JP2701153B2 - Method for producing carbonyl compound - Google Patents

Method for producing carbonyl compound

Info

Publication number
JP2701153B2
JP2701153B2 JP63246062A JP24606288A JP2701153B2 JP 2701153 B2 JP2701153 B2 JP 2701153B2 JP 63246062 A JP63246062 A JP 63246062A JP 24606288 A JP24606288 A JP 24606288A JP 2701153 B2 JP2701153 B2 JP 2701153B2
Authority
JP
Japan
Prior art keywords
reaction
carbonyl compound
olefin
present
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63246062A
Other languages
Japanese (ja)
Other versions
JPH0293089A (en
Inventor
大塚  潔
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP63246062A priority Critical patent/JP2701153B2/en
Publication of JPH0293089A publication Critical patent/JPH0293089A/en
Application granted granted Critical
Publication of JP2701153B2 publication Critical patent/JP2701153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は触媒電極を設けたイオン伝導体を用いた燃料
電池システムによりオレフィンと水からカルボニル化合
物を製造すると同時に必要に応じて電力エネルギーを取
り出す方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention produces a carbonyl compound from olefin and water by a fuel cell system using an ion conductor provided with a catalyst electrode, and at the same time, extracts power energy as needed. About the method.

カルボニル化合物であるアルデヒド類やケトン類はカ
ルボン酸やアルコール類などの有機工業薬品の製造分野
において重要な中間体である。例えばアセトアルデヒド
からは酢酸、無水酢酸、ケテン、ジケテン、ブタノー
ル、などが製造される。
Aldehydes and ketones, which are carbonyl compounds, are important intermediates in the field of manufacturing organic industrial chemicals such as carboxylic acids and alcohols. For example, acetic acid, acetic anhydride, ketene, diketene, butanol, etc. are produced from acetaldehyde.

(従来の技術) ケトンやアルデヒド等のカルボニル化合物は、これま
でのアルコールの脱水素、アセチレン類の水和、アルカ
ンの酸化、オレフィンの酸化等の方法で製造されてき
た。その内でも塩化パラジウムと塩化銅よりなるレドッ
クス系触媒を用いての、いわゆるワッカー法によるオレ
フィンの直接酸化法は工業的に重要なカルボニル化合物
の製造方法である。この方法は工業的にはチタンなどの
高級耐蝕材質の反応器を用いて、触媒量の塩化パラジウ
ムと大過剰の塩化銅を含む塩酸水溶液中にガス状のオレ
フィンおよび酸素または空気を吹き込む方法で行われて
いるが、a)均一系の反応であるため、生成物と触媒を
分離する必要がある。b)塩化パラジウム、塩化銅とい
った塩化物触媒に塩酸を添加して反応させるので、反応
器の腐食が激しく、また、含塩素化合物が副生する。
c)反応ガスとしてオレフィンと酸素の混合ガスを供給
するため爆発の危険性がある、などの問題点がある。ま
た、電極に電圧を印加し電気化学的にオレフィンを酸化
してカルボニル化合物を得る方法は知られているが、二
酸化炭素などの副生物が多く生成し、目的物の選択性は
低い。また、電圧を印加せずに燃料電池システムを利用
して有用な化学物質を合成しようとする試みも最近行わ
れているが、この場合も反応の制御が困難で、完全燃焼
を抑えて選択的に目的物を得るに致っていない。例えば
Electrochimica Acta.Vol.32 No.8 pp 1137−1143(198
7)にはポリベンズイミダゾールのフィルムの間にリン
酸水溶液を流し、その両側に設けたパラジウム電極の一
方にプロピレンのみを流し、他方に酸素を流す方法が記
載されているが、アノード室から得られる生成物はアク
ロレイン、アクリル酸、二酸化炭素などであり、アセト
ンは殆んど生成していない。
(Prior art) Carbonyl compounds such as ketones and aldehydes have been produced by methods such as dehydration of alcohols, hydration of acetylenes, oxidation of alkanes, and oxidation of olefins. Among them, the direct oxidation of olefins by the so-called Wacker method using a redox catalyst comprising palladium chloride and copper chloride is an industrially important method for producing carbonyl compounds. This method is industrially performed by blowing gaseous olefin and oxygen or air into a hydrochloric acid aqueous solution containing a catalytic amount of palladium chloride and a large excess of copper chloride using a reactor made of a high corrosion-resistant material such as titanium. However, a) Since the reaction is a homogeneous reaction, it is necessary to separate the product and the catalyst. b) Since hydrochloric acid is added to and reacted with a chloride catalyst such as palladium chloride or copper chloride, the reactor is highly corroded and a chlorine-containing compound is by-produced.
c) There is a problem that there is a danger of explosion because a mixed gas of olefin and oxygen is supplied as a reaction gas. Also, a method of obtaining a carbonyl compound by electrochemically oxidizing an olefin by applying a voltage to an electrode is known. However, a large amount of by-products such as carbon dioxide is generated, and the selectivity of a target product is low. Attempts have also been made recently to synthesize useful chemicals using a fuel cell system without applying voltage, but in this case too, it is difficult to control the reaction, and it is necessary to suppress complete combustion and selectively Not to get the object. For example
Electrochimica Acta.Vol.32 No.8 pp 1137-1143 (198
7) describes a method in which an aqueous solution of phosphoric acid is flowed between polybenzimidazole films, only propylene is flowed through one of the palladium electrodes provided on both sides, and oxygen is flowed through the other. The products obtained are acrolein, acrylic acid, carbon dioxide, etc., and almost no acetone is formed.

(発明が解決しようとする問題点) 本発明は燃料電池システムを用いてオレフィン類と水
から相当するカルボニル化合物を選択的に製造すること
により、従来の製造法における生成物と触媒の分離、材
質腐食、含塩素化合物の副生、オレフィンと酸素の混合
による爆発危険性等の問題点を解決するものである。
(Problems to be Solved by the Invention) The present invention selectively produces a corresponding carbonyl compound from olefins and water using a fuel cell system, thereby separating a product and a catalyst in a conventional production method, It solves problems such as corrosion, by-products of chlorine-containing compounds, and the danger of explosion due to mixing of olefin and oxygen.

(問題点を解決するための手段) 本発明は、触媒電極を設けたイオン伝導体の一方の電
極にオレフィンと水を、他方の電極に酸化性化合物を接
触させることによりなる燃料電池システムを用いて相当
するカルボニル化合物を高選択率で製造すると同時に必
要に応じて電力エネルギーを取り出す方法である。
(Means for Solving the Problems) The present invention uses a fuel cell system in which an olefin and water are brought into contact with one electrode of an ion conductor provided with a catalyst electrode and an oxidizing compound is brought into contact with the other electrode. In this method, the corresponding carbonyl compound is produced at a high selectivity and, at the same time, power energy is extracted as needed.

本発明方法で用いられるオレフィンは、エチレン、プ
ロピレン、ブテンなどである。それらから相当するカル
ボニル化合物であるアセトアルデヒド、アセトン、メチ
ルエチルケトンが選択的に得られる。
The olefin used in the method of the present invention is ethylene, propylene, butene or the like. From them, the corresponding carbonyl compounds, acetaldehyde, acetone and methyl ethyl ketone, are selectively obtained.

本発明方法において用いられる酸化性化合物として
は、本発明方法の触媒上で水素と反応することができる
化合物ならいずれも使用できるが、一般的には酸素また
は空気が用いられる。また、酸化性化合物としてアルデ
ヒド類、ニトロ化合物、芳香族化合物等の被還元性化合
物を供給して、アノード室でオレフィンからカルボニル
化合物を製造する一方、カソード室で水素化反応を行わ
せ、アルコール、アミノ化合物、飽和炭化水素化合物等
を同時に製造することも出来る。
As the oxidizing compound used in the method of the present invention, any compound that can react with hydrogen on the catalyst of the method of the present invention can be used, but oxygen or air is generally used. Also, aldehydes, nitro compounds, aromatic compounds and other reducible compounds are supplied as oxidizing compounds, and carbonyl compounds are produced from olefins in the anode compartment, while a hydrogenation reaction is carried out in the cathode compartment, and alcohol, An amino compound, a saturated hydrocarbon compound and the like can be produced simultaneously.

本発明方法では、必要に応じて反応系から反応の自由
エネルギー変化に相当するエネルギーを取り出すことが
可能である。
In the method of the present invention, it is possible to extract energy corresponding to a change in free energy of the reaction from the reaction system as needed.

本発明方法を実施するための燃料電池型反応器の概念
図を図1に示す。
FIG. 1 shows a conceptual diagram of a fuel cell reactor for carrying out the method of the present invention.

触媒電極からなる正極または負極を有するアノード室
とカソード室はイオン伝導体で隔てられており、正極と
負極はリード線で短絡されている。必要によっては正極
と負極の間に電圧をかけることも可能である。
An anode chamber having a positive electrode or a negative electrode formed of a catalyst electrode and a cathode chamber are separated by an ion conductor, and the positive electrode and the negative electrode are short-circuited by a lead wire. If necessary, a voltage can be applied between the positive electrode and the negative electrode.

本発明方法で用いられる触媒電極としてはパラジウ
ム、白金等の金属またはその酸化物等を用いることがで
きるが、本発明方法では特にパラジウムが好ましい。
As the catalyst electrode used in the method of the present invention, metals such as palladium and platinum or oxides thereof can be used, but in the method of the present invention, palladium is particularly preferred.

本発明方法で用いられる固体のイオン伝導体としては
ヘテロポリ酸、H−モルデナイト、H−モンモリロナイ
ト、リン酸ジルコニウム等のプロトン伝導体として知ら
れている固体電解質、SrCeO3を母体としたペロブスカイ
ト型固溶体等が使用できる。また、パーフルオロカーボ
ンのような含フッソ素高分子をベースとし、これにスル
ホン酸基あるいはカルボン酸基などのカチオン交換基の
一種または二種を導入したもの、例えばナフィオン(Du
Pout社の登録商標)も使用できる。本発明方法で用い
られる固体状のイオン伝導体としては、リン酸、硫酸、
塩酸、などのプロトン酸等の液体をシリカウール等の固
体材料に含浸させて固体状としたものが挙げられる。
Examples of the solid ionic conductor used in the method of the present invention include a solid electrolyte known as a proton conductor such as heteropolyacid, H-mordenite, H-montmorillonite, and zirconium phosphate, and a perovskite-type solid solution based on SrCeO 3. Can be used. Further, one based on a fluorine-containing polymer such as perfluorocarbon, into which one or two kinds of cation exchange groups such as a sulfonic acid group or a carboxylic acid group are introduced, for example, Nafion (Du
Pout registered trademark) can also be used. As the solid ionic conductor used in the method of the present invention, phosphoric acid, sulfuric acid,
A solid material obtained by impregnating a liquid such as a protonic acid such as hydrochloric acid with a solid material such as silica wool may be used.

アノード室に原料として供給するオレフィンと水は、
通常気体であるが、必要に応じて不活性な溶媒または水
に溶解させて液相状態で電極に接触させてもよい。ま
た、カソード室に供給する酸化性化合物もまた気体でも
液体でもよい。
Olefin and water supplied as raw materials to the anode chamber are
It is usually a gas, but may be dissolved in an inert solvent or water and contacted with the electrode in a liquid phase if necessary. Further, the oxidizing compound supplied to the cathode chamber may be a gas or a liquid.

反応温度は通常−20〜200℃であり、特に−5〜150℃
が好ましい。
The reaction temperature is usually −20 to 200 ° C., particularly −5 to 150 ° C.
Is preferred.

反応は一般に常圧で行われるが、必要に応じて加圧ま
た減圧下でも実施できる。
The reaction is generally carried out at normal pressure, but may be carried out under increased or reduced pressure as necessary.

反応生成物は気または液体のいずれもありうるが、通
常の蒸留等の方法で分離、精製して高純度の目的物を得
ることができる。
The reaction product may be either gaseous or liquid, but can be separated and purified by ordinary methods such as distillation to obtain a high-purity target product.

(発明の効果) 本発明方法は、従来のワッカー法による製造法に比べ
a)不均一反応であるため、生成物と触媒の分離が容
易である。b)腐食性の塩化物を使用しないため、反応
装置を安価で簡単にできる。c)食塩素化合物などの副
生物がない。d)オレフィンと酸素を分離して反応する
ため爆発の危険性がない。e)必要により生成物と共に
エネルギーを電力として取り出すことができる。などの
多くの利点を有する。
(Effects of the Invention) The method of the present invention is easier to separate a product and a catalyst because the reaction is a heterogeneous reaction as compared with the conventional production method by the Wacker method. b) Since no corrosive chloride is used, the reactor can be made inexpensive and simple. c) There are no by-products such as chlorine edible compounds. d) There is no danger of explosion because olefin and oxygen are separated and reacted. e) If necessary, energy can be extracted as electric power together with the product. Has many advantages such as:

(実施例) 以下、本発明方法を実施例で具体的に説明するが、反
応方法や装置は例示的なものであり、本発明は実施例に
限定されるものではない。
(Examples) Hereinafter, the method of the present invention will be described specifically with reference to examples, but the reaction method and apparatus are illustrative, and the present invention is not limited to the examples.

実施例1〜5 ディスク状のシリカウール(厚さ1.0mm直径21mm)に8
5%リン酸水溶液を含ませ、その両側にそれぞれ10mgの
パラジウムブラックを塗布したものを電極付きイオン伝
導体として図1に示すような反応器に設置し、アノード
室にエチレン:水蒸気:ヘリウムを流量12:1:20ml/min
合計33ml/minで、カソード室には酸素を25ml/minで供給
した。隔膜を通しての両極のガスの混入は全くなかっ
た。アノード室から得られる生成物はガスクロマトグラ
フィーで分析した。閉回路条件(両極間を結線しない場
合)は痕跡量の二酸化炭素のみが生成し、回路を閉じる
と電流が流れ、アセトアルデヒドが選択的に生成した。
表1に反応温度を45℃から122℃の間で変えた場合の反
応開始後30分の成績を示す。電流効率はいずれも約100
%であり、アセトアルデヒドの選択率は96%以上であ
る。
Examples 1 to 5 Disc-shaped silica wool (1.0 mm thick, 21 mm diameter)
A 5% phosphoric acid aqueous solution containing 10 mg of palladium black on each side was placed in a reactor as shown in Fig. 1 as an ion conductor with electrodes, and ethylene, steam and helium were flowed into the anode chamber. 12: 1: 20ml / min
At a total of 33 ml / min, oxygen was supplied to the cathode chamber at 25 ml / min. There was no incorporation of bipolar gas through the septum. The product obtained from the anode compartment was analyzed by gas chromatography. Under closed circuit conditions (when no connection was made between the electrodes), only traces of carbon dioxide were generated, and when the circuit was closed, current flowed and acetaldehyde was selectively generated.
Table 1 shows the results 30 minutes after the start of the reaction when the reaction temperature was changed between 45 ° C and 122 ° C. Current efficiency is about 100
%, And the selectivity for acetaldehyde is 96% or more.

実施例6〜8 電極間に電圧をかけて反応した場合の結果を実施例6
〜8として表2に示す。反応温度は83℃であり、その他
の条件は実施例1と同様である。
Examples 6 to 8 show the results when a voltage was applied between the electrodes to cause a reaction.
Are shown in Table 2 below. The reaction temperature was 83 ° C, and the other conditions were the same as in Example 1.

実施例9 エチレンの代わりにプロピレンを用いてプロピレン:
水:ヘリウムの流量をそれぞれ4.6:2.37.5(ml/min)、
反応温度を95℃で反応させたほかは実施例1と同様に反
応させた。その結果、電極に電圧を印加しない場合は7.
5mAの電流が流れ、0.12x10-6mol/minの速度でアセトン
が得られた。電極に200mVの電圧をかけた場合は13.2mA
の電流が流れ、1.43X10-6mol/minの速度でアセトンがえ
られた。
Example 9 Propylene using propylene instead of ethylene:
Water: The flow rate of helium is 4.6: 2.37.5 (ml / min), respectively.
The reaction was carried out in the same manner as in Example 1 except that the reaction was carried out at a reaction temperature of 95 ° C. As a result, if no voltage is applied to the electrodes, 7.
A current of 5 mA flowed and acetone was obtained at a rate of 0.12 × 10 −6 mol / min. 13.2 mA when a voltage of 200 mV is applied to the electrode
And acetone was obtained at a rate of 1.43 × 10 −6 mol / min.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法の実施に用いられる燃料電池型反応
器の概念図を示す。
FIG. 1 shows a conceptual diagram of a fuel cell type reactor used for carrying out the method of the present invention.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】パラジウムおよび/または白金を主成分と
して含有する触媒電極を有し、両電極間に固体または固
体状のイオン伝導体を有する反応器の、一方の電極にオ
レフィンおよび水を、他方の電極に酸化性化合物を接触
させることを特徴とする燃料電池システムによるカルボ
ニル化合物の製造方法。
1. A reactor having a catalyst electrode containing palladium and / or platinum as a main component, and having a solid or solid ionic conductor between the two electrodes. A method for producing a carbonyl compound by a fuel cell system, wherein an oxidizing compound is brought into contact with the electrode.
【請求項2】オレフィンがエチレンであり、カルボニル
化合物がアセトアルデヒドである特許請求の範囲第1項
記載の方法。
2. The method according to claim 1, wherein the olefin is ethylene and the carbonyl compound is acetaldehyde.
【請求項3】オレフィンがプロピレンであり、カルボニ
ル化合物がアセトンである特許請求の範囲第1項記載の
方法。
3. The method according to claim 1, wherein the olefin is propylene and the carbonyl compound is acetone.
JP63246062A 1988-09-30 1988-09-30 Method for producing carbonyl compound Expired - Lifetime JP2701153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63246062A JP2701153B2 (en) 1988-09-30 1988-09-30 Method for producing carbonyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63246062A JP2701153B2 (en) 1988-09-30 1988-09-30 Method for producing carbonyl compound

Publications (2)

Publication Number Publication Date
JPH0293089A JPH0293089A (en) 1990-04-03
JP2701153B2 true JP2701153B2 (en) 1998-01-21

Family

ID=17142904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63246062A Expired - Lifetime JP2701153B2 (en) 1988-09-30 1988-09-30 Method for producing carbonyl compound

Country Status (1)

Country Link
JP (1) JP2701153B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051156A (en) * 1990-01-31 1991-09-24 Intevep, S.A. Electrocatalyst for the oxidation of methane and an electrocatalytic process
EP3774029A4 (en) * 2018-04-12 2022-01-05 Board of Supervisors of Louisiana State University and Agricultural and Mechanical College Electrochemical reactor for upgrading methane and small alkanes to longer alkanes and alkenes

Also Published As

Publication number Publication date
JPH0293089A (en) 1990-04-03

Similar Documents

Publication Publication Date Title
KR100519692B1 (en) Fuel Cell Type Reaction Device and Method of Producing Compounds Using it
US6238543B1 (en) Kolbe electrolysis in a polymer electrolyte membrane reactor
US3147203A (en) Process for the production of carbonyl compounds
JP5311478B2 (en) Electron / ion mixed conductive membrane and method for producing hydrogen peroxide using the same
JP2701153B2 (en) Method for producing carbonyl compound
US20040053098A1 (en) Electrochemical cell
Otsuka et al. The partial oxidation of methanol using a fuel cell reactor
JP2947968B2 (en) Method for producing acetaldehyde
US4457809A (en) Method for oxidizing lower alkanols to useful products
US3245890A (en) Process for simultaneous production of carbonyl compounds and electrical energy
JP2919633B2 (en) Method for producing partial oxide of propylene
JP3456714B2 (en) Method for producing partial oxide of methanol
US3379626A (en) Process and apparatus for oxidizing olefins
JP2947967B2 (en) Method for producing acetaldehyde
JP2005281057A (en) Fuel cell type reaction apparatus
JP4368166B2 (en) Fuel cell reactor
JPH02170991A (en) Production of ketones
JPH03122297A (en) Production of vinyl carboxylate
JPH07216570A (en) Production of chlorine
US3247085A (en) Electrochemical process for making methyl-ethyl ketone
JP3110484B2 (en) Method for producing partial oxide of alicyclic compound
US3214357A (en) Electrolytic redox process for chemical production
JP2640372B2 (en) Method for producing partial oxide of aromatic compound
JP3067834B2 (en) Catalyst device for redox reaction and method of using the same
Otsuka et al. Synthesis of methyl formate by electrocatalytic oxidation of methanol in the gas phase using heteropoly and phosphoric acids