JP2698430B2 - Gas bearing - Google Patents

Gas bearing

Info

Publication number
JP2698430B2
JP2698430B2 JP14020389A JP14020389A JP2698430B2 JP 2698430 B2 JP2698430 B2 JP 2698430B2 JP 14020389 A JP14020389 A JP 14020389A JP 14020389 A JP14020389 A JP 14020389A JP 2698430 B2 JP2698430 B2 JP 2698430B2
Authority
JP
Japan
Prior art keywords
gas
rotor
bearing
air
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14020389A
Other languages
Japanese (ja)
Other versions
JPH034016A (en
Inventor
幸二 島戸
洋和 八代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP14020389A priority Critical patent/JP2698430B2/en
Publication of JPH034016A publication Critical patent/JPH034016A/en
Application granted granted Critical
Publication of JP2698430B2 publication Critical patent/JP2698430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • F04D29/0513Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は気体軸受けに関するものである。Description: TECHNICAL FIELD The present invention relates to a gas bearing.

[従来の技術] 従来、ターボ分子ポンプにおいて回転子は球軸受け等
により支承され、この軸受けにオイルやグリース等の潤
滑剤を併用して回転子の円滑な回転を保証していた。こ
の油潤滑の使用により真空中にオイルミストが混入し易
く、ターボ分子ポンプは本来の機能を果たせ得ないばか
りか、軸受けでの固体接触に起因する発熱にて生ずる潤
滑剤蒸気等の炭化水素が潤滑油の使用寿命を縮めた。
[Related Art] Conventionally, in a turbo-molecular pump, a rotor is supported by a ball bearing or the like, and a lubricant such as oil or grease is used in combination with the bearing to assure smooth rotation of the rotor. The use of this oil lubrication makes it easy for oil mist to be mixed into the vacuum, which not only prevents the turbo molecular pump from fulfilling its original function, but also causes hydrocarbons such as lubricant vapor generated by heat generation due to solid contact with the bearing. The service life of lubricating oil has been shortened.

上記した不都合を回避すべく、特開昭63−255593号に
おいて改良型のターボ分子ポンプが開示されている。こ
のポンプでは回転子と軸受けとの間に磁性液体を封入
し、この磁性液体をマグネットにて制御することによ
り、回転子のスラスト方向及びラジアル方向に良好なバ
ランスを維持しつつ、同回転子を浮上保持して安定した
高速運転を保証するものである。
In order to avoid the above-mentioned disadvantages, an improved turbo-molecular pump is disclosed in JP-A-63-255593. In this pump, a magnetic liquid is sealed between a rotor and a bearing, and the magnetic liquid is controlled by a magnet, thereby maintaining a good balance in the thrust direction and the radial direction of the rotor while maintaining the rotor in good condition. This ensures stable high-speed operation by maintaining the levitation.

[発明が解決しようとする課題] ところが、このターボ分子ポンプにおいては、磁性液
体やこれを制御するマグネットを使用する必要があり、
構成が複雑になって製造が煩雑となるばかりか、部品点
数が多くなり製造コストの高騰を招来するという問題点
がある。
[Problems to be Solved by the Invention] However, in this turbo molecular pump, it is necessary to use a magnetic liquid and a magnet for controlling the magnetic liquid.
Not only does the configuration become complicated and the manufacturing becomes complicated, but also the number of parts increases and the manufacturing cost rises.

この発明は上記した問題点を解決するためになされた
ものであり、その目的はターボ分子ポンプ等で形成され
る真空雰囲気中で使用でき、しかも製造が簡単にして製
造コストを低く抑えることが可能な気体軸受けを提供す
ることにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has an object to be used in a vacuum atmosphere formed by a turbo-molecular pump or the like, and furthermore, it is possible to simplify the manufacturing and to reduce the manufacturing cost. It is to provide a simple gas bearing.

[課題を解決するための手段] この発明は上記した目的を達成するために、被支承部
材の回転時にこの被支承部材を回転可能に支持する支持
部を備えた気体軸受けにおいて、前記被支承部材の回転
に基いて、気体を支持部に導入する気体導入路と、前記
支持部に設けられ、かつ気体導入路から支持部に導入さ
れた気体の流れを二分し、一方の流れにて支持部と被支
承部材との間に圧力気体膜を発生させ、さらに他方の流
れにより前記圧力気体膜を形成する気体の逸出を防止す
るためのエアーバリアを発生させる動力発生部とを設け
たことをその要旨とする。
Means for Solving the Problems In order to achieve the above object, the present invention provides a gas bearing provided with a support portion for rotatably supporting a supported member when the supported member rotates. Based on the rotation of the gas, a gas introduction path for introducing a gas into the support portion, and a flow of the gas provided in the support portion and introduced from the gas introduction path to the support portion is divided into two, and the flow of the support portion is divided into two flows. And a power generation unit for generating a pressure gas film between the support member and the support member, and further generating an air barrier for preventing escape of gas forming the pressure gas film by the other flow. This is the gist.

[作用] この発明は上記した手段を採用したことにより、被支
承部材の回転により気体導入路から支持部に気体が導入
された後、この気体の流れが二分され、一方の流れによ
り支持部及び被支承部材間で圧力気体膜が形成され、さ
らに他方の流れによって形成されるエアーバリアにて圧
力気体膜を形成する気体の逸出が防止される。
[Operation] By adopting the above-described means, the present invention employs the above-described means. After the gas is introduced from the gas introduction path to the support by the rotation of the supported member, the flow of the gas is divided into two, and the flow of the support and the support is caused by one flow. A pressure gas film is formed between the supported members, and escape of the gas forming the pressure gas film is prevented by an air barrier formed by the other flow.

[実施例] 以下、この発明をターボ分子ポンプに具体化した一実
施例を図面に従って詳述する。
Embodiment An embodiment in which the present invention is embodied in a turbo-molecular pump will be described below in detail with reference to the drawings.

第1図に示すターボ分子ポンプのケーシング1は上部
及び下部にそれぞれ開口された吸入口2及び吐出口3を
備え、さらに真空室4内周壁を覆うように上下に固定配
置された複数個の環状部材5から内方へ向かって静翼6
が多段状に突出している。
The casing 1 of the turbo-molecular pump shown in FIG. 1 has a suction port 2 and a discharge port 3 which are respectively opened at an upper part and a lower part, and further has a plurality of annularly fixedly arranged vertically so as to cover an inner peripheral wall of a vacuum chamber 4. Stationary blade 6 inward from member 5
Project in a multi-step manner.

前記ケーシング1の筒状部内において、これと同軸上
には有底円筒状をなすロータ7が配置され、その外周面
に形成した複数個の動翼7aが静翼6間にそれぞれ突出し
ている。前記ロータ7の底部にはケーシング1の下部に
設けた駆動室8から延びる回転軸9が固定連結されると
ともに、底面には等角度間隔を隔てて複数の接触板10が
配設されている。そして、回転軸9の回転に伴いロータ
7が回転されると、吸入口2より真空室4を介して吐出
口3に空気が排出され、真空室4内の圧力は10-2〜10
-10kg/cm2の値となる。
A cylindrical bottomed rotor 7 is disposed coaxially with the inside of the cylindrical portion of the casing 1, and a plurality of moving blades 7 a formed on the outer peripheral surface of the rotor 7 protrude between the stationary blades 6. A rotating shaft 9 extending from a driving chamber 8 provided at a lower portion of the casing 1 is fixedly connected to the bottom of the rotor 7, and a plurality of contact plates 10 are arranged on the bottom surface at equal angular intervals. When the rotor 7 rotates with the rotation of the rotating shaft 9, air is discharged from the suction port 2 to the discharge port 3 through the vacuum chamber 4, and the pressure in the vacuum chamber 4 becomes 10 −2 to 10 −10.
The value is -10 kg / cm 2 .

前記ケーシング1の真空室4と駆動室8との間には有
蓋円筒状をなす厚肉の区画部材11が配設され、この区画
部材11は蓋部の中央部に回転軸9が通過する遊貫孔12を
備えるとともに、この遊貫孔12のに内周面にてラジアル
軸受け受13を構成している。そして、回転軸9の外周面
においてラジアル軸受け部13と対向する部分には、ヘリ
ングボーン状の動圧溝14が刻設され、回転軸9の回転に
伴って動圧溝14の作用により軸受け部13と回転軸9の外
周面間の圧力室15内の気体の圧力が高められ、回転軸9
のラジアル荷重が支持されるようになっている。
Between the vacuum chamber 4 and the driving chamber 8 of the casing 1, there is provided a thick-walled partitioning member 11 having a closed cylindrical shape. A radial bearing 13 is formed on the inner peripheral surface of the through hole 12. A herringbone-shaped dynamic pressure groove 14 is formed in a portion of the outer peripheral surface of the rotary shaft 9 facing the radial bearing portion 13, and the bearing portion is formed by the action of the dynamic pressure groove 14 as the rotary shaft 9 rotates. The pressure of the gas in the pressure chamber 15 between the outer peripheral surface of the rotary shaft 9 and the rotary shaft 9 is increased.
Is supported.

また、区画部材11にはその断面形状に対応してチャン
ネル状をなす複数の気体導入路16が上下に貫通するよう
に形成されるとともに、その上面にはロータ7の底面に
対向するスラスト軸受け部17が設けられている。このス
ラスト軸受け部17は第2図に示すように、気体導入路16
の出口が同一円周上に配置され、この気体導入路16と遊
貫孔12の外周縁部との間に気体膜形成領域18が、また気
体導入路より外方にはガスシール形成領域19が設けられ
ている。
A plurality of gas introduction passages 16 having a channel shape corresponding to the cross-sectional shape are formed in the partition member 11 so as to penetrate vertically, and a thrust bearing portion facing the bottom surface of the rotor 7 is provided on the upper surface thereof. 17 are provided. This thrust bearing 17 is, as shown in FIG.
Are disposed on the same circumference, a gas film forming region 18 is provided between the gas introduction passage 16 and the outer peripheral edge of the free passage hole 12, and a gas seal formation region 19 is provided outside the gas introduction passage. Is provided.

前記スラスト軸受け部17の気体膜形成領域18には遊貫
孔12の外周縁部よりスパイラル状をなして外周方向に延
びる複数本の正圧溝20が、またガスシール形成領域19に
は前記正圧溝20とは同方向のスパイラル状をなして外周
方向に延びる複数本のシール形成溝21が形成されてい
る。そして、第3図に示すように、回転軸9、即ちロー
タ7の回転により流動する空気が正圧溝20に沿って中心
方向に正圧を生じさせ、ロータ7の底部に対し上方に働
く圧力を加える。これとともに気体導入路16の出口付近
には負圧が生じ、外部から気体導入路16内に空気が導入
され、この空気流は正圧溝20及びシール形成溝21側に分
流し、正圧溝20において昇圧された空気は圧力気体膜A
を発生させ、ロータ7を浮上保持する。また、シール形
成溝21において空気流は真空室4の圧力値とほぼ同程度
にまで減圧され、この圧力値の拮抗によりシール形成溝
21の上方にガスシールSを発生させて、真空室4とスラ
スト軸受け部17の上方との間における空気の流通を遮断
する。
In the gas film forming region 18 of the thrust bearing portion 17, a plurality of positive pressure grooves 20 extending in the outer peripheral direction in a spiral shape from the outer peripheral edge of the through hole 12, and the positive pressure groove 20 in the gas seal forming region 19. A plurality of seal forming grooves 21 extending in the outer peripheral direction in a spiral shape in the same direction as the pressure grooves 20 are formed. Then, as shown in FIG. 3, the air flowing by the rotation of the rotating shaft 9, that is, the rotation of the rotor 7 generates a positive pressure in the center direction along the positive pressure groove 20, and the pressure acting upward against the bottom of the rotor 7. Add. At the same time, a negative pressure is generated in the vicinity of the outlet of the gas introduction passage 16, air is introduced into the gas introduction passage 16 from the outside, and this air flow is divided into the positive pressure groove 20 and the seal forming groove 21 side, and the positive pressure groove The air pressurized in 20 is a pressure gas film A
Is generated to keep the rotor 7 floating. In the seal forming groove 21, the air flow is reduced to almost the same level as the pressure value of the vacuum chamber 4.
A gas seal S is generated above 21 to block the flow of air between the vacuum chamber 4 and the thrust bearing 17.

なお、前記駆動室8内において回転軸9の下端には円
板状の取付け部22が固着され、その下面に埋設された複
数の磁石板23と、これらに対向して配置した固定子24と
の極性の変化により回転軸9が回転されるようになって
いる。
A disc-shaped mounting portion 22 is fixed to the lower end of the rotating shaft 9 in the drive chamber 8, and a plurality of magnet plates 23 buried on the lower surface thereof, and a stator 24 disposed opposite to these. The rotation shaft 9 is rotated by the change in the polarity of.

さて、回転軸9の非駆動時に、ロータ7はその接触板
10がスラスト軸受け部17に当接し、区画部材11によって
支持されている。そして、駆動室8内における固定子24
が通電されると、同固定子24の極性の変化に伴い回転軸
9が回転される。すると、ロータ7の回転にて生じる空
気流が区画部材11の正圧溝20により中心方向に働く正圧
となり、ロータ7を浮上させる。
Now, when the rotating shaft 9 is not driven, the rotor 7 is
10 contacts the thrust bearing 17 and is supported by the partition member 11. Then, the stator 24 in the drive room 8 is
Is turned on, the rotating shaft 9 is rotated with the change in the polarity of the stator 24. Then, the air flow generated by the rotation of the rotor 7 becomes a positive pressure acting in the center direction by the positive pressure groove 20 of the partition member 11, and causes the rotor 7 to float.

また、気体導入路16内に外部から空気が導入され、こ
の空気が導入路16の出口から正圧溝20側及びシール形成
溝21側に分流される。そして、正圧溝20に沿って流れる
空気流は圧力気体膜Aをロータ7と区画部材11との間に
発生させ、この気体膜Aによりロータ7のスラスト荷重
を支えてロータ7を浮上保持する。一方、シール形成溝
21に沿う空気流により形成されるガスシールSにて真空
室4とスラスト軸受け部17との間の空気の流通が阻止さ
れるため、空気が真空室4内に流れることなく、ロータ
7を浮上支持すべく設定された圧力分布状態を維持して
回転軸9の円滑な回転を保証する。
Air is introduced into the gas introduction passage 16 from the outside, and the air is diverted from the outlet of the introduction passage 16 to the positive pressure groove 20 side and the seal forming groove 21 side. The air flow flowing along the positive pressure groove 20 generates a pressurized gas film A between the rotor 7 and the partition member 11, and the gas film A supports the thrust load of the rotor 7 to keep the rotor 7 floating. . On the other hand, the seal forming groove
Since the air flow between the vacuum chamber 4 and the thrust bearing portion 17 is blocked by the gas seal S formed by the air flow along 21, the rotor 7 floats without the air flowing into the vacuum chamber 4. The smoothness of rotation of the rotating shaft 9 is ensured by maintaining the pressure distribution state set to be supported.

上記したように、本実施例ではロータ7の回転によっ
て生ずる空気流に基き気体導入路16内に導入される空気
の流れをシール形成溝21にて空気シールに、また正圧溝
20により正圧の空気膜として回転軸9にスラスト荷重を
受け、前記ロータ7を浮上支持する構成としたことによ
り、真空雰囲気中に気体軸受けを形成することができ、
しかも構成の簡略化及び部品点数の削減が可能である。
As described above, in the present embodiment, the flow of air introduced into the gas introduction passage 16 based on the air flow generated by the rotation of the rotor 7 is applied to the air seal by the seal forming groove 21 and to the positive pressure groove.
By applying a thrust load to the rotating shaft 9 as a positive pressure air film by 20 and supporting the rotor 7 in a floating manner, a gas bearing can be formed in a vacuum atmosphere.
Moreover, the configuration can be simplified and the number of parts can be reduced.

[効果] 以上、詳述したようにこの発明は製造が簡単にして製
造コストを低く抑えることができるという優れた効果を
発揮する。
[Effects] As described above in detail, the present invention exerts an excellent effect that the production is simplified and the production cost can be kept low.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明を具体化して示す断面図、第2図はス
ラスト軸受けを示す部分平断面図、第3図は第1図の要
部を示す拡大断面図である。 被支承部材としてのロータ7及び回転軸9、気体導入路
16、支持部としてのスラスト軸受け部17、動圧発生部と
しての正圧溝20及びシール形成溝21、圧力気体膜A、エ
アーバリアとしてのガスシールS。
FIG. 1 is a sectional view showing the present invention in detail, FIG. 2 is a partial plan sectional view showing a thrust bearing, and FIG. 3 is an enlarged sectional view showing a main part of FIG. Rotor 7 and rotating shaft 9 as supported members, gas introduction path
16, a thrust bearing portion 17 as a support portion, a positive pressure groove 20 and a seal forming groove 21 as a dynamic pressure generating portion, a pressure gas film A, and a gas seal S as an air barrier.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被支承部材(7,9)の回転時にこの被支承
部材(7,9)を回転可能に支持する支持部(17)を備え
た気体軸受けにおいて、 前記被支承部材(7,9)の回転に基いて、気体を支持部
(17)に導入する気体導入路(16)と、 前記支持部(17)に設けられ、かつ気体導入路(16)か
ら支持部(17)に導入された気体の流れを二分し、一方
の流れにて支持部(17)と被支承部材(7,9)との間に
圧力気体膜(A)を発生させ、さらに他方の流れにより
前記圧力気体膜(A)を形成する気体の逸出を防止する
ためのエアーバリア(S)を発生させる動圧発生部(2
0,21)と からなることを特徴とする気体軸受け。
1. A gas bearing comprising a support portion (17) for rotatably supporting a supported member (7, 9) when the supported member (7, 9) rotates, wherein the supported member (7, 9) A gas introduction path (16) for introducing gas into the support section (17) based on the rotation of 9); and a gas introduction path provided in the support section (17) and from the gas introduction path (16) to the support section (17). The flow of the introduced gas is divided into two, and one of the flows generates a pressure gas film (A) between the support part (17) and the supported members (7, 9). A dynamic pressure generator (2) for generating an air barrier (S) for preventing escape of gas forming the gas film (A)
0,21) A gas bearing comprising:
JP14020389A 1989-05-31 1989-05-31 Gas bearing Expired - Lifetime JP2698430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14020389A JP2698430B2 (en) 1989-05-31 1989-05-31 Gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14020389A JP2698430B2 (en) 1989-05-31 1989-05-31 Gas bearing

Publications (2)

Publication Number Publication Date
JPH034016A JPH034016A (en) 1991-01-10
JP2698430B2 true JP2698430B2 (en) 1998-01-19

Family

ID=15263320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14020389A Expired - Lifetime JP2698430B2 (en) 1989-05-31 1989-05-31 Gas bearing

Country Status (1)

Country Link
JP (1) JP2698430B2 (en)

Also Published As

Publication number Publication date
JPH034016A (en) 1991-01-10

Similar Documents

Publication Publication Date Title
KR870011383A (en) Scroll compressor
JP6927096B2 (en) Centrifugal compressor
US4787829A (en) Turbomolecular pump
JPH04234595A (en) Compressor for refrigeration
JP2020056320A (en) Centrifugal compressor
KR940015283A (en) Reverse rotating scroll type machine
US3753623A (en) Turbo molecular vacuum pump
KR890001683B1 (en) Scroll-type vacuum pump
JP2698430B2 (en) Gas bearing
JPH07229565A (en) Oil feeder for shaft seal and bearing
CN102155437B (en) Drainage pump
JPS6287692A (en) Closed type scroll compressor
JP3559111B2 (en) Damping mechanism for high-speed rotating shaft
JP2508554Y2 (en) Bearing lubrication device for rotating machinery
US2058591A (en) Current motor operated pump
JPH0870552A (en) Bearing system of vertical shaft-type rotary machine
JPS61132797A (en) Bearing unit for turbo molecular pump
JPH05240170A (en) Fluid pump for enclosed compressor
US2112463A (en) Pumping mechanism
JPH0110469Y2 (en)
JP2021095849A (en) Submerged pump device
JPS6179873A (en) Sealed type compressor
JPH0670440B2 (en) Turbo molecular pump
JPS6324301Y2 (en)
JPH0814179A (en) Sealed type scroll compressor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20070919

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080919

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090919