JP2700191B2 - Fire door - Google Patents

Fire door

Info

Publication number
JP2700191B2
JP2700191B2 JP2233854A JP23385490A JP2700191B2 JP 2700191 B2 JP2700191 B2 JP 2700191B2 JP 2233854 A JP2233854 A JP 2233854A JP 23385490 A JP23385490 A JP 23385490A JP 2700191 B2 JP2700191 B2 JP 2700191B2
Authority
JP
Japan
Prior art keywords
wood fiber
wood
metal
board
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2233854A
Other languages
Japanese (ja)
Other versions
JPH04115079A (en
Inventor
富泰 本多
Original Assignee
株式会社ノダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ノダ filed Critical 株式会社ノダ
Priority to JP2233854A priority Critical patent/JP2700191B2/en
Publication of JPH04115079A publication Critical patent/JPH04115079A/en
Application granted granted Critical
Publication of JP2700191B2 publication Critical patent/JP2700191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Special Wing (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は防火ドアに関し、特に木質繊維板上に金属被
膜層が形成されて成る複合材料を表面板として用いる防
火ドアに関する。
Description: TECHNICAL FIELD The present invention relates to a fire door, and more particularly to a fire door using a composite material in which a metal coating layer is formed on a wood fiber board as a face plate.

〈従来技術及びその課題〉 ホテルやマンション等の居室入口のドアにおいては防
火並びに延焼防止のための防火ドアの使用が義務づけら
れている。この防火ドアとしては一般にアルミ製やスチ
ール製等金属製のものが用いられており、防火並びに延
焼防止の目的達成上の効果は極めて大きなものである。
<Prior art and its problems> The use of a fire door for fire prevention and fire spread prevention is mandatory for doors of rooms such as hotels and condominiums. As the fire door, a metal door such as aluminum or steel is generally used, and the effect of achieving the purpose of fire prevention and fire spread prevention is extremely large.

ところがこれら金属製の防火ドアは火災による炎上、
延焼は回避されるものの、火災に伴う高熱によって歪み
が生じて変形してしまい、ドアの開閉に支障を来すとい
う重大な問題を抱えていた。
However, these metal fire doors are lit by fire,
Although the spread of fire was avoided, there was a serious problem in that the heat generated by the fire caused distortion and deformation, which hindered opening and closing of the door.

また、金属製であるためにドア開閉時の金属音がうる
さく、触感が冷たく、断熱性が悪い等の問題を有してい
た。
In addition, since it is made of metal, it has problems that the metal sound when opening and closing the door is noisy, the touch is cold, and the heat insulation is poor.

一方、特開昭50-129438号公報に、ハードボード、合
板、木材、スレート、陶磁器等の基材ボードの表面に90
0℃以下の融点を有する金属又は合金を溶射し、更にそ
の上に1000〜1600℃の融点を有する金属又は合金を溶射
して耐熱ボードを得る技術が開示されている。この従来
技術によるボードは2層の溶射を行うものであり、耐熱
性及び耐水性に優れたものとされている。
On the other hand, Japanese Unexamined Patent Publication No. 50-129438 discloses that the surface of a base board such as a hard board, plywood, wood, slate, and porcelain is 90
A technique is disclosed in which a metal or an alloy having a melting point of 0 ° C. or less is sprayed, and a metal or an alloy having a melting point of 1000 to 1600 ° C. is further sprayed thereon to obtain a heat-resistant board. The board according to this prior art performs two layers of thermal spraying and is considered to be excellent in heat resistance and water resistance.

ところがこの耐熱ボードは基材と金属層との複合であ
るため、基材と金属層とにおける吸湿、吸水、乾燥及び
熱等に伴う膨張、収縮の違いによって、ボード自体に反
り、捩れ、クラック、基材と金属層との層間剥離等が発
生する傾向が認められる。特にハードボード、合板、木
材等の有機質基材は、吸湿、吸水、乾燥に伴う膨張、収
縮が無機質基材に比して大きく、このような有機質基材
と金属層とを複合した場合には上記した傾向が顕著に現
れる。
However, since this heat-resistant board is a composite of a base material and a metal layer, the board itself warps, twists, cracks, due to the difference in expansion and contraction caused by moisture absorption, water absorption, drying, heat, and the like between the base material and the metal layer. There is a tendency for delamination between the base material and the metal layer to occur. In particular, organic substrates such as hardboard, plywood, wood, etc., have greater moisture absorption, water absorption, expansion and shrinkage due to drying than inorganic substrates, and when such an organic substrate and a metal layer are combined, The above-mentioned tendency appears remarkably.

また上記従来技術によるボードは基材表面を被覆する
金属層によって表面の耐熱性が向上されるものの、基材
がハードボード、合板、木材等の有機質である場合は、
金属層を介して伝達される熱の影響で基材自体が徐々に
劣化ないし炭化してしまい、最終的には発火する危険を
有している。
Further, although the heat resistance of the surface is improved by the metal layer covering the surface of the base material in the above-described conventional technology, when the base material is a hard board, plywood, organic material such as wood,
Under the influence of heat transmitted through the metal layer, the base material itself gradually deteriorates or carbonizes, and there is a danger of eventually igniting.

これらの理由により、上記従来技術による耐熱ボード
を防火ドアの材料として用いることは不可能であった。
For these reasons, it has not been possible to use the heat-resistant board according to the prior art as a material for a fire door.

〈課題を解決するための手段〉 そこで本発明は基本的に木質材料を用いた防火ドアに
ついて種々検討を重ね、新規な複合材料を開発し、この
複合材料を表面板とする防火ドアを提供するに至ったも
のである。
<Means for Solving the Problems> Accordingly, the present invention repeatedly conducts various studies on fire doors basically using a wood material, develops a novel composite material, and provides a fire door using this composite material as a surface plate. It has been reached.

即ち本発明は、木繊維中に存在する水酸基をアセチル
基と置換すべくアセチル化処理されると共に、該木繊維
の細胞孔内及び/又は細胞孔内壁面及び/又は該木繊維
の外周部に不燃性無機化合物が充填又は付着或は固着さ
れた木繊維が接着成形一体化されて成る木質繊維板を基
板とし、該基板の少なくとも一表面に、溶射法による金
属被膜層が形成されて成る複合材料を、その金属被膜層
が表面となるように少なくとも片側表面板として用いて
成ることを特徴とする防火ドアである。
That is, the present invention provides an acetylation treatment for replacing a hydroxyl group present in a wood fiber with an acetyl group, and at the same time, in the cell pore and / or the inner wall surface of the wood fiber and / or the outer peripheral portion of the wood fiber. A composite comprising a wood fiber board formed by bonding and integrating wood fibers filled or adhered or adhered or fixed with a nonflammable inorganic compound, and a metal coating layer formed by thermal spraying on at least one surface of the board. A fire door characterized in that the material is used as at least one side surface plate so that the metal coating layer becomes a surface.

本発明による防火ドアの構成は一般のドアにおけると
同様であり、框組みされた心材の表裏に適宜化粧された
表面板が貼着され、或は框組み内にハニカムコアや心板
が設けられその表裏に表面板が貼着されて成る。
The configuration of the fire door according to the present invention is the same as that of a general door, and a suitably decorated surface plate is stuck on the front and back of a framed core material, or a honeycomb core or a core plate is provided in the frame. A surface plate is adhered to the front and back.

本発明の防火ドアの少なくとも片側における表面板
は、木繊維中に存在する水酸基をアセチル基と置換すべ
くアセチル化処理されると共に、該木繊維の細胞孔内及
び/又は細胞孔内壁面及び/又は該木繊維の外周部に不
燃性無機化合物が充填又は付着或は固着された木繊維が
接着成形一体化されて成る木質繊維板を基板とし、該基
板の少なくとも一表面に、溶射法による金属被膜層が形
成されて成る複合材料である。
The surface plate on at least one side of the fire door of the present invention is subjected to an acetylation treatment so as to replace a hydroxyl group present in the wood fiber with an acetyl group, and at the same time, the inside of the cell hole and / or the inner wall surface of the wood fiber and / or Alternatively, a wood fiber board formed by bonding and integrating a wood fiber in which a nonflammable inorganic compound is filled or adhered to or adhered to the outer periphery of the wood fiber is used as a substrate, and at least one surface of the substrate is made of a metal by a thermal spraying method. It is a composite material formed with a coating layer.

複合材料の基板として用いられる木質繊維板は次のよ
うにして得られる。まず、例えば松、杉、桧等の針葉樹
材又はラワン、カポール、栗、ポプラ等の広葉樹材をチ
ップにした後、このチップを蒸煮することにより脱脂・
軟化処理し、更にこの蒸煮チップを解繊装置により解繊
することによって木繊維を得る。この木繊維は長さ1〜
30mm、直径2〜300μ程度のものが大半を占める。この
木繊維は導管及び仮導管又は細胞が束になったような形
をしており、繊維外周部の細胞壁は引き裂かれたり割れ
目を生じたりしているものが多いため、湿気や水分を良
く吸収する。
A wood fiber board used as a substrate of a composite material is obtained as follows. First, for example, softwood materials such as pine, cedar, cypress, or hardwood materials such as lauan, kapole, chestnut, and poplar are made into chips, and then the chips are degreased by steaming.
After softening, the steamed chips are defibrated by a defibrating device to obtain wood fibers. This wood fiber is 1 ~
Most of them have a diameter of about 30 mm and a diameter of about 2 to 300 μm. This wood fiber is shaped like a bundle of conduits and temporary conduits or cells, and the cell wall around the fiber is often torn or cracked, so it absorbs moisture and moisture well I do.

得られた木繊維は乾燥装置により乾燥した後、木繊維
の繊維中に存在する水酸基をアセチル基と置換させるべ
くアセチル化処理する。このアセチル化処理は、木繊維
を、無触媒下で或は触媒として例えば酢酸ナトリウムや
酢酸カリウム等の酢酸金属塩水溶液を含浸させ乾燥させ
た後、無水酢酸、無水クロル酢酸等の酢酸無水物反応液
槽中に浸漬し、100〜150℃にて数分乃至数時間加熱反応
させることによって行われる。反応終了後、過剰の反応
液を除去し、洗浄し乾燥する。
After the obtained wood fiber is dried by a drying device, the wood fiber is subjected to an acetylation treatment to replace the hydroxyl group present in the fiber of the wood fiber with an acetyl group. This acetylation treatment is carried out by impregnating a wood fiber without a catalyst or as a catalyst with an aqueous solution of a metal acetate such as sodium acetate or potassium acetate and drying the resultant, followed by an acetic anhydride reaction such as acetic anhydride or chloroacetic anhydride. It is performed by immersing in a liquid tank and heating and reacting at 100 to 150 ° C. for several minutes to several hours. After completion of the reaction, the excess reaction solution is removed, washed and dried.

かくしてアセチル化処理された木繊維を次いで不燃化
処理する。即ち、該木繊維の細胞孔、導管孔等の空隙部
に不燃性無機化合物を充填させ、或は細胞孔内壁に沿っ
て層状に該不燃性無機化合物を固着又は付着させ、更に
木繊維の外周部に該不燃性無機化合物を固着又は付着さ
せて不燃化する。この不燃化処理は例えば下記工程によ
って行うことができる。即ち、木繊維を水溶性無機塩の
水溶液(以下「第1液」と称す)中に十分に浸漬させて
含浸させる。第1液としてはMgCl2,MgBr2,MgSO4・H
2O,Mg(NO3)2・6H2O,AlCl3,AlBr3,Al2(SO4)3,Al(NO
3)3・9H2O,CaCl2,CaBr2,Ca(NO3)2,ZnCl2,BaCl2・2
H2O,BaBr2,Ba(NO3)2等の水溶液が例示される。第1液
の含浸後脱液し、木繊維を乾燥させてこれを表面乾燥状
態若しくは絶乾状態とし、必要に応じて表面に析出した
第1液の成分結晶を除去する。次いで、第1液と反応し
て水不溶性の不燃性無機化合物を生成するような化合物
液(以下「第2液」と称す)をブレンダー,スプレー等
を用いて木繊維に添加混合し或は浸漬せしめることによ
って、該第2液を木繊維に含浸させる。第2液として
は、Na2CO3,(NH4)2CO3,H2SO4,Na2SO4,(NH4)2SO4,H
2PO4,Na2HPO4,(NH4)2HPO4,H3BO3,NaBO2,NH4BO2
が例示される。第2液を塗布含浸させることにより、木
繊維中で第1液と第2液とが反応し、不燃性無機化合物
が生成される。生成される不燃性無機化合物としては、
リン酸マグネシウム,リン酸カルシウム,リン酸バリウ
ム,リン酸アルミニウム,ホウ酸マグネシウム,炭酸マ
グネシウム,炭酸カルシウム,リン酸亜鉛,炭酸バリウ
ム,硝酸カルシウム,硝酸バリウム等のカルシウム化合
物、マグネシウム化合物、アルミニウム化合物、バリウ
ム化合物、鉛化合物、亜鉛化合物、ケイ酸化合物等が例
示される。反応終了後脱液し乾燥させる。この不燃性無
機化合物は水不溶性であるため、乾燥後において、木繊
維の細胞孔内又は細胞孔内壁面及び木繊維外周部に充填
又は付着或は固着される。これによって、木繊維外周部
の細部壁に裂け目や割れ目が含まれる場合にも、これを
閉塞ないし充填するような形で不燃性無機化合物が存在
することとなる。
The wood fiber thus acetylated is then non-combustible. That is, the non-combustible inorganic compound is filled in the voids such as the cell holes and conduit holes of the wood fiber, or the non-combustible inorganic compound is fixed or adhered in a layer along the inner wall of the cell fiber, and the outer periphery of the wood fiber The nonflammable inorganic compound is fixed or adhered to the part to make it nonflammable. This non-combustibility treatment can be performed, for example, by the following steps. That is, the wood fiber is sufficiently immersed and impregnated in an aqueous solution of a water-soluble inorganic salt (hereinafter, referred to as “first liquid”). As the first liquid, MgCl 2 , MgBr 2 , MgSO 4 .H
2 O, Mg (NO 3 ) 2 .6H 2 O, AlCl 3 , AlBr 3 , Al 2 (SO 4 ) 3 , Al (NO
3) 3 · 9H 2 O, CaCl 2, CaBr 2, Ca (NO 3) 2, ZnCl 2, BaCl 2 · 2
An aqueous solution of H 2 O, BaBr 2 , Ba (NO 3 ) 2 or the like is exemplified. After impregnation of the first liquid, the liquid is drained, and the wood fiber is dried to make the surface dry or absolutely dry. If necessary, the component crystals of the first liquid deposited on the surface are removed. Next, a compound liquid which reacts with the first liquid to form a water-insoluble incombustible inorganic compound (hereinafter referred to as "second liquid") is added to the wood fiber using a blender, a spray or the like, and mixed or immersed. By soaking, the second liquid is impregnated into the wood fiber. As the second liquid, Na 2 CO 3 , (NH 4 ) 2 CO 3 , H 2 SO 4 , Na 2 SO 4 , (NH 4 ) 2 SO 4 , H
2 PO 4 , Na 2 HPO 4 , (NH 4 ) 2 HPO 4 , H 3 BO 3 , NaBO 2 , NH 4 BO 2 and the like are exemplified. By applying and impregnating the second liquid, the first liquid and the second liquid react in the wood fiber to generate a nonflammable inorganic compound. As the non-combustible inorganic compound generated,
Calcium compounds such as magnesium phosphate, calcium phosphate, barium phosphate, aluminum phosphate, magnesium borate, magnesium carbonate, calcium carbonate, zinc phosphate, barium carbonate, calcium nitrate, barium nitrate, etc., magnesium compounds, aluminum compounds, barium compounds, Examples include a lead compound, a zinc compound, and a silicate compound. After completion of the reaction, the mixture is drained and dried. Since this nonflammable inorganic compound is insoluble in water, it is filled, adhered or adhered to the inside of the cell pore of the wood fiber, the inner wall surface of the cell pore, and the outer periphery of the wood fiber after drying. As a result, even when cracks and fissures are included in the detailed wall of the outer periphery of the wood fiber, the non-combustible inorganic compound is present in a form that closes or fills the fissures.

不燃性無機化合物は、木繊維に対して33重量%以上の
割合で混入されることが好ましく、これ以下では十分な
防火性能が得られない。また第1液と第2液との反応効
率を高めるために、第2液の添加混合は加熱雰囲気下、
特に40℃以上更に好ましくは50℃以上の温度で行うこと
が好ましい。
It is preferable that the non-combustible inorganic compound is mixed at a rate of 33% by weight or more with respect to the wood fiber, and below this, sufficient fire protection performance cannot be obtained. In order to increase the reaction efficiency between the first liquid and the second liquid, the addition and mixing of the second liquid is performed under a heating atmosphere.
In particular, it is preferably carried out at a temperature of 40 ° C. or higher, more preferably 50 ° C. or higher.

かくしてアセチル化及び不燃化処理された木繊維を混
合装置に投入し、接着剤、サイズ剤等を添加混合して付
着させる。次いで木繊維を風送し、フォーミング装置に
て搬送装置上に一定厚の連続した木繊維マットを形成す
る。
The wood fibers thus acetylated and non-combustible are put into a mixing device, and an adhesive, a sizing agent and the like are added, mixed and adhered. Next, the wood fibers are blown in, and a continuous wood fiber mat having a constant thickness is formed on the conveying device by a forming device.

得られた木繊維マットを定尺切断した後、ホットプレ
スに挿入して熱圧成形し、木質繊維板が得られる。この
木質繊維板の比重は0.4〜1.2の範囲内とすることが好ま
しい。この理由は、比重が0.4以下であると表面がポー
ラスとなって金属被膜層が形成されにくくなり、膜厚を
大きくする必要が生ずるためであり、また比重が1.2以
上であると表面が密になり過ぎて金属被膜層の木質繊維
板に対する投錨効果が減少し、密着力が低下するためで
ある。また木質繊維板の含水率は20%以下とすることが
好ましい。この理由は、含水率が20%以上であると、金
属溶射時にその熱の影響で溶射面側の内部水が蒸発し反
対側に水分移動されるために内部バランスが崩れ、金属
溶射中において木質繊維板自体に溶射面側を凹とする反
りが生じ易くなるためである。
After the obtained wood fiber mat is cut to a fixed size, it is inserted into a hot press and hot-pressed to obtain a wood fiber board. The specific gravity of the wood fiberboard is preferably in the range of 0.4 to 1.2. The reason for this is that if the specific gravity is 0.4 or less, the surface becomes porous and it becomes difficult to form a metal coating layer, and it is necessary to increase the film thickness.If the specific gravity is 1.2 or more, the surface becomes dense. This is because the anchoring effect on the wood fiberboard of the metal coating layer is excessively reduced, and the adhesion is reduced. Further, the water content of the wood fiber board is preferably 20% or less. The reason is that if the water content is more than 20%, the internal heat on the sprayed surface will evaporate under the influence of the heat during metal spraying and the water will move to the opposite side. This is because the fiberboard itself tends to be warped such that the sprayed surface side is concave.

得られた木質繊維板を養生し、必要に応じてその表面
(後に金属被膜層が形成される側)をサンディングした
後、溶射器を用いて必要量の溶融金属を吹き付け溶射を
行う。金属溶射は木質繊維板の表面に限らず裏面、木口
面等の必要箇所、また全面を被覆するように行うことが
できる。金属溶射が行われる木質繊維板の面の温度は40
〜100℃であることが好ましく、この観点より、熱圧成
形後の木質繊維板の材温が高いうちに或は少なくとも木
質繊維板の金属被膜層を形成する面の温度を温めた後
に、金属溶射を行うことが好ましい。40℃以下であると
吹き付けられた溶融金属が直ちに冷却固化してしまうた
め、木質繊維板の被覆面に対する投錨効果による密着力
が十分に発揮されない。また100℃以上であると溶融金
属の温度影響が強く、木質繊維板の表面を劣化させるこ
ととなって、密着力が低下する。溶射される金属として
は錫、鉛、亜鉛、銅、黄銅、青銅、アルミニウム、ニッ
ケル、鉄、ステンレス等の金属合金が好適に用いられ
る。溶射法としては一般に行われる電気溶線式溶射法、
ガス溶線式溶射法、粉末式溶射法のいずれを採用しても
良い。溶射された金属は、その後の冷却により固化し、
木質繊維板の表面上に金属被膜層が密着形成される。
After curing the obtained wood fiber board and sanding the surface thereof (the side on which the metal coating layer is formed later) as necessary, a required amount of molten metal is sprayed using a thermal sprayer to perform thermal spraying. The metal spraying can be performed so as to cover not only the front surface of the wood fiber board but also a required portion such as a back surface, a wood opening surface, and the entire surface. The temperature of the surface of the wood fiber board where metal spraying is performed is 40
From this point of view, from this viewpoint, while the material temperature of the wood fiber board after hot pressing is high, or after at least the temperature of the surface of the wood fiber board on which the metal coating layer is formed, the metal Preferably, thermal spraying is performed. When the temperature is lower than 40 ° C., the sprayed molten metal is immediately cooled and solidified, and thus the adhesion to the coated surface of the wood fiberboard by the anchoring effect is not sufficiently exhibited. On the other hand, if the temperature is higher than 100 ° C., the temperature of the molten metal is so strong that the surface of the wood fiber board is deteriorated, and the adhesion is reduced. As the metal to be sprayed, a metal alloy such as tin, lead, zinc, copper, brass, bronze, aluminum, nickel, iron, and stainless steel is preferably used. As the thermal spraying method, generally used electric wire spraying method,
Either a gas wire spraying method or a powder spraying method may be employed. The sprayed metal solidifies by subsequent cooling,
A metal coating layer is tightly formed on the surface of the wood fiberboard.

〈作用〉 木質繊維板の表面に形成される金属被膜層によって耐
熱性が向上された複合材料を少なくとも片側表面板とし
て用いる防火ドアである。木質繊維板は、その木繊維中
の水酸基がアセチル基と置換されてアセチル化処理され
るので寸法安定性に優れ、木繊維中への水分吸収及び乾
燥に伴う板の膨張・収縮が抑制される。同時に、この木
質繊維板は、その木繊維の細胞孔内又は細胞孔内壁面或
は木繊維外周部に不燃性無機化合物が充填又は付着或は
固着されることによって不燃化されるため、金属被膜層
を介して伝達される熱によっても劣化ないし炭化するこ
とがない。木質繊維板自体において、その木繊維が蒸煮
脱脂処理されているため、溶融金属の溶射に際して前処
理を行う必要がない。
<Function> The fire door uses a composite material having improved heat resistance by a metal coating layer formed on the surface of a wood fiber board as at least one surface plate. The wood fiber board has excellent dimensional stability because the hydroxyl group in the wood fiber is replaced with an acetyl group and is acetylated, and the expansion and shrinkage of the board due to moisture absorption and drying in the wood fiber is suppressed. . At the same time, the wood fiber board is made non-combustible by filling, adhering, or fixing the non-combustible inorganic compound in the cell pores of the wood fiber, the inner wall surface of the cell fiber, or the outer periphery of the wood fiber. It is not degraded or carbonized by heat transferred through the layer. In the wood fiber board itself, since the wood fibers are subjected to the steam degreasing treatment, it is not necessary to perform the pretreatment when spraying the molten metal.

〈実施例〉 ラジアータパインのチップをダイジェスターにより16
0℃、7kg/cm2で5分間蒸煮して脱脂・軟化処理した。こ
のチップをディファイブレーター式リファイナーで解繊
し、脱脂された木繊維を得た。この木繊維を乾燥した
後、無水酢酸に浸漬し、120℃で1時間加熱反応を行っ
た。反応終了後、過剰の反応液を除去し、直ちに洗浄機
に投入して水洗し、乾燥させることによって、アセチル
化処理された木繊維を得た。この際アセチル化による重
量増加率は17%であった。
<Example> 16 chips of radiata pine were digested with a digester.
The mixture was degreased and softened by steaming at 0 ° C. and 7 kg / cm 2 for 5 minutes. The chips were defibrated with a defibrator-type refiner to obtain defatted wood fibers. After drying this wood fiber, it was immersed in acetic anhydride and heated at 120 ° C. for 1 hour. After completion of the reaction, the excess reaction solution was removed, immediately put into a washing machine, washed with water, and dried to obtain an acetylated wood fiber. At this time, the weight increase rate by acetylation was 17%.

更にこのアセチル化処理された木繊維を、塩化バリウ
ムを主成分とする水溶液に10分間浸漬し、拡散処理の
後、脱液した。これを熱風乾燥して含水率を7%に調整
した。乾燥後、この木繊維をブレンダー装置に投入し
て、リン酸アンモニウムを主成分とする水溶液を添加混
合し、該木繊維の細胞孔等の孔内又は木繊維外周部に水
不溶性リン酸バリウムとリン酸水素バリウムから成る不
燃性無機化合物を充填ないし付着せしめるべく不燃化処
理を行った後、熱風乾燥して、その含水率を6%に調整
した。この不燃化処理によって生成された不燃性無機化
合物による重量増加率は50%であった。
Further, the acetylated wood fiber was immersed in an aqueous solution containing barium chloride as a main component for 10 minutes, and after the diffusion treatment, was drained. This was dried with hot air to adjust the water content to 7%. After drying, the wood fiber is put into a blender, an aqueous solution containing ammonium phosphate as a main component is added and mixed, and water-insoluble barium phosphate is added to the inside of the wood fiber cell hole or the outer periphery thereof. After performing a non-combustible treatment for filling or attaching a non-combustible inorganic compound composed of barium hydrogen phosphate, the resultant was dried with hot air to adjust its water content to 6%. The rate of weight increase due to the non-combustible inorganic compound produced by this non-combustible treatment was 50%.

かくしてアセチル化処理されると共に不燃化処理され
た木繊維をブレンダーに投入し、該ブレンダー内におい
て木繊維量に対して4%のワックスサイズ及び10%のフ
ェノール樹脂接着剤を添加混合した後、風送し、フェル
ターにてスクリーンコンベア上にフォーミングして一定
厚の連続した木繊維マットを形成した。この木繊維マッ
トをその幅、長さを所定寸法に切断した後、ホットプレ
スに挿入して200℃にて4分間圧締成形し、比重0.8、10
mm厚、3'×6'サイズの木質繊維板を得た。
The acetylated and non-combustible wood fiber thus obtained is put into a blender, and a wax size of 4% and a phenol resin adhesive of 10% with respect to the amount of wood fiber are added and mixed in the blender. The mixture was fed and formed on a screen conveyor by a felter to form a continuous wood fiber mat having a constant thickness. After cutting this wood fiber mat to a predetermined size in width and length, it is inserted into a hot press and pressed at 200 ° C. for 4 minutes to form a specific gravity of 0.8, 10
A wood fiberboard having a thickness of 3 mm and a size of 3 'x 6' was obtained.

得られた木質繊維板を養生し、表面温度が50℃になっ
たところで、粉末式溶射法によりニッケル合金(Ni30
%,Zn4%,Cu66%,融点800〜1200℃)溶融金属を溶射
し、後冷却することにより、金属被膜層を形成し、複合
材料が得られた。
The obtained wood fiber board was cured, and when the surface temperature reached 50 ° C, a nickel alloy (Ni30
%, Zn 4%, Cu 66%, melting point 800-1200 ° C) The molten metal was sprayed and then cooled to form a metal coating layer, and a composite material was obtained.

この複合材料を表面板として防火ドアを製造した。 A fire door was manufactured using this composite material as a surface plate.

〈発明の効果〉 本発明による防火ドアは、木質繊維板の表面に金属被
膜層が形成されて耐熱性が向上された複合材料を少なく
とも片側表面板として用いるため、従来の金属製防火ド
アの不利欠点を解消することができる。複合材料は、木
質繊維板の表面に金属被膜層が形成されることにより耐
熱性・耐水性に優れ、しかも基材である木質繊維板はア
セチル化処理されているために寸法安定性に優れ、吸湿
・吸水に伴う膨張・収縮が抑制され、同時に不燃化処理
されているために、金属被膜層を介して伝達される熱に
よって劣化ないし炭化することがなく、長期的にも発火
する恐れがない。
<Effect of the Invention> The fire door according to the present invention uses a composite material in which a metal coating layer is formed on the surface of a wood fiber board and has improved heat resistance as at least one surface plate, and thus has a disadvantage of a conventional metal fire door. The disadvantages can be eliminated. The composite material is excellent in heat resistance and water resistance by forming a metal coating layer on the surface of the wood fiber board, and the wood fiber board as the base material is excellent in dimensional stability because it is acetylated. Expansion and shrinkage due to moisture absorption / absorption are suppressed, and at the same time, non-combustible treatment prevents deterioration or carbonization due to heat transmitted through the metal coating layer, and there is no danger of ignition over a long period of time .

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】木繊維中に存在する水酸基をアセチル基と
置換すべくアセチル化処理されると共に、該木繊維の細
胞孔内及び/又は細胞孔内壁面及び/又は該木繊維の外
周部に不燃性無機化合物が充填又は付着或は固着された
木繊維が接着成形一体化されて成る木質繊維板を基板と
し、該基板の少なくとも一表面に、溶射法による金属被
膜層が形成されて成る複合材料を、その金属被膜層が表
面となるように少なくとも片側表面板として用いて成る
ことを特徴とする、防火ドア。
An acetylation treatment for replacing a hydroxyl group present in a wood fiber with an acetyl group, and the acetylation treatment is performed on the inside and / or inside wall of the wood fiber of the wood fiber and / or on the outer periphery of the wood fiber. A composite comprising a wood fiber board formed by bonding and integrating wood fibers to which a non-combustible inorganic compound is filled or adhered or fixed, and a metal coating layer formed by thermal spraying on at least one surface of the board. A fire door, characterized in that the material is used as at least one side plate so that the metal coating layer is on the surface.
JP2233854A 1990-09-04 1990-09-04 Fire door Expired - Fee Related JP2700191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2233854A JP2700191B2 (en) 1990-09-04 1990-09-04 Fire door

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2233854A JP2700191B2 (en) 1990-09-04 1990-09-04 Fire door

Publications (2)

Publication Number Publication Date
JPH04115079A JPH04115079A (en) 1992-04-15
JP2700191B2 true JP2700191B2 (en) 1998-01-19

Family

ID=16961614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2233854A Expired - Fee Related JP2700191B2 (en) 1990-09-04 1990-09-04 Fire door

Country Status (1)

Country Link
JP (1) JP2700191B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2571727Y2 (en) * 1990-11-21 1998-05-18 株式会社ノダ Fire door

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182386A (en) * 1986-02-06 1987-08-10 ヤマハ株式会社 Wooden decorative door
JP2551832B2 (en) * 1989-01-13 1996-11-06 株式会社 ノダ Improved organic board and method for producing the same

Also Published As

Publication number Publication date
JPH04115079A (en) 1992-04-15

Similar Documents

Publication Publication Date Title
JP2700191B2 (en) Fire door
JP2700196B2 (en) Fire door
JP2700193B2 (en) Fire door
JP2551852B2 (en) Composite material and manufacturing method thereof
JP2700192B2 (en) Fire door
JP2700194B2 (en) Fire door
JP2744951B2 (en) Fire door
JP2700195B2 (en) Fire door
JP2530240B2 (en) Composite material and manufacturing method thereof
JP2551851B2 (en) Composite material and manufacturing method thereof
JP2521174B2 (en) Composite material and manufacturing method thereof
JP2521175B2 (en) Composite material and manufacturing method thereof
JPH0751554Y2 (en) Veneer
JPH04115078A (en) Fire door
JP2663049B2 (en) Manufacturing method of composite board
JP2630342B2 (en) Decorative plate and manufacturing method thereof
JP2521173B2 (en) Composite material and manufacturing method thereof
JP2646158B2 (en) Manufacturing method of composite board
JP2589218B2 (en) Manufacturing method of composite board
JP2700197B2 (en) Composite material and fire door using the composite material as a face plate
JP2688599B2 (en) Decorative plate and manufacturing method thereof
JPH03258538A (en) Composite and its manufacture
JP2626728B2 (en) Decorative plate and manufacturing method thereof
JPH03183540A (en) Composite material and manufacture thereof
JP2538313Y2 (en) Fire door

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees