ca-Cu-O superconductors. But Bi-Sr
-Ca-Cu-O-based superconductors, in one crystal grain, T C
Phases tend to coexist, and it is very difficult to obtain a single phase. As a result, the critical current density cannot be increased. Tl-Ba-Ca-Cu-O system and Tl-Sr-Ca-Cu
-O-based superconductor, Tl evaporation occurs when firing,
The disadvantage is that it is difficult to control the composition of the final product.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記の従来の超伝導物質は、合成の比較的容易なもの
はTCが十分に高くなく、TCの高い物質はその合成が困難
であつた。
Conventional superconducting material described above, relatively easy thing synthesis T C is not sufficiently high, a high T C material whose synthesis has been made difficult.

これまでに発見されているペロブスカイト類似構造を
有する超伝導体において、La1-xBaxCuOxはTCが30Kと低
いという欠陥があつた。YBa2Cu3OxはTCは90Kであるが、
この程度のTCでは、液体窒素温度で使用するには困難で
あり、また水分,炭酸ガスと容易に反応して劣化すると
いう欠点があつた。
Among the superconductors having a perovskite-like structure discovered so far, La 1-x Ba x CuO x has a defect that TC is as low as 30K. YBa 2 Cu 3 O x is T C is a 90K,
This degree of T C, it is difficult to use at liquid nitrogen temperatures and moisture, the disadvantage of degradation readily react with carbon dioxide been filed.

Bi−Sr−Ca−Cu−O系超伝導体は、その中で最も高い
TC、110Kを与える結晶相Bi2Sr2Ca2Cu3Oxのみからなる材
料を合成するのが非常に難しく、臨界電流密度の高い超
伝導体材料を作製できないという欠陥があつた。Tl−Ba
−Ca−Cu−O及びTl−Sr−Ca−Cu−O系超伝導体は、焼
成するときにTlの蒸発が起きて最終生成物の組成コント
ロールが難しいという欠陥があつた。
Bi-Sr-Ca-Cu-O-based superconductor has the highest
It is very difficult to synthesize a material consisting only of the crystalline phase Bi 2 Sr 2 Ca 2 Cu 3 O x that gives T C and 110 K, and there is a defect that a superconductor material having a high critical current density cannot be produced. Tl-Ba
The -Ca-Cu-O and Tl-Sr-Ca-Cu-O-based superconductors have a defect that the composition of the final product is difficult to control due to evaporation of Tl during firing.

本発明の目的は、高い臨界温度を有し、種々の物理
的,化学的性質を持つ超伝導物質を提供することによつ
て、臨界温度が高く、臨界電流密度の高い、高臨界磁界
を有し、化学的に安定で製造しやすい超伝導物質を提供
することにある。
An object of the present invention is to provide a superconducting material having a high critical temperature and various physical and chemical properties to provide a high critical temperature, a high critical current density, and a high critical magnetic field. Another object of the present invention is to provide a superconductive material which is chemically stable and easy to manufacture.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、複合酸化物で一般式 (A1-xA′2B2B′n-1CunO2n+4+δ あるいは(A1-xA′)B2B′n-1CunO2n+3+δ ここで、A :BiあるいはTl A′:結晶中でのイオン半径が0.81Å以上1.05
Å以下である元素の単独あるいは複数 B :Na,K,Rb,Cs,Mg,Ca,Sr,Baのうち少なくと
も1つ B′:Na,Ca,Y,ランタノイト元素のうち少なく
とも1つ。
The present invention relates to a composite oxide represented by the general formula (A 1-x A ′ x ) 2 B 2 B ′ n-1 C un O 2n + 4 + δ or (A 1-x A ′ x ) B 2 B ′ n here -1 C un O 2n + 3 + δ, a: B i or Tl a ': ionic radius in the crystal is more than 0.81A 1.05
単 独 One or more of the following elements: B: at least one of Na, K, Rb, Cs, Mg, Ca, Sr and Ba B ': at least one of Na, Ca, Y and lanthanite elements.

Cu :銅 O :酸素 n=2,3あるいは4 −1<δ<1,0≦x≦1 で表わされる化合物であり、かつその結晶構造に5個の
酸素イオンがCuイオンの回りに、ピラミツド型に配位し
た部分を含み、かつその銅の平均原子価が2.0より大き
く、2.5以下であることを特徴とする超伝導物質にあ
る。
Cu: Copper O: Oxygen A compound represented by n = 2,3 or 4-1 <δ <1,0 ≦ x ≦ 1, and in its crystal structure, five oxygen ions are formed around the Cu ions by pyramids. A superconducting material comprising a part coordinated with a mold and having an average valence of copper of more than 2.0 and not more than 2.5.

これまでに発見された高温超伝導物質の結晶構造を第
1図〜第3図にまとめる。これらの結晶構造の中で、第
1図(2),第2図(2)に示す構造をもつ超伝導体は
特に高いTCを有している。第3図(1)に示す構造を有
する超伝導体La1-xBaxCuOx,La1-xSrxCuOxそしてLa1-xCa
xCuOx、第3図(2)に示す構造を有する超伝導体YBa2C
u3O7-δの場合には、そのTCと結晶中のCuの平均原子価
の間に、第3図に示す様な関係が存在し、最適なCuの平
均原子価が存在することが知られていた。今回我々は第
1図に示したものと異つた結晶構造を有する超伝導物質
においても同様に、最適なCuの平均原子価が存在すると
いうことを見い出し、ある条件の範囲内であれば、結晶
の各サイトを他の元素で置換しても超伝導性が保存され
ることを発見し、本発明に到つた。これまでに発見され
ている第1図もしくは第2図に示す結晶構造を持つ超伝
導体の場合、A,A′サイトは、TlかもしくはBiのみによ
つて占有されていた。しかしこのサイトを他の原子で置
換していつても、結晶構造が変化せず、かつCuの平均原
子価が2.0以上2.5以下の範囲内に納つていれば超伝導性
を示すことを見い出した。また同様に他のサイトを別の
原子で置き換えた物質においても超伝導性が発現する。
The crystal structures of the high-temperature superconducting materials discovered so far are summarized in FIG. 1 to FIG. Among these crystal structures, FIG. 1 (2), superconductors having a structure shown in FIG. 2 (2) has a particularly high T C. The superconductors La 1-x Ba x CuO x , La 1-x Sr x CuO x and La 1-x Ca having the structure shown in FIG.
x CuO x , superconductor YBa 2 C having the structure shown in FIG. 3 (2)
In the case of u 3 O 7- δ, the relationship shown in Fig. 3 exists between the T C and the average valence of Cu in the crystal, and the optimal average valence of Cu exists. Was known. In this study, we also found that an optimal Cu average valence exists for a superconducting material having a crystal structure different from that shown in FIG. It has been found that superconductivity is preserved even if each site is replaced with another element, and the present invention has been reached. In the case of the superconductor having the crystal structure shown in FIGS. 1 and 2 discovered so far, the A and A 'sites are occupied only by Tl or Bi. However, whenever the site was replaced with another atom, the crystal structure did not change and the superconductivity was found to be exhibited if the average valence of Cu was within the range of 2.0 to 2.5. . Similarly, a substance in which another site is replaced with another atom also exhibits superconductivity.

また我々は、各サイトを他の原子で置換して合成した
種々の物質の結晶構造解析を実行して、ピラミツト型を
形成するCuイオンとOイオンの原子間距離を詳細に調べ
た。従来は、ピラミツド型の平面方向に広がるCu−Oの
結合が超伝導性に強くかかわつているといわれていた
が、我々の研究によれば、Cuイオンと頂点方向に存在す
る酸素イオンの距離と、超伝導性に強い相関がみられ
た。具体的には、その距離が2.10Å以上2.30Å以下のも
のが超伝導性に優れた物質であることを見出した。
We also performed crystal structure analysis of various materials synthesized by substituting each site with other atoms, and investigated in detail the interatomic distance between Cu ions and O ions forming the pyramid type. In the past, it was said that the bond of Cu-O spreading in the plane direction of the pyramid type was strongly related to superconductivity, but according to our research, the distance between Cu ions and oxygen ions existing in the vertex direction was , A strong correlation with superconductivity was observed. Specifically, it has been found that a material having a distance of 2.10 ° to 2.30 ° is a material having excellent superconductivity.

本発明の超伝導物質は、粉体,塊,焼結体,厚膜、あ
るいは線状などの形状で与えられる。出発原料を何らか
の手段で混合,反応させて本発明の物質を合成すると、
粉体,塊等が得られる。粉体は成形した後、焼結体とし
ても得られる。またドクターブレード法などで厚膜にす
ることも出来る。粉体を溶融させて、ロールなどで圧延
等すればテープあるいはリボン状の超伝導体が得られ
る。金属パイプ等に充填して、線引きあるいは圧延すれ
ば線状のものが得られる。本発明の超伝導体を薄膜で得
るためには、スパツタ法,蒸着法,溶射法,レーザー蒸
着法,MBE法(Moleculer Beam Epitaxy),CVD法(Chemic
al Vavor doposition)などが用いられる。本発明の超
伝導物質の粉体を得るためには、酸化物混合法,共沈
法,ゾルゲル法などの方法も用いることが出来る。原料
を反応させて、超伝導物質を合成する際の温度は、物質
の組成及び製法によつて異なるが、600℃〜1000℃の範
囲が適当である。一般的に言つて、nの数が大きい程、
低い温度でより長時間の反応を必要とする。
The superconducting material of the present invention is provided in the form of a powder, a lump, a sintered body, a thick film, or a line. When the starting materials are mixed and reacted by some means to synthesize the substance of the present invention,
Powders, lumps and the like are obtained. After molding, the powder is also obtained as a sintered body. Also, a thick film can be formed by a doctor blade method or the like. If the powder is melted and rolled with a roll or the like, a tape or ribbon-shaped superconductor can be obtained. Filling in a metal pipe or the like and drawing or rolling yields a linear product. In order to obtain the superconductor of the present invention in a thin film, a sputter method, an evaporation method, a thermal spray method, a laser evaporation method, an MBE method (Moleculer Beam Epitaxy), a CVD method (Chemic method).
al Vavor doposition) is used. In order to obtain the powder of the superconducting material of the present invention, methods such as an oxide mixing method, a coprecipitation method, and a sol-gel method can also be used. The temperature at which the raw materials are reacted to synthesize the superconducting substance varies depending on the composition of the substance and the production method, but is suitably in the range of 600 ° C to 1000 ° C. Generally speaking, the larger the number n,
Requires longer reaction times at lower temperatures.

〔作用〕[Action]

TCが100Kを越えない高温超伝導物質La1-xBaxCuOx,La
1-xSrxCuOx,YBa2Cu3O7-δにおいては、その超伝導メカ
ニズムに関する研究も盛んに行われている。La1-xDxCuO
x(D:Ba,Sr,Ca)の組成式で示される超伝導物質は、い
ずれも第3図(1)に示すような結晶構造をしており、
Dで表わした部分の元素はBa,Sr,Caのいずれであつても
超伝導性を示す。またYBa2Cu3O7-δの組成式で示される
超伝導物質は第2図(2)に示す結晶構造を有してお
り、これもY原子の部分を他の希土類元素で部分置換、
あるいは全置換した物質でも結晶構造が大幅に変化しな
い限り超伝導性を示すことが知られている。これらのこ
とから、現在超伝導発現に関しては、その物質の結晶構
造、特にC軸に垂直な方向に広がるCu原子とO原子の平
面が重要なカギを握ると考えられており、新しい超伝導
物質の探索に関しても、この点に留意しながら研究が進
められている。また一方で、La1-xDxCuOx系については
D原子の置換率、YBa2Cu3O7-δ系についは酸素欠損量δ
によつて、TCの値が変化することが知られている。現在
これはCuの平均原子価と関連づけて、TCがCuの平均原子
価に強く依存するといわれている(第4図参照)。第3
図に示す結晶構造をもつ100Kを越えないTCを有する超伝
導物質に関しては、その結晶構造と、Cuの平均原子価が
超伝導性に強い影響を与えていると考えられている。し
かしそれ以外の結晶構造、第1〜2図に示す構造を有す
る一群の超伝導体に関しては、現在までその様な知見は
全く得られていなかつた。そこで今回我々は、これらの
結晶構造を有する物質を多種類合成し、結晶構造と、ホ
ール濃度について詳細に検討し、超伝導性を示す物質に
共通な特徴を見出すに到つた。
T C high temperature does not exceed 100K superconducting material La 1-x Ba x CuO x , La
In 1-x Sr x CuO x and YBa 2 Cu 3 O 7- δ, studies on the superconducting mechanism have been actively conducted. La 1-x D x CuO
Each of the superconducting materials represented by the composition formula of x (D: Ba, Sr, Ca) has a crystal structure as shown in FIG.
The element in the portion represented by D shows superconductivity regardless of Ba, Sr, or Ca. The superconducting material represented by the composition formula of YBa 2 Cu 3 O 7- δ also has a crystal structure shown in FIG. 2 (2), which also has a Y atom part partially substituted with another rare earth element.
Alternatively, it is known that even a completely substituted substance exhibits superconductivity as long as the crystal structure does not significantly change. From these facts, it is thought that the crystal structure of the material, especially the plane of Cu atoms and O atoms extending in the direction perpendicular to the C axis, is the key to the development of superconductivity. Research is also being conducted with a focus on this point. On the other hand, for the La 1-x D x CuO x system, the substitution rate of D atoms is determined, and for the YBa 2 Cu 3 O 7- δ system,
The Yotsute value from T C is known to vary. At present, it is said that TC is strongly dependent on the average valence of Cu in relation to the average valence of Cu (see FIG. 4). Third
Regarding the superconducting material having a T C of not more than 100 K having the crystal structure shown in the figure, it is considered that the crystal structure and the average valence of Cu have a strong influence on the superconductivity. However, with respect to other crystal structures, such as a group of superconductors having the structures shown in FIGS. 1 and 2, such knowledge has not been obtained at all until now. Therefore, this time, we synthesized many kinds of materials having these crystal structures, studied the crystal structure and hole concentration in detail, and came to find a common feature of the materials showing superconductivity.

第1〜2図の結晶構造モデルのなかで(A)で示した
サイトを占めているイオンは、超伝導性発現には特に寄
与しておらず、結晶構造を変化させない限り、どの様な
元素であつてもかまわないことがわかつた。
The ions occupying the site indicated by (A) in the crystal structure models of FIGS. 1 and 2 do not particularly contribute to the development of superconductivity, and any element as long as the crystal structure is not changed. It turned out that it was OK.

次に第1〜2図のモデルのなかで(B)で示したサイ
トを占めるイオンの役割であるが、この部分を占める陽
イオンの最近接の酸素が、超伝導に深くかかわつている
ことを我々は見出した。第5図に、ピラミツドを形成す
るCuイオンと、そのピラミツドの頂点に位置するこの酸
素イオンの距離を横軸に、そして縦軸にはTCを取つたグ
ラフを示す。超伝導臨界温度とこの距離の関には明確な
相関のあることがわかる。そしてこの部分の原子間距離
を変化させるには、(B)サイトに異つたイオン半径を
持つ元素を導入するのが最も容易である。
Next, the role of the ions occupying the site shown in FIG. 1B in the model of FIGS. 1 and 2 is explained. It is understood that the nearest oxygen of the cation occupying this portion is deeply involved in superconductivity. We have found. In FIG. 5, a Cu ion to form a Piramitsudo, the distance of the oxygen ions located at the apex of the Piramitsudo the horizontal axis, and the vertical axis shows a graph was convex to T C. It can be seen that there is a clear correlation between the superconducting critical temperature and this distance. In order to change the interatomic distance in this portion, it is easiest to introduce an element having a different ionic radius into the (B) site.

(B′)サイトを占めるイオンについては、そのイオ
ン半径が0.90Å以上、1.0Å以下でなければいけないこ
とを我々は見い出した。この部分のイオンの大きさが大
きいと、酸素が導入されて、Cu原子とO原子のピラミツ
ドが形成されなくなる。また小さすぎると、結晶構造が
違つたものになつてしまう。
We have found that for ions occupying the (B ') site, the ionic radius must be greater than or equal to 0.90 ° and less than or equal to 1.0 °. If the size of the ions in this portion is large, oxygen is introduced and pyramids of Cu and O atoms are not formed. If it is too small, the crystal structure will be different.

以上の結果を、種々の超伝導物質,非超伝導物質を合
成し、詳細に検討することにより得たが、これらの条件
を満たすのみでは超伝導性が発現しない。第1図〜第2
図に湿した構造を有する超伝導物質においては、Cu原子
とO原子の形成するピラミツド構造の部分に存在するホ
ールの濃度によつてもTCが変化することを、我々は見出
した。種々の元素A,A′,B,B′及び種々のxの値に対し
て組成(A1-xA′2B2B′2Cu3O10+δの物質を合成
し、ホール濃度と、TCの関係を調べた。尚Cuの平均原子
価から2.0を引いた値は近似的にはホール濃度を与え
る。結果を第5図に示す。ホール濃度が0.22付近で、TC
が最も高くなり、0.08以下,0.38以上ではTCが60K以下に
なつていることがわかる。
Although the above results were obtained by synthesizing various superconducting materials and non-superconducting materials and examining them in detail, superconductivity was not exhibited only by satisfying these conditions. Figures 1 and 2
In superconducting material having a structure in which dampening in FIG, T C be cowpea concentration of holes present in the portion of Piramitsudo structure that forms the Cu atoms and the O atoms to change, we have found. For the various elements A, A ', B, B' and various values of x, a substance having the composition (A 1-x A ' x ) 2 B 2 B' 2 Cu 3 O 10+ δ was synthesized, and the concentration was examined the relationship of T C. Incidentally, a value obtained by subtracting 2.0 from the average valence of Cu gives a hole concentration approximately. The results are shown in FIG. When the hole concentration is around 0.22, T C
It can be seen that TC is less than 60K at 0.08 or less and 0.38 or more.

以上述べた結晶構造に関する条件、そしてホール濃度
に関する条件を満足する様な物質を合成できれば、本発
明を見出した物質以外にも超伝導物質を手に入れられる
可能性は高いと考えられる。しかしながら超伝導性の発
現メカニズムについて明確な答えは得られていない現
在、必ずしもこの2つの条件さえ満足すれば超伝導物質
となる保障はない。ただ本発明の原理が新しい超伝導物
質発見の重要な指針を与えることとなるであろう。
If a substance that satisfies the above-mentioned conditions regarding the crystal structure and the conditions regarding the hole concentration can be synthesized, it is considered that there is a high possibility that a superconducting substance other than the substance discovered in the present invention can be obtained. However, at present, no clear answer has been obtained regarding the mechanism of superconductivity, and there is no guarantee that a superconducting substance will be obtained if these two conditions are satisfied. However, the principles of the present invention will provide important guidance for the discovery of new superconducting materials.

〔実施例〕〔Example〕

実施例1 Tl2O3,Bi2O3,SrO,CaO,CuOを出発原料として用いた。
まず最初に、Bi2O3,SrO,CaO,CuOをそれぞれBi:Sr:Ca:Cu
の原子比が1:2:1:2になるように混合し、880℃で100時
間大気中で焼成した。途中、炉から取り出して冷却し、
粉砕する工程を3回入れた。こうして得られた粉末にTl
2O3を、Tl:Bi:Sr:Ca:Cuの原子比が1:1:2:1:2になるよう
に混合し、金のホイルで密封し、870℃で50時間の焼成
を行なつた。出来上がつた粉末のX線回折パターンを解
析して、Bi2Sr2CaCu2Oxと同様な結晶構造を持ち、Biサ
イトの50%がTlで置き換つた新しい物質であることを確
めた。この粉末を800℃で焼結して、得られた焼結体の
電気抵抗を、温度を下げながら測定したところ、90K付
近で急激に抵抗が落ち始め、80Kで抵抗値は零となつ
た。
Example 1 Tl 2 O 3 , Bi 2 O 3 , SrO, CaO, CuO were used as starting materials.
First, Bi 2 O 3 , SrO, CaO, and CuO were converted to Bi: Sr: Ca: Cu, respectively.
Were mixed at an atomic ratio of 1: 2: 1: 2, and calcined at 880 ° C. for 100 hours in the air. On the way, take it out of the furnace and cool it down,
The pulverizing step was performed three times. Tl is added to the powder thus obtained.
2 O 3 is mixed so that the atomic ratio of Tl: Bi: Sr: Ca: Cu becomes 1: 1: 2: 1: 2, sealed with gold foil, and fired at 870 ° C for 50 hours. Natsuta Analyze the X-ray diffraction pattern of the resulting powder to confirm that it has a similar crystal structure to Bi 2 Sr 2 CaCu 2 O x and that 50% of the Bi sites are a new substance with Tl replaced Was. This powder was sintered at 800 ° C., and the electrical resistance of the obtained sintered body was measured while lowering the temperature. As a result, the resistance began to drop sharply at around 90 K, and became zero at 80 K.

実施例−2 (Bi1-xA′2Sr2Ca2Cu3Oxの組成式で示される物質
が得られるように実施例−1に記載した方法に準じて、
合成を行ない、その試料のTCを測定した。結果を第1表
に示すが、ここで示したTCは、抵抗が急激に落ち始める
温度、即ちTCオンセツトの温度を絶対温度で示してい
る。
Example 2 According to the method described in Example 1, a substance represented by a composition formula of (Bi 1-x A ′ x ) 2 Sr 2 Ca 2 Cu 3 O x was obtained according to the method described in Example 1.
Performs synthesis was measured T C of the sample. While results are shown in Table 1, T C shown here is the temperature at which the resistance begins to drop sharply, i.e. the temperature from T C Onsetsuto indicated by absolute temperature.

第7図に、作製したサンプルのホール濃度(ホール係
数測定より求めた値であり、結晶中のピラミツド部分の
Cu1個当たりの数に直した値)とTCの関係を示す。
FIG. 7 shows the hole concentration (the value obtained from the measurement of the hole coefficient) of the prepared sample.
Value re of the number of Cu1 per) and shows the relationship of T C.

実施例−3 Bi2(Sr1-xBx2Ca2Cu3Oxの組成式で示される物質が
得られるように原料酸化物を混合し、様々のサンプルを
合成してそのTCの測定を行なつた。結果を第2表に示
す。
EXAMPLE -3 Bi 2 (Sr 1-x B x) 2 Ca 2 Cu 3 O x of composition material oxides such substances can be obtained of the formula are mixed, the T C by combining the various samples Measurements were made. The results are shown in Table 2.

第8図に、ホール濃度とTCの関係を示す。 In Figure 8 shows the relationship between the hole concentration and T C.

実施例−4 Bi2Sr2(Ca1-xB′2Cu3Oxの組成式で示される物質
が得られるように原料酸化物を混合,焼成し、種々のサ
ンプルを合成してそのTCの測定を行なつた。結果を第3
表に示す。
Example-4 Raw materials oxides were mixed and fired to obtain a material represented by a composition formula of Bi 2 Sr 2 (Ca 1-x B ′ x ) 2 Cu 3 O x , and various samples were synthesized. the measurement of the T C line Natsuta. Third result
It is shown in the table.

実施例−5 (Tl1-xA′2Ba2Ca2Cu3Oxの組成式で示される物質が
得られるように原料酸化物を混合,焼成し、種々のサン
プルを合成してそのTCの測定を行なつた。結果を第4表
に示す。
Example-5 Raw materials oxides were mixed and fired so that a substance represented by the composition formula of (Tl 1-x A ′ x ) 2 Ba 2 Ca 2 Cu 3 O x was obtained, and various samples were synthesized. the measurement of the T C line Natsuta. The results are shown in Table 4.

実施例−6 Tl(Ba1-xBx2Ca2Cu3Oxの組成式で示される物質が得
られるように原料酸化物を混合,焼成し、種々のサンプ
ルを合成してそのTCの測定を行つた。結果を第5表に示
す。
Example -6 The raw material oxides were mixed and calcined so as to obtain the substance represented by the composition formula of Tl (Ba 1-x B x ) 2 Ca 2 Cu 3 O x , and various samples were synthesized to obtain the T C measurements were taken. The results are shown in Table 5.

また、これらサンプルのホール濃度とTCの関係を第9
図に示す。
Also, the relationship between the hole concentration and T C of the samples No. 9
Shown in the figure.

比較例−1 ホール濃度の低いサンプルを作製する為に、Tl(Ba
1-xLax2Co2Cu3Oxの組成式で示される物質が得られる
ように原料酸化物を、混合,焼成し、そのTCの測定を行
つた。
Comparative Example-1 To prepare a sample having a low hole concentration, Tl (Ba
The 1-x La x) 2 Co 2 Cu 3 O x of composition material oxides such substances can be obtained of the formula, mixing and baking, KoTsuta measurement of T C.

結果を第6表に示す。 The results are shown in Table 6.

また、これらのサンプルのホール濃度とTCの関係を第
9図に示す。
Also shows hole concentration and T C of the relationship between these samples in Figure 9.

実施例−7 (Tl1-xA′)Sr2Ca2Cu3Oxの組成式で示される物質
が得られるように原料酸化物を混合,焼成し、種々のサ
ンプルを合成してそのTCの測定を行つた。結果を第7表
に示す。
Example-7 Raw materials oxides were mixed and calcined so as to obtain a material represented by the composition formula of (Tl 1-x A ′ x ) Sr 2 Ca 2 Cu 3 O x , and various samples were synthesized. KoTsuta the measurement of T C. The results are shown in Table 7.

実施例−8 第1図(3)に示した結晶構造を有する超伝導物質を
合成し、そのTCを測定した。第8表に結果を示す。
The superconductive material having a crystal structure shown in Example -8 FIG. 1 (3) were synthesized and measured the T C. Table 8 shows the results.

第2図(3)に示した結晶構造を有する超伝導物質を
合成し、そのTCを測定した。第9表に結果を示す。
The superconductive material having a crystal structure shown in FIG. 2 (3) were synthesized and measured the T C. Table 9 shows the results.

〔発明の効果〕 本発明によれば、臨界温度,臨界磁界,電流密度,化
学的安定性,成形性など超伝導物質に求められる種々の
特性の向上が期待できる。
[Effects of the Invention] According to the present invention, it is expected that various characteristics required for a superconducting material such as a critical temperature, a critical magnetic field, a current density, chemical stability, and formability are improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図(1)〜(3)は、組成式A2B2B′n-1CnO2n+4+δ
(n=2,3,4)で示される超伝導物質の結晶構造を示す
概略図、第2図(1)〜(3)は、組成式AB2B′n-1CnO
2n+3+δ(n=2,3,4)で示される超伝導物質の結晶構造
を示す概略図、第3図(1),(2)はLa1-xDxCuO
x(D:Ba,Sr,Ca)及びYBa2Cu3On-δの結晶構造を示す概
略図、第4図はLa1-xDxCuOx及びYBa2Cu3O7-δのCuの平
均原子価と、臨界温度(TC)の関係を示す特性図、第5
図は本発明による超伝導物質のピラミツド部分を構成す
るCu原子と頂点部分に位置する酸素原子の距離と、TC
関係を示す特性図、第6図は本発明による超伝導物質の
ホール濃度とTCの関係を示す特性図、第7図〜第9図は
臨界温度TCとピラミツド部分のCu原子1個当りのホール
数の関係を示す特性図である。
1 (1) to (3) show the composition formula A 2 B 2 B ′ n-1 C n O 2n + 4 + δ
Schematic diagrams showing the crystal structure of the superconducting material represented by (n = 2,3,4), and FIGS. 2 (1) to 2 (3) show the composition formula AB 2 B ′ n-1 C n O
Schematic diagrams showing the crystal structure of a superconducting material represented by 2n + 3 + δ (n = 2, 3, 4), and FIGS. 3 (1) and (2) show La 1-x D x CuO
x (D: Ba, Sr, Ca) and YBa 2 Cu 3 On - δ are schematic diagrams showing the crystal structures, and FIG. 4 is a graph of Cu of La 1-x D x CuO x and YBa 2 Cu 3 O 7- δ. graph showing the average valence, the relationship between the critical temperature (T C), the fifth
Figure the length of oxygen atoms located Cu atom and apex portion constituting the Piramitsudo portion of superconducting material according to the present invention, characteristic diagram showing the relationship of T C, FIG. 6 is a hole concentration of superconducting material according to the present invention characteristic diagram showing the relationship from T C and, FIG. 7-Fig. 9 is a characteristic diagram showing the number of holes relations per Cu atom critical temperature T C and Piramitsudo portion.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 12/00 ZAA H01L 39/12 ZAAC H01L 39/12 ZAA C04B 35/00 ZAAK (72)発明者 添田 厚子 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 加茂 友一 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 武内 瀞士 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H01B 12/00 ZAA H01L 39/12 ZAAC H01L 39/12 ZAA C04B 35/00 ZAAK (72) Inventor Atsuko Soeda 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Yuichi Kamo 4026 Kuji-machi, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Toroshi Takeuchi Ibaraki Prefecture 4026 Kuji-cho, Hitachi City Hitachi, Ltd.Hitachi Laboratory

Claims (15)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式 (A1-xA′2B2B′n-1CunO2n+4+δ (A1-xA′)B2B′n-1CunO2n+3+δ ここで A :BiあるいはTl A′:結晶中でのイオン半径が0.81Å以上、1.05Å以下
となる元素で、単独あるいは複数種、 B :Na,K,Rb,Cs,La,Ca,Sr,Baから選ばれた1つ以上 B′:Na,Ca,Y,ランタノイド元素から選ばれた1つ以上 Cu :銅、O:酸素 n=2,3あるいは4 −1<δ<1,0<x≦1 で表わされる化合物において、結晶中の銅の平均原子価
が、2.0より大きく、2.5以下であることを特徴とする超
伝導物質。
The general formula (A 1-x A ′ x ) 2 B 2 B ′ n-1 C un O 2n + 4 + δ (A 1-x A ′ x ) B 2 B ′ n-1 C un O 2n + 3 + δ where A: Bi or Tl A ': An element whose ionic radius in the crystal is 0.81Å or more and 1.05Å or less, B or Na, K, Rb, Cs, One or more selected from La, Ca, Sr, Ba B ': One or more selected from Na, Ca, Y, lanthanoid elements Cu: copper, O: oxygen n = 2, 3 or 4-1 <δ <1,0 <x ≦ 1, wherein the average valence of copper in the crystal is more than 2.0 and not more than 2.5.
【請求項2】請求項1記載の物質において、該物質の結
晶構造中に5個の酸素がピラミツド型に、Cuの回りに配
位した部分を含むことを特徴とする超伝導物質。
2. The superconducting material according to claim 1, wherein the crystal structure of the material includes a portion in which five oxygen atoms are coordinated around Cu in a pyramid form.
【請求項3】請求項2記載の物質において、該物質中の
正孔の数が、5個の酸素がピラミツド型に配位した銅1
個当り、0.15個以上、0.35個以下であることを特徴とす
る超伝導物質。
3. The substance according to claim 2, wherein the number of holes in the substance is copper 1 in which five oxygen atoms are coordinated in a pyramid form.
A superconducting material characterized by being 0.15 or more and 0.35 or less per piece.
【請求項4】請求項2記載の物質において、該物質の結
晶構造が、模式的に第1図もしくは第2図に示されたも
のであることを特徴とする超伝導物質。
4. The superconducting substance according to claim 2, wherein the crystal structure of the substance is schematically shown in FIG. 1 or FIG.
【請求項5】請求項2記載の物質において、A′を構成
する元素が、Bi,Tl,Ca,Pb,Hg,Y、ランタノイド元素の単
独あるいは複数から成ることを特徴とする超伝導物質。
5. The superconducting material according to claim 2, wherein the element constituting A 'is composed of one or more of Bi, Tl, Ca, Pb, Hg, Y and a lanthanoid element.
【請求項6】請求項2記載の物質において、Bを構成す
る元素と、B′を構成する元素が、結晶中で規則的に配
列していることを特徴とする超伝導物質。
6. The superconducting material according to claim 2, wherein the elements constituting B and the elements constituting B ′ are regularly arranged in the crystal.
【請求項7】請求項4記載の物質において、第1図もし
くは第2図の結晶の模式図中(A)サイトと示された部
分をA及びA′を構成する原子が占め、(B)サイト及
び(B′)サイトと示された部分をB及びB′を構成す
る原子が占め、(C)サイトと示される部分をCuが占
め、(D)サイトと示される部分を酸素が占める結晶構
造を持つことを特徴とした超伝導物質。
7. The substance according to claim 4, wherein the A and A 'atoms occupy the portion indicated as (A) site in the schematic diagram of the crystal of FIG. 1 or FIG. A crystal occupied by the atoms constituting B and B 'occupies the site indicated by the sites and (B') site, Cu occupies the portion indicated by (C) site, and oxygen occupies the portion indicated by (D) site Superconductive material characterized by having a structure.
【請求項8】請求項7記載の物質において、第1図もし
くは第2図で(C−1)と示される部分を占めるCuと、
(D−1)と示される部分を占めるサイトの酸素の間の
距離が、2.10Å以上、2.70Å以下であることを特徴とす
る超伝導物質。
8. The material according to claim 7, wherein Cu occupies a portion indicated by (C-1) in FIG. 1 or FIG.
A superconducting material, wherein a distance between oxygen at sites occupying a portion indicated by (D-1) is not less than 2.10 ° and not more than 2.70 °.
【請求項9】請求項1〜8のいずれか1つに記載の物質
を含んだ、超伝導線材。
9. A superconducting wire comprising the substance according to any one of claims 1 to 8.
【請求項10】請求項1〜8のいずれか1つに記載の物
質を含んだ要素を使用したマグネツト。
10. A magnet using an element containing the substance according to any one of claims 1 to 8.
【請求項11】請求項1〜8のいずれか1つに記載の物
質を含んだ素子。
11. A device comprising the substance according to claim 1.
【請求項12】請求項1〜8のいずれか1つに記載の物
質を含んだ要素を使用した測定装置。
12. A measuring device using an element containing the substance according to any one of claims 1 to 8.
【請求項13】請求項1〜8のいずれか1つに記載の物
質を含んだ要素を使用した演算装置。
13. An arithmetic unit using an element containing the substance according to claim 1.
【請求項14】請求項1〜8のいずれか1つに記載の物
質を含んだ要素を使用した電力貯蔵装置。
14. An electric power storage device using an element containing the substance according to any one of claims 1 to 8.
【請求項15】請求項1〜8のいずれか1つに記載の物
質を使用した磁気シールド装置。
15. A magnetic shield device using the substance according to any one of claims 1 to 8.
JP1049836A 1989-03-03 1989-03-03 Superconducting material Expired - Fee Related JP2703036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1049836A JP2703036B2 (en) 1989-03-03 1989-03-03 Superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1049836A JP2703036B2 (en) 1989-03-03 1989-03-03 Superconducting material

Related Child Applications (5)

Application Number Title Priority Date Filing Date
JP7287017A Division JP2671882B2 (en) 1995-11-06 1995-11-06 Superconducting material
JP7287015A Division JP2671881B2 (en) 1995-11-06 1995-11-06 Superconducting material
JP7287014A Division JP2671880B2 (en) 1995-11-06 1995-11-06 Superconducting material
JP7287013A Division JP2671879B2 (en) 1995-11-06 1995-11-06 Superconducting material
JP7287016A Division JP2820082B2 (en) 1995-11-06 1995-11-06 Superconducting material

Publications (2)

Publication Number Publication Date
JPH02229716A JPH02229716A (en) 1990-09-12
JP2703036B2 true JP2703036B2 (en) 1998-01-26

Family

ID=12842169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1049836A Expired - Fee Related JP2703036B2 (en) 1989-03-03 1989-03-03 Superconducting material

Country Status (1)

Country Link
JP (1) JP2703036B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365512A (en) * 1989-08-02 1991-03-20 Sumitomo Electric Ind Ltd High-temperature superconductive material and production thereof
EP0511734B1 (en) * 1991-03-29 1998-10-14 Hitachi, Ltd. A superconductive body and a method of forming such a superconductive body
JPH0753212A (en) * 1993-08-13 1995-02-28 Agency Of Ind Science & Technol High temperature superconductor and its production
JP2723173B2 (en) * 1993-12-07 1998-03-09 工業技術院長 High temperature superconductor and method of manufacturing the same
US5556830A (en) * 1994-05-31 1996-09-17 Midwest Superconductivity, Inc. Tl-doped HgBaCaCu superconductors
JP3289134B2 (en) * 1997-02-28 2002-06-04 独立行政法人産業技術総合研究所 Low anisotropy high temperature superconductor based on uncertainty principle and its manufacturing method

Also Published As

Publication number Publication date
JPH02229716A (en) 1990-09-12

Similar Documents

Publication Publication Date Title
Siegrist et al. A new layered cuprate structure-type,(A1− xA′ x) 14Cu24O41
US5510323A (en) Tl1 (Ba1-x Sr8)2 Ca2 Cu3 Oy oxide superconductor and method of producing the same
KR0123196B1 (en) Superconducting metal oxide compositions and processes for manufacture and the usage
JP2703036B2 (en) Superconducting material
EP0404840A4 (en) Superconducting composition and process for manufacture
Nameki et al. Effects of lanthanoid substitution on superconductivity and modulated structure of Bi2Sr2CuOy
KR970002894B1 (en) Superconducting metal oxide compositions
Rao et al. Structural aspects of superconducting cuprates
KR920000224B1 (en) Fabrication method of super conductor
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JP4093592B2 (en) Ba-Ca-Cu-O composition superconducting at temperatures up to 126K and method for producing the same
JP2820082B2 (en) Superconducting material
JPH02504261A (en) high temperature superconductor
JP2671881B2 (en) Superconducting material
JP2671879B2 (en) Superconducting material
JP2671882B2 (en) Superconducting material
JP2671880B2 (en) Superconducting material
US5108986A (en) Substituted YiBa2 Cu3 oxide superconductor
WO1988007264A2 (en) Devices and systems based on novel superconducting material
Jin et al. A new homologous series of compounds: Cu-12 (n− 1) n: P
JP2656531B2 (en) Oxide superconductor
HU217018B (en) Super conducting composition contain bismuth, strontium, copper and oxygen, process for producing this composition, and process for conducting an electrical current within a conductor material without electrical resistive losses and josephson-effect ...
JP2820480B2 (en) Oxide superconductor and manufacturing method thereof
JP2778100B2 (en) Oxide superconducting material and method for producing the same
EP0608100A1 (en) Oxide super-conductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees