JP2698815B2 - Silicon nitride sintered body with excellent wear resistance for cutting tools - Google Patents

Silicon nitride sintered body with excellent wear resistance for cutting tools

Info

Publication number
JP2698815B2
JP2698815B2 JP2276238A JP27623890A JP2698815B2 JP 2698815 B2 JP2698815 B2 JP 2698815B2 JP 2276238 A JP2276238 A JP 2276238A JP 27623890 A JP27623890 A JP 27623890A JP 2698815 B2 JP2698815 B2 JP 2698815B2
Authority
JP
Japan
Prior art keywords
sintered body
wear resistance
silicon nitride
resistance
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2276238A
Other languages
Japanese (ja)
Other versions
JPH04154669A (en
Inventor
賢一 水野
容 多島
正一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2276238A priority Critical patent/JP2698815B2/en
Publication of JPH04154669A publication Critical patent/JPH04154669A/en
Application granted granted Critical
Publication of JP2698815B2 publication Critical patent/JP2698815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,耐摩耗性が要求される切削工具部材,特に
鋳鉄を切削するのに好適な切削工具部材に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting tool member requiring abrasion resistance, particularly to a cutting tool member suitable for cutting cast iron.

[従来の技術] 窒化珪素焼結体は硬度が高く,耐摩耗性に優れ,さら
に強度・靱性に優れたセラミックスであるため,切削工
具への応用が盛んに行われてきた。
[Prior Art] Sintered silicon nitride is a ceramic having high hardness, excellent wear resistance, and excellent strength and toughness, and thus has been actively applied to cutting tools.

一方,窒化珪素の焼結性・機械的特性を向上させるた
めにMgO,ZrO2,CeO2,Al2O3等の助剤成分を添加した焼結
体が提案されている。(例えば特開平1−157466,特開
平2−74564) [発明が解決しようとする課題] 現在切削工具においては,切削寿命となる摩耗量のな
お一層の低減が必要となってきている。耐欠損性につい
ては窒化珪素の強度・靱性の向上により優れた焼結体を
得ることができるが,耐摩耗性は機械的特性との関連性
が明かではなく,耐摩耗性向上の手段は明確ではなかっ
た。
On the other hand, a sintered body to which an auxiliary component such as MgO, ZrO 2 , CeO 2 , and Al 2 O 3 is added to improve the sinterability and mechanical properties of silicon nitride has been proposed. (For example, JP-A-1-157466, JP-A-2-74564) [Problems to be Solved by the Invention] In cutting tools at present, it is necessary to further reduce the amount of wear which is the cutting life. With respect to fracture resistance, an improved sintered body can be obtained by improving the strength and toughness of silicon nitride. However, the relationship between wear resistance and mechanical properties is not clear, and the means of improving wear resistance is clear. Was not.

[課題を達成するための手段] そこで本発明は耐摩耗性に優れた切削工具部材を開発
することを目的とし,耐摩耗性を向上させるには助剤量
を低減することが有効であることを見出した。即ち,焼
結性向上のために添加される助剤量に着目し,種々の検
討を重ねた結果,Mg,Zr,Ceを酸化物換算でそれぞれ0.5wt
%以上,その合計が5wt%以下であって,残部Si3N4から
なり,相対密度が99%以上であることを特徴とする耐摩
耗性の優れた切削工具用窒化珪素質焼結体を得ることが
できた。
[Means for Achieving the Object] Accordingly, an object of the present invention is to develop a cutting tool member having excellent wear resistance, and it is effective to reduce the amount of an auxiliary agent to improve the wear resistance. Was found. In other words, focusing on the amount of auxiliaries added to improve sinterability and conducting various studies, it was found that Mg, Zr, and Ce were 0.5 wt.
%, The total of which is 5% by weight or less, the balance consisting of Si 3 N 4 and the relative density of 99% or more. I got it.

[作用] 切削中の工具の刃先温度は,相手材や切削条件によっ
て異なるが,一般的に800℃以上の高温になると言われ
ている。このため,耐摩耗性を向上させるには耐熱性及
び化学安定性が優れていることが重要である。
[Action] The cutting edge temperature of a tool during cutting varies depending on the mating material and cutting conditions, but is generally said to be as high as 800 ° C. or higher. For this reason, it is important that heat resistance and chemical stability are excellent in order to improve wear resistance.

窒化珪素焼結体中の粒界相は,助剤成分とSi,N,Oから
成る非晶質ガラス相あるいは結晶相として存在するが,
窒化珪素に比べると耐熱性,耐食性が劣り,この粒界相
の量及び組成が焼結体の耐熱性や化学安定性に影響を及
ぼす。
The grain boundary phase in the silicon nitride sintered body exists as an amorphous glass phase or a crystalline phase composed of auxiliary components and Si, N, O.
Heat resistance and corrosion resistance are inferior to silicon nitride, and the amount and composition of the grain boundary phase affect the heat resistance and chemical stability of the sintered body.

上記観点から,まず第一に耐熱性・耐食性・化学安定
性に劣る粒界相の量を減少させる,つまり焼結助剤量を
低減し,さらに小量でも緻密化可能であるような助剤系
の検討を行った。その結果,優れた耐摩耗性を有するた
めには助剤総量が酸化物換算で5wt%以下であることが
必要であり,緻密化するためには焼結性に優れたMg,Zr,
Ceの3成分が焼結助剤として最適であることがわかっ
た。
From the above viewpoint, first of all, the amount of the grain boundary phase, which is inferior in heat resistance, corrosion resistance, and chemical stability, is reduced, that is, the amount of the sintering agent is reduced, and an auxiliary agent that can be densified even with a small amount. The system was examined. As a result, in order to have excellent wear resistance, the total amount of auxiliaries needs to be 5 wt% or less in terms of oxide, and in order to achieve densification, Mg, Zr,
It was found that the three components of Ce were optimal as sintering aids.

本発明の窒化珪素質焼結体において、Mg,Zr及びCeは
緻密化作用を相乗的に促進し,5wt%以下の少量でも,こ
れら3成分の配合により十分緻密化可能となる。しか
し,Mg,Zr,Ceのうち酸化物換算でいずれかの成分が0.5wt
%未満であると,緻密化作用を効果的に発揮できない。
In the silicon nitride sintered body of the present invention, Mg, Zr and Ce synergistically promote the densification action, and even in a small amount of 5 wt% or less, the densification can be sufficiently achieved by the combination of these three components. However, any component of Mg, Zr, and Ce in oxide conversion was 0.5 wt.
%, The effect of densification cannot be exhibited effectively.

また,3成分の合計が酸化物換算で5wt%を越えると,
粒界の結晶相及びガラス相の量が多くなり,耐摩耗性が
低下する。特に,鋳鉄(FC)のような被削材を切削する
切削工具部材として用いる場合,3wt%以下にすることが
より好ましい。
When the sum of the three components exceeds 5 wt% in terms of oxide,
The amount of the crystal phase and the glass phase at the grain boundaries increases, and the wear resistance decreases. In particular, when it is used as a cutting tool member for cutting a work material such as cast iron (FC), the content is more preferably 3 wt% or less.

さらに,相対密度が99%未満であると,焼結体中に1
%以上の気孔が残留し,この気孔の存在が耐欠損性は勿
論,耐摩耗性を低下させる原因となる。
Further, if the relative density is less than 99%, 1
% Or more of the pores remain, and the presence of the pores causes the deterioration of not only the fracture resistance but also the wear resistance.

助剤成分のMg,Zr,Ceは焼結体中のSi3N4粒界におい
て,非晶質ガラス相または結晶質相例えばMg2SiO4(フ
ォルステライト)や複雑な固溶体ZrOxNyCzとして存在す
る。
The auxiliary components Mg, Zr, and Ce are contained in the amorphous glass phase or crystalline phase such as Mg 2 SiO 4 (forsterite) or complex solid solution ZrO x N y C at the Si 3 N 4 grain boundary in the sintered body. Exists as z .

本発明の窒化珪素質焼結体の製造条件は次の通りであ
る。Si3N4及びMg,Zr,Ce成分の原料粉末は,比表面積4m2
/g以上のものを用いる。Mg,Zr,Ce成分の原料粉末として
は,酸化物または焼成過程で酸化物に変化し得るもの,
例えば塩(炭酸塩等),水酸化物などを用いる。これら
の配合粉末を成形した後の焼成は相対密度99%以上とす
るため,常圧焼結を行った後,二次焼結として雰囲気加
圧焼結を行う。焼成温度は常圧・雰囲気加圧焼結ともに
1500〜1900℃で行い,二次焼結は10気圧以上の窒素分圧
を有する加圧雰囲気中で行う。雰囲気加圧焼結としては
熱間静水圧プレス焼結(HIP),ガス圧焼結(GPS)が挙
げられる。
The manufacturing conditions of the silicon nitride sintered body of the present invention are as follows. The raw material powder of Si 3 N 4 and Mg, Zr and Ce components has a specific surface area of 4 m 2
Use / g or more. As raw material powders of Mg, Zr, and Ce components, oxides or those that can be converted to oxides during the firing process,
For example, salts (such as carbonates) and hydroxides are used. In order to raise the relative density to 99% or more after sintering after molding these compounded powders, normal pressure sintering is performed, and then atmospheric pressure sintering is performed as secondary sintering. The firing temperature is normal pressure and atmospheric pressure sintering.
The secondary sintering is performed in a pressurized atmosphere having a nitrogen partial pressure of 10 atm or more at 1500 to 1900 ° C. Atmospheric pressure sintering includes hot isostatic press sintering (HIP) and gas pressure sintering (GPS).

[実施例] 平均粒径0.7μm,α率98%,比表面積10m2/gのSi3N4
末に,比表面積4m2/gのMgO,同14m2/gのZrO2,同8m2/gのC
eO2の各粉末を第1表に示す割合で配合した。乾燥した
配合粉末を2ton/cm2の圧力で金型プレスし,1550〜1750
℃で一次焼成(N2常圧中2時間保持)を行なった後,二
次焼成を行ない焼結体を作成した。
[Example] The average particle diameter of 0.7 [mu] m, alpha 98%, the Si 3 N 4 powder having a specific surface area of 10 m 2 / g, MgO having a specific surface area of 4m 2 / g, the 14m 2 / g ZrO 2 of, the 8m 2 / g C
Each powder of eO 2 was blended in the ratio shown in Table 1. The dried compounded powder was pressed with a mold at a pressure of 2 ton / cm2, 1550-1750
After primary firing at 2 ° C. (holding in N 2 normal pressure for 2 hours), secondary firing was performed to produce a sintered body.

得られた焼結体について,切削特性として耐摩耗性及
び耐欠損性を測定した結果を第1表に示す。
Table 1 shows the results of measuring wear resistance and fracture resistance as cutting characteristics of the obtained sintered body.

以下に焼結条件及び各特性の測定方法を示す。 The sintering conditions and measuring methods of each characteristic are shown below.

焼成条件 一次焼成:N2 latm−1500〜1750℃−2h 二次焼成:HIP−−N22000atm−1600℃−2h GPS−−N2 100atm−1800℃−2h 測定方法 (1)相対密度: アルキメデス法により焼結体密度を測定 相対密度 =焼結体密度/同組成の完全緻密焼結体密度 (気孔率=0) (2)耐摩耗性: SNGN432,チャンファ−0.15のチップを用い,被削材と
してFC23 240mmφ×100mmLを選び,切削速度300m/min,
切込み1.5mm,送り速度0.30mm/rev,切削長さ400mmの条件
でフランク摩耗幅VBを測定 (3)耐欠損性: SNGN432,チャンファ−0.07のチップを用い,被削材と
してFC23を選び,切削速度150m/min,切込み2.0mm,送り
速度0.8mm/revの条件で,外形200mm,厚さ11mmの円板の
外側面を軸方向に切削し,欠損が生じるまでの円板の枚
数を測定 第1表の結果から実施令の焼結体は,耐摩耗性につい
てはVBが0.3mm以下,耐欠損性については欠損が生じる
までの円板枚数が7枚以下と切削特性に優れたものであ
る。これに対してNo.9は二次焼成を行っておらず,相対
密度が97%と低く,耐摩耗性・耐欠損性共に劣る。また
No.10〜13は助剤成分の合計が5wt%を越えるため,十分
緻密化しているにもかかわらず(相対密度=100%),
耐摩耗性に劣る。さらに焼結助剤としてMg,Zr,Ce以外の
成分を用いたNo.14も,十分な耐摩耗性が得られない。
Firing conditions primary firing: N 2 latm-1500~1750 ℃ -2h secondary firing: HIP - N 2 2000atm-1600 ℃ -2h GPS - N 2 100atm-1800 ℃ -2h measuring method (1) Relative Density: Archimedes The sintered body density is measured by the method. Relative density = Sintered body density / Dense sintered body density of the same composition (porosity = 0) (2) Abrasion resistance: Machining using SNGN432, chamfer-0.15 tip Select FC23 240mmφ × 100mmL as material, cutting speed 300m / min,
Cut 1.5 mm, feed rate 0.30 mm / rev, measured flank wear width V B under the conditions of the cutting length 400 mm (3) breakage resistance: SNGN432, using the chip of the chamfer -0.07, select FC23 as workpiece, Under the conditions of cutting speed 150m / min, depth of cut 2.0mm, feed speed 0.8mm / rev, the outer surface of a disk 200mm in outer diameter and 11mm in thickness is cut in the axial direction, and the number of disks until a defect is generated is measured. Those sintered body according Ordinance from the results in Table 1, the V B 0.3 mm or less for wear resistance, the chipping resistance is the disc number to defect occurs and excellent cutting properties than seven It is. On the other hand, No. 9 does not perform secondary firing, has a low relative density of 97%, and is inferior in both wear resistance and fracture resistance. Also
Nos. 10 to 13 have sufficient densities (relative density = 100%) because the sum of auxiliary components exceeds 5 wt%.
Poor wear resistance. Further, No. 14 using a component other than Mg, Zr, and Ce as a sintering aid does not provide sufficient wear resistance.

又,助剤量と耐摩耗性の関係を示す参考図としてMgO
−ZrO2−CeO2助剤系における助剤成分合計量に対するフ
ランク摩耗幅VBの変化を第1図に示す。第1図に示すよ
うに,助剤量が少ないほど摩耗幅VBは小さくなり,合計
量5wt%以下ではVBが0.3mm以下となって非常に優れた耐
摩耗性を有する。
In addition, as a reference diagram showing the relationship between the amount of auxiliaries and wear resistance, MgO
The change in flank wear width V B against auxiliary component total amount of -ZrO 2 -CeO 2 aid system shown in Figure 1. As shown in FIG. 1, as the aid amount is small wear width V B decreases, has a very good wear resistance is V B becomes 0.3mm or less in total amount 5 wt% or less.

尚,本願実施例において,耐欠損性について比較例の
方が良好な結果を示す場合があるが,現行窒化珪素工具
の実用上の最大の問題点は耐摩耗性の向上であって,耐
欠損性はそれ程問題となっていないため,一定レベル以
上の性能が確保されればよい。
In the examples of the present application, the comparative example may show better results with respect to the fracture resistance. However, the biggest practical problem of the current silicon nitride tool is the improvement of the wear resistance. Performance is not so much a problem, so it is only necessary to ensure a certain level of performance.

[発明の効果] 焼結助剤としてMg,Zr,Ce成分を用い,助剤の合計を酸
化物換算で5wt%以下として,相対密度99%以上まで緻
密化させることにより,耐摩耗性の優れた切削工具用窒
化珪素質焼結体を製造することができた。
[Effects of the Invention] By using Mg, Zr, and Ce as sintering aids, the total amount of the aids is reduced to 5 wt% or less in terms of oxide, and the relative density is increased to 99% or more. Thus, a silicon nitride sintered body for a cutting tool was manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は助剤成分合計量による摩耗幅VBの変化を示すグ
ラフを表わす。
Figure 1 represents a graph showing changes in wear width V B by auxiliary component total amount.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−33511(JP,A) 特開 昭59−146981(JP,A) 特開 平2−74564(JP,A) ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-54-33511 (JP, A) JP-A-59-146981 (JP, A) JP-A-2-74564 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Mg,Zr,CeをMgO,ZrO2,CeO2換算でそれぞれ
0.5wt%以上,その合計が5wt%以下であって,残部Si3N
4からなり,相対密度が99%以上であることを特徴とす
る切削工具用窒化珪素質焼結体。
[1] Mg, Zr, Ce converted to MgO, ZrO 2 , CeO 2 respectively
0.5 wt% or more, the total of which is 5 wt% or less, with the balance Si 3 N
4. A silicon nitride sintered body for a cutting tool, comprising 4 and having a relative density of 99% or more.
JP2276238A 1990-10-17 1990-10-17 Silicon nitride sintered body with excellent wear resistance for cutting tools Expired - Fee Related JP2698815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2276238A JP2698815B2 (en) 1990-10-17 1990-10-17 Silicon nitride sintered body with excellent wear resistance for cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2276238A JP2698815B2 (en) 1990-10-17 1990-10-17 Silicon nitride sintered body with excellent wear resistance for cutting tools

Publications (2)

Publication Number Publication Date
JPH04154669A JPH04154669A (en) 1992-05-27
JP2698815B2 true JP2698815B2 (en) 1998-01-19

Family

ID=17566625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2276238A Expired - Fee Related JP2698815B2 (en) 1990-10-17 1990-10-17 Silicon nitride sintered body with excellent wear resistance for cutting tools

Country Status (1)

Country Link
JP (1) JP2698815B2 (en)

Also Published As

Publication number Publication date
JPH04154669A (en) 1992-05-27

Similar Documents

Publication Publication Date Title
WO2006068220A1 (en) Sialon insert and cutting tool equipped therewith
EP2957368B1 (en) Cutting tool
JP2010264574A (en) Cutting tool
JP2855243B2 (en) Silicon nitride sintered body with excellent wear resistance
JPS61101482A (en) Silicon nitride cutting tool
JP2698815B2 (en) Silicon nitride sintered body with excellent wear resistance for cutting tools
JPS6152102B2 (en)
JP3550420B2 (en) Wear-resistant silicon nitride sintered body, method for producing the same, and cutting tool
JP2851721B2 (en) Silicon nitride sintered body for cutting tools
JP2699104B2 (en) A1 Lower 2 O Lower 3-TiC ceramic material
JP2673523B2 (en) Alumina sintered body for cutting tool and its manufacturing method
JP2568494B2 (en) Manufacturing method of surface coated β 'sialon-based ceramics for cutting tools
JPH05208304A (en) Alumina-nitrocarbonate titanium system ceramic cutting tool
JP2001322009A (en) Alumina ceramic cutting tool and manufacturing method therefor
JP2006175561A (en) Sialon insert and cutting tool
JP2570354B2 (en) Surface coated ceramic members for cutting tools
JP3715775B2 (en) High speed cutting tool
JP2754912B2 (en) Surface-coated ceramic cutting tool with excellent fracture resistance
JPS6323642B2 (en)
JPH08112705A (en) Cutting tool made of silicon nitride substance sintered body and its manufacture
JPS62235260A (en) Si3n4 base composite material
JPH0662339B2 (en) Silicon nitride sintered body and method for manufacturing the same
JP2699093B2 (en) Ceramic material for thin film magnetic head
JPH0225862B2 (en)
JPH1179827A (en) Cutting tool made of alumina-based ceramics having excellent abrasion resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees